Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = rapeseed oil-based polyol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2500 KiB  
Review
A Vegetable-Oil-Based Polyurethane Coating for Controlled Nutrient Release: A Review
by Lyu Yao, Azizah Baharum, Lih Jiun Yu, Zibo Yan and Khairiah Haji Badri
Coatings 2025, 15(6), 665; https://doi.org/10.3390/coatings15060665 - 30 May 2025
Viewed by 661
Abstract
Bio-based polyurethane (PU) is synthesized either via the prepolymerization or addition polymerization of bio-based polyols and isocyanates. PU synthesized from vegetable-oil-based polyols has excellent properties for various application needs. Bio-based PU coatings from renewable vegetable oil show good degradability in soil while controlling [...] Read more.
Bio-based polyurethane (PU) is synthesized either via the prepolymerization or addition polymerization of bio-based polyols and isocyanates. PU synthesized from vegetable-oil-based polyols has excellent properties for various application needs. Bio-based PU coatings from renewable vegetable oil show good degradability in soil while controlling the nutrient release process. Castor oil, soybean oil, palm oil, olive oil, linseed oil, rapeseed oil, cottonseed oil, and recycled oil have been explored in the study of bio-based PU coatings for controlled nutrient release. Castor oil as a natural polyol has been widely studied. Generally, the epoxidation ring opening method is preferred to prepare bio-based polyols. Almost all of these studies used a drum coating machine to complete the coating process. To obtain better controlled release performance, a vegetable-oil-based PU (VPU) coating was modified by increasing the degrees of crosslinking and hydrophobicity and improving the coating uniformity. The nutrient release duration of the modified castor-oil-based PU-coated fertilizer reached 200 days. VPU-coated fertilizers, in contrast to traditional fertilizers, effectively reduce the detrimental impact on the environment. Although the preparation of VPU-coated fertilizers is still at the laboratory scale, application research has been carried out in field crops. Full article
(This article belongs to the Special Issue Preparation and Applications of Bio-Based Polymer Coatings)
Show Figures

Graphical abstract

14 pages, 2871 KiB  
Article
Characterization of Vegetable Oils for Direct Use in Polyurethane-Based Adhesives: Physicochemical and Compatibility Assessment
by Żaneta Ciastowicz, Renata Pamuła, Łukasz Bobak and Andrzej Białowiec
Materials 2025, 18(5), 918; https://doi.org/10.3390/ma18050918 - 20 Feb 2025
Cited by 1 | Viewed by 697
Abstract
This study evaluates the compatibility and innovative applications of unmodified vegetable oils, including rapeseed, sunflower, linseed, castor, and used cooking oils, in the production of sustainable polymeric materials, particularly polyurethane adhesives. Fatty acid composition was characterized using GC-MS, functional groups were identified by [...] Read more.
This study evaluates the compatibility and innovative applications of unmodified vegetable oils, including rapeseed, sunflower, linseed, castor, and used cooking oils, in the production of sustainable polymeric materials, particularly polyurethane adhesives. Fatty acid composition was characterized using GC-MS, functional groups were identified by FTIR, and physicochemical properties, such as hydroxyl value, acid value, viscosity, and density, were measured using conventional analytical techniques. The results highlight significant differences in the properties of the oils, influencing their suitability for specific industrial applications. Castor oil, with its high ricinoleic acid content and hydroxyl value, was identified as the most suitable option for bio-based polyols and polyurethane production. Compatibility tests confirmed that unmodified oils can be effectively blended with polyols, ensuring stability and homogeneity without chemical modification. This approach simplifies production, reduces reliance on petrochemical feedstocks, and advances the development of environmentally friendly polyurethane adhesives. Future research will focus on optimizing formulations and assessing the long-term performance of adhesives incorporating unmodified vegetable oils. Full article
Show Figures

Figure 1

12 pages, 3078 KiB  
Article
Application of Modified Seed Oils of Selected Fruits in the Synthesis of Polyurethane Thermal Insulating Materials
by Elżbieta Malewska, Maria Kurańska, Maria Tenczyńska and Aleksander Prociak
Materials 2024, 17(1), 158; https://doi.org/10.3390/ma17010158 - 28 Dec 2023
Cited by 14 | Viewed by 2027
Abstract
The use of alternative raw material sources in polyurethane chemistry is necessary given the limited supply of fossil fuels, their rising prices and the concern for sustainability. The production of biopolyols from edible vegetable oils such as rapeseed oil, soybean oil or sunflower [...] Read more.
The use of alternative raw material sources in polyurethane chemistry is necessary given the limited supply of fossil fuels, their rising prices and the concern for sustainability. The production of biopolyols from edible vegetable oils such as rapeseed oil, soybean oil or sunflower oil is often proposed. In order to avoid conflict with the global food economy, non-edible or waste oils are hoped to find application in chemical synthesis. The possibility of using oils from selected fruit seeds to obtain biopolyols is analyzed in this manuscript. Five biopolyols were obtained from watermelon, cherry, black currant, grape and pomegranate fruit seeds using the transesterification reaction of the oils with triethanolamine. Thermal insulating polyurethane foams were then obtained by replacing 75% of petrochemical polyol with the biopolyols in polyurethane systems. Based on an analysis of the foaming process, it was found that the incorporation of triethanolamine molecules into the biopolyols causes a catalytic effect. The use of such biopolyols allows eliminating the catalyst from a polyurethane foam formulation. The polyurethane biofoams obtained with the pomegranate-seed-based biopolyol were characterized by the highest content of closed cells (45 vol.%). The lowest content was found for the foams containing the currant-seed-based biopolyol (9%). The foams were characterized by thermal conductivity coefficients between 32 and 35 kW/m·K and densities of approximately 40 kg/m3. Good dimensional stability and compressive strength between 100 and 250 kPa make them suitable for use in construction. Full article
Show Figures

Figure 1

18 pages, 16592 KiB  
Article
Effect of Selected Bio-Components on the Cell Structure and Properties of Rigid Polyurethane Foams
by Aleksander Prociak, Michał Kucała, Maria Kurańska and Mateusz Barczewski
Polymers 2023, 15(18), 3660; https://doi.org/10.3390/polym15183660 - 5 Sep 2023
Cited by 4 | Viewed by 1688
Abstract
New rigid polyurethane foams (RPURFs) modified with two types of bio-polyols based on rapeseed oil were elaborated and characterized. The effect of the bio-polyols with different functionality, synthesized by the epoxidation and oxirane ring-opening method, on the cell structure and selected properties of [...] Read more.
New rigid polyurethane foams (RPURFs) modified with two types of bio-polyols based on rapeseed oil were elaborated and characterized. The effect of the bio-polyols with different functionality, synthesized by the epoxidation and oxirane ring-opening method, on the cell structure and selected properties of modified foams was evaluated. As oxirane ring-opening agents, 1-hexanol and 1.6-hexanediol were used to obtain bio-polyols with different functionality and hydroxyl numbers. Bio-polyols in different ratios were used to modify the polyurethane (PUR) composition, replacing 40 wt.% petrochemical polyol. The mass ratio of the used bio-polyols (1:0, 3:1, 1:1, 1:3, 0:1) affected the course of the foaming process of the PUR composition as well as the cellular structure and the physical and mechanical properties of the obtained foams. In general, the modification of the reference PUR system with the applied bio-polyols improved the cellular structure of the foam, reducing the size of the cells. Replacing the petrochemical polyol with the bio-polyols did not cause major differences in the apparent density (40–43 kg/m3), closed-cell content (87–89%), thermal conductivity (25–26 mW⋅(m⋅K)−1), brittleness (4.7–7.5%), or dimensional stability (<0.7%) of RPURFs. The compressive strength at 10% deformation was in the range of 190–260 and 120–190 kPa, respectively, for directions parallel and perpendicular to the direction of foam growth. DMA analysis confirmed that an increase in the bio-polyol of low functionality in the bio-polyol mixture reduced the compressive strength of the modified foams. Full article
(This article belongs to the Special Issue Polyols and Polyurethane Foams Based on Natural Resources)
Show Figures

Figure 1

16 pages, 4123 KiB  
Article
Hemp Seed Oil and Oilseed Radish Oil as New Sources of Raw Materials for the Synthesis of Bio-Polyols for Open-Cell Polyurethane Foams
by Krzysztof Polaczek and Maria Kurańska
Materials 2022, 15(24), 8891; https://doi.org/10.3390/ma15248891 - 13 Dec 2022
Cited by 14 | Viewed by 2382
Abstract
We report on the development of open-cell polyurethane foams based on bio-polyols from vegetable oils: hemp seed oil, oilseed radish oil, rapeseed oil and used rapeseed cooking oil. The crude oils were pressed from seeds and subjected to an optimal solvent-free epoxidation process. [...] Read more.
We report on the development of open-cell polyurethane foams based on bio-polyols from vegetable oils: hemp seed oil, oilseed radish oil, rapeseed oil and used rapeseed cooking oil. The crude oils were pressed from seeds and subjected to an optimal solvent-free epoxidation process. Bio-polyols were obtained by a ring-opening reaction using diethylene glycol and tetrafluoroboric acid as catalysts. The resultant foams were analysed in terms of their apparent density, thermal conductivity coefficient, mechanical strength, closed cell content, short-term water absorption and water vapour permeability, while their morphology was examined using scanning electron microscopy. It was found that regardless of the properties of the oils, especially the content of unsaturated bonds, it was possible to obtain bio-polyols with very similar properties. The foams were characterized by apparent densities ranging from 11.2 to 12.1 kg/m3, thermal conductivity of <39 mW/m∙K, open cell contents of >97% and high water vapour permeability. Full article
(This article belongs to the Special Issue Novel Resin Composites and Biomaterials)
Show Figures

Figure 1

17 pages, 4717 KiB  
Article
The Effect of a Chemical Foaming Agent and the Isocyanate Index on the Properties of Open-Cell Polyurethane Foams
by Klaudia Kamińska, Mateusz Barczewski, Maria Kurańska, Elżbieta Malewska, Krzysztof Polaczek and Aleksander Prociak
Materials 2022, 15(17), 6087; https://doi.org/10.3390/ma15176087 - 2 Sep 2022
Cited by 14 | Viewed by 2978
Abstract
This article presents an ecological approach based on climate neutrality to the synthesis of open-cell polyurethane foams with modified used cooking rapeseed oils. Water was used as a chemical blowing agent in the amount of 20–28 wt.% in relation to the weight of [...] Read more.
This article presents an ecological approach based on climate neutrality to the synthesis of open-cell polyurethane foams with modified used cooking rapeseed oils. Water was used as a chemical blowing agent in the amount of 20–28 wt.% in relation to the weight of the bio-polyol. The influence of water on the physical and mechanical properties of the synthesized foams was investigated. The resultant porous materials were tested for the content of closed cells, cell structure, apparent density, thermal conductivity, compressive strength, and dimensional stability. It was found that the apparent density decreased in the range of 11–13 kg/m3 when the amount of the foaming agent was increased. In the next step, a foam with a water content of 22% was selected as having the most favorable physico–mechanical properties among all the foams with various water contents. The isocyanate index of the selected foam was then changed from 0.6 to 1.1 and it was observed that the compressive strength increased by an average of 10 kPa. The thermal conductivity coefficients of the final materials with different water contents and isocyanate indices were comparable and in the range of 40–43 mW/m·K. Full article
Show Figures

Figure 1

11 pages, 5418 KiB  
Article
Scale-Up and Testing of Polyurethane Bio-Foams as Potential Cryogenic Insulation Materials
by Maria Kurańska, Ugis Cabulis, Aleksander Prociak, Krzysztof Polaczek, Katarzyna Uram and Mikelis Kirpluks
Materials 2022, 15(10), 3469; https://doi.org/10.3390/ma15103469 - 12 May 2022
Cited by 4 | Viewed by 2515
Abstract
This article compares the properties of closed-cell PUR bio-foams produced on a laboratory scale and on an industrial scale. In the formulation used, the polyol premix contained 40 wt.% of a bio-polyol based on rapeseed oil. Selected useful properties of the foams obtained [...] Read more.
This article compares the properties of closed-cell PUR bio-foams produced on a laboratory scale and on an industrial scale. In the formulation used, the polyol premix contained 40 wt.% of a bio-polyol based on rapeseed oil. Selected useful properties of the foams obtained on the two scales and the use of one-step and spraying methods were compared. In the case of the spraying method, the experimental system was compared to a commercial one. Given the possibility of applying the bio-foams in insulation systems for cryogenic and liquefied natural gas (LNG) applications, a compressive strength analysis of the foams was carried out at room temperature as well as at −196 °C. It was found that the foams modified with the bio-polyol were characterized by a higher compressive strength at low temperatures than commercial foams based on a petrochemical polyol. Full article
(This article belongs to the Special Issue Polymer Foams: Materials, Processing and Properties)
Show Figures

Figure 1

17 pages, 5802 KiB  
Article
Bio-Based Rigid Polyurethane Foams Modified with Phosphorus Flame Retardants
by Marcin Zemła, Aleksander Prociak and Sławomir Michałowski
Polymers 2022, 14(1), 102; https://doi.org/10.3390/polym14010102 - 28 Dec 2021
Cited by 29 | Viewed by 4488
Abstract
Rigid polyurethane foams (RPURF) containing a bio-polyol from rapeseed oil and different phosphorus-based flame retardants were obtained. Triethyl phosphate (TEP), dimethyl propane phosphonate (DMPP) and cyclic phosphonates Addforce CT 901 (20 parts per hundred polyol by weight) were used in the synthesis of [...] Read more.
Rigid polyurethane foams (RPURF) containing a bio-polyol from rapeseed oil and different phosphorus-based flame retardants were obtained. Triethyl phosphate (TEP), dimethyl propane phosphonate (DMPP) and cyclic phosphonates Addforce CT 901 (20 parts per hundred polyol by weight) were used in the synthesis of RPURF. The influence of used flame retardants on foaming process, cell structure, and physical–mechanical properties as well as flammability of RPURF were examined. The addition of flame retardants influenced the parameters of the cellular structure and decreased compressive strength. All obtained foam materials had a low thermal conductivity coefficient, which allows them to be used as thermal insulation. The research results of bio-based RPURF were compared with foams obtained without bio-polyol. All modified materials had an oxygen index above 21 vol%; therefore, they can be classified as self-extinguishing materials. The analysis of parameters obtained after the cone calorimeter test showed that the modified RPURF have a lower tendency to fire development compared to the reference foams, which was particularly noticeable for the materials with the addition of DMPP. Full article
(This article belongs to the Collection Polyurethanes)
Show Figures

Figure 1

14 pages, 5717 KiB  
Article
Natural Oil-Based Rigid Polyurethane Foam Thermal Insulation Applicable at Cryogenic Temperatures
by Katarzyna Uram, Aleksander Prociak, Laima Vevere, Ralfs Pomilovskis, Ugis Cabulis and Mikelis Kirpluks
Polymers 2021, 13(24), 4276; https://doi.org/10.3390/polym13244276 - 7 Dec 2021
Cited by 29 | Viewed by 5093
Abstract
This paper presents research into the preparation of rigid polyurethane foams with bio-polyols from rapeseed and tall oil. Rigid polyurethane foams were designed with a cryogenic insulation application for aerospace in mind. The polyurethane systems containing non-renewable diethylene glycol (DEG) were modified by [...] Read more.
This paper presents research into the preparation of rigid polyurethane foams with bio-polyols from rapeseed and tall oil. Rigid polyurethane foams were designed with a cryogenic insulation application for aerospace in mind. The polyurethane systems containing non-renewable diethylene glycol (DEG) were modified by replacing it with rapeseed oil-based low functional polyol (LF), obtained by a two-step reaction of epoxidation and oxirane ring opening with 1-hexanol. It was observed that as the proportion of the LF polyol in the polyurethane system increased, so too did the apparent density of the foam material. An increase in the value of the thermal conductivity coefficient was associated with an increase in the value of apparent density. Mechanical tests showed that the rigid polyurethane foam had higher compressive strength at cryogenic temperatures compared with the values obtained at room temperature. The adhesion test indicated that the foams subjected to cryo-shock obtained similar values of adhesion strength to the materials that were not subjected to this test. The results obtained were higher than 0.1 MPa, which is a favourable value for foam materials in low-temperature applications. Full article
(This article belongs to the Special Issue Polyurethane Foams: Current Advances and Future Perspectives)
Show Figures

Figure 1

17 pages, 7084 KiB  
Article
Polyurethane Composite Foams Synthesized Using Bio-Polyols and Cellulose Filler
by Katarzyna Uram, Milena Leszczyńska, Aleksander Prociak, Anna Czajka, Michał Gloc, Michał K. Leszczyński, Sławomir Michałowski and Joanna Ryszkowska
Materials 2021, 14(13), 3474; https://doi.org/10.3390/ma14133474 - 22 Jun 2021
Cited by 25 | Viewed by 3050
Abstract
Rigid polyurethane foams were obtained using two types of renewable raw materials: bio-polyols and a cellulose filler (ARBOCEL® P 4000 X, JRS Rettenmaier, Rosenberg, Germany). A polyurethane system containing 40 wt.% of rapeseed oil-based polyols was modified with the cellulose filler in [...] Read more.
Rigid polyurethane foams were obtained using two types of renewable raw materials: bio-polyols and a cellulose filler (ARBOCEL® P 4000 X, JRS Rettenmaier, Rosenberg, Germany). A polyurethane system containing 40 wt.% of rapeseed oil-based polyols was modified with the cellulose filler in amounts of 1, 2, and 3 php (per hundred polyols). The cellulose was incorporated into the polyol premix as filler dispersion in a petrochemical polyol made using calenders. The cellulose filler was examined in terms of the degree of crystallinity using the powder X-ray diffraction PXRD -and the presence of bonds by means of the fourier transform infrared spectroscopy FT-IR. It was found that the addition of the cellulose filler increased the number of cells in the foams in both cross-sections—parallel and perpendicular to the direction of the foam growth—while reducing the sizes of those cells. Additionally, the foams had closed cell contents of more than 90% and initial thermal conductivity coefficients of 24.8 mW/m∙K. The insulation materials were dimensionally stable, especially at temperatures close to 0 °C, which qualifies them for use as insulation at low temperatures. Full article
(This article belongs to the Special Issue Development of Bio-Based Composite Foams)
Show Figures

Figure 1

17 pages, 6659 KiB  
Article
Effect of the Addition of Biobased Polyols on the Thermal Stability and Flame Retardancy of Polyurethane and Poly(urea)urethane Elastomers
by Kamila Mizera, Kamila Sałasińska, Joanna Ryszkowska, Maria Kurańska and Rafał Kozera
Materials 2021, 14(7), 1805; https://doi.org/10.3390/ma14071805 - 6 Apr 2021
Cited by 15 | Viewed by 2946
Abstract
Due to the current trends in sustainable development and the reduction in the use of fossil fuels (Green Deal strategy and the circular economy), and thus, the increased interest of the polyurethane industry in polyols derived from renewable sources, it is important to [...] Read more.
Due to the current trends in sustainable development and the reduction in the use of fossil fuels (Green Deal strategy and the circular economy), and thus, the increased interest of the polyurethane industry in polyols derived from renewable sources, it is important to study the impact of these polyols on the flammability of new bioelastomers. The goal of this study was to check the influence of biobased polyols, such as tall oil (TO)-based polyols, soybean oil (SO)-based polyol, and rapeseed oil (RO)-based polyol, on the reduction in the burning and fume emissions of polyurethane and poly(urea)urethane elastomers (EPURs and EPUURs). The thermal stability of these materials was tested using thermogravimetric analysis (TGA). In turn, the flame retardancy and smoke emissions were checked using a cone calorimetry test. The released gases were identified using TGA coupled with Fourier transform infrared (FT-IR) spectroscopy (TGA/FT-IR). Moreover, the morphological and structural characteristics of the char residues were characterized using FT-IR and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). The obtained data were compared to the results received for elastomers produced with petroleum substrates. The addition of biobased polyols led to a reduction in the burning as a result of the formation of char, especially RO polyol. Moreover, the TO and RO polyols increased the thermal stability of the elastomers. Full article
Show Figures

Figure 1

22 pages, 1279 KiB  
Article
Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams
by Milena Leszczyńska, Elżbieta Malewska, Joanna Ryszkowska, Maria Kurańska, Michał Gloc, Michał K. Leszczyński and Aleksander Prociak
Materials 2021, 14(7), 1772; https://doi.org/10.3390/ma14071772 - 3 Apr 2021
Cited by 33 | Viewed by 3835
Abstract
The reported study concerns the introduction of renewable raw materials into the formulation of rigid polyurethane foams in the quest for the sustainable development of polymer composites. In this study, rigid polyurethane foam composites were prepared using 75 wt.% of rapeseed oil-based polyol [...] Read more.
The reported study concerns the introduction of renewable raw materials into the formulation of rigid polyurethane foams in the quest for the sustainable development of polymer composites. In this study, rigid polyurethane foam composites were prepared using 75 wt.% of rapeseed oil-based polyol and 15 parts per hundred parts of polyol (php) of natural fillers such as chokeberry pomace, raspberry seeds, as well as hazelnut and walnut shells. The influence of the used raw materials on the foaming process, structure, and properties of foams was investigated using a FOAMAT analyzer and a wide selection of characterization techniques. The introduction of renewable raw materials limited reactivity of the system, which reduced maximum temperature of the foaming process. Moreover, foams prepared using renewable raw materials were characterized by a more regular cell structure, a higher share of closed cells, lower apparent density, lower compressive strength and glass transition temperature, low friability (<2%), low water absorption (<1%), high dimensional stability (<±0.5%) and increased thermal stability. The proper selection and preparation of the renewable raw materials and the rational development of the polyurethane recipe composition allow for the preparation of environmentally-friendly foam products with beneficial application properties considering the demands of the circular economy in the synthesis of rigid foams. Full article
(This article belongs to the Special Issue Development of Bio-Based Composite Foams)
Show Figures

Figure 1

15 pages, 1970 KiB  
Article
Reinforcement Efficiency of Cellulose Microfibers for the Tensile Stiffness and Strength of Rigid Low-Density Polyurethane Foams
by Jānis Andersons, Mikelis Kirpluks and Ugis Cabulis
Materials 2020, 13(12), 2725; https://doi.org/10.3390/ma13122725 - 15 Jun 2020
Cited by 27 | Viewed by 3958
Abstract
Rigid low-density closed-cell polyurethane (PU) foams are widely used in both thermal insulation and structural applications. The sustainability of PU foam production can be increased by using bio-based components and fillers that ensure both enhanced mechanical properties and higher renewable material content. Such [...] Read more.
Rigid low-density closed-cell polyurethane (PU) foams are widely used in both thermal insulation and structural applications. The sustainability of PU foam production can be increased by using bio-based components and fillers that ensure both enhanced mechanical properties and higher renewable material content. Such bio-based foams were produced using polyols derived from rapeseed oil and microcrystalline cellulose (MCC) fibers as filler. The effect of MCC fiber loading of up to 10 wt % on the morphology, tensile stiffness, and strength of foams has been evaluated. For estimation of the mechanical reinforcement efficiency of foams, a model allowing for the partial alignment of filler fibers in foam struts was developed and validated against test results. It is shown that although applying MCC fibers leads to modest gains in the mechanical properties of PU foams compared with cellulose nanocrystal reinforcement, it may provide a higher content of renewable material in the foams. Full article
(This article belongs to the Special Issue Metal and Polymer Matrix Composites: Processing and Applications)
Show Figures

Figure 1

12 pages, 1278 KiB  
Article
Rigid Polyurethane Foams with Various Isocyanate Indices Based on Polyols from Rapeseed Oil and Waste PET
by Aiga Ivdre, Arnis Abolins, Irina Sevastyanova, Mikelis Kirpluks, Ugis Cabulis and Remo Merijs-Meri
Polymers 2020, 12(4), 738; https://doi.org/10.3390/polym12040738 - 26 Mar 2020
Cited by 68 | Viewed by 9589
Abstract
Developing polyols derived from natural sources and recycling materials attracts great interest for use in replacing petroleum-based polyols in polyurethane production. In this study, rigid polyurethane (PUR) foams with various isocyanate indices were obtained from polyols based on rapeseed oil and polyethylene terephthalate [...] Read more.
Developing polyols derived from natural sources and recycling materials attracts great interest for use in replacing petroleum-based polyols in polyurethane production. In this study, rigid polyurethane (PUR) foams with various isocyanate indices were obtained from polyols based on rapeseed oil and polyethylene terephthalate (RO/PET). The various properties of the prepared PUR foams were investigated, and the effect of the isocyanate index was evaluated. The closed-cell content and water absorption were not impacted by the change of the isocyanate index. The most significant effect of increasing the isocyanate index was on the dimensional stability of the resulting foams. This is due to the increased crosslink density, as evidenced by the increased formation of isocyanurate and increase of the glass transition temperature. Additionally, the influence on compression strength, modulus, and long-term thermal conductivity were evaluated and compared with reference PUR foams from commercially available polyols. Rigid PUR foams from RO/PET polyol were found to be competitive with reference materials and could be used as thermal insulation material. Full article
(This article belongs to the Special Issue Cellular Polymeric Materials)
Show Figures

Graphical abstract

16 pages, 735 KiB  
Article
Microwave-Assisted Synthesis of Polyols from Rapeseed Oil and Properties of Flexible Polyurethane Foams
by Sylwia Dworakowska, Dariusz Bogdal and Aleksander Prociak
Polymers 2012, 4(3), 1462-1477; https://doi.org/10.3390/polym4031462 - 10 Aug 2012
Cited by 68 | Viewed by 11732
Abstract
The application of raw materials derived from renewable feedstock has given rise to growing interest recently, as it can be exploited for the production of bio-based materials from vegetable oils. Their availability, biodegradability and low prices have been taken into account. In this [...] Read more.
The application of raw materials derived from renewable feedstock has given rise to growing interest recently, as it can be exploited for the production of bio-based materials from vegetable oils. Their availability, biodegradability and low prices have been taken into account. In this work, vegetable oil-based polyols as a prospective replacement for petroleum polyols were investigated. A two-stage method for polyol preparation by incomplete epoxidation of natural oils and subsequent complete oxirane ring opening under microwave irradiation is presented. The course of epoxidation and oxirane ring-opening process was determined analytically by an evaluation of iodine, epoxy and hydroxyl values. The samples of oils and their derivatives were also analyzed by FT-IR and characterized by size exclusion chromatography (SEC) in order to calculate their functionalities. Finally, polyols with two different hydroxyl values were obtained and used for the synthesis of flexible polyurethane (PUR) foams. The scope of this research includes the determination of the relationship between the rapeseed oil-based polyol content and the properties of the resulting materials. It was found that applying bio-based polyols in conjunction with petroleum-based polyols for PUR foams formulations resulted in materials with good mechanical properties and a higher number of cells with smaller dimensions. Full article
Show Figures

Graphical abstract

Back to TopTop