Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,381)

Search Parameters:
Keywords = rank statistics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 616 KiB  
Article
Surgical Margin Analysis in Osteosarcoma: Impact on Survival and Local Control
by Sebastian Breden, Simone Beischl, Florian Hinterwimmer, Sarah Consalvo, Carolin Knebel, Rüdiger von Eisenhart-Rothe, Rainer Burgkart and Ulrich Lenze
Cancers 2025, 17(15), 2581; https://doi.org/10.3390/cancers17152581 - 6 Aug 2025
Abstract
Background/Objectives: The quality of surgical margins has been shown to be a prognostic factor in many sarcoma entities, yet its role in osteosarcoma remains controversial. While previous studies have shown that the outcome was not related to the margin width in bone, the [...] Read more.
Background/Objectives: The quality of surgical margins has been shown to be a prognostic factor in many sarcoma entities, yet its role in osteosarcoma remains controversial. While previous studies have shown that the outcome was not related to the margin width in bone, the impact of the extraosseous margin width (margin at the soft tissue invasion)—which needs to be close sometimes due to neurovascular structures—needs to be assessed. This study aims to evaluate the influence of soft tissue surgical margins on local recurrence and overall survival in patients with high-grade osteosarcoma. Methods: We conducted a retrospective, single-center study including 75 patients treated for high-grade osteosarcoma. All patients underwent standardized neoadjuvant chemotherapy followed by complete surgical resection. Patients were stratified into three groups based on the histological margin width of the extraosseous parts: group 1 (<1 mm), group 2 (1–5 mm), and group 3 (≥5 mm). Primary endpoints were local recurrence and overall survival (OS), analyzed using Kaplan–Meier estimates, log-rank tests, and Cox regression. Results: Local recurrence occurred in seven patients (9%). Although the overall comparison between the three groups was not statistically significant (p = 0.074), a subgroup analysis revealed a significantly higher recurrence rate in patients with margins < 1 mm compared to those with wider margins (p = 0.024). No significant differences in overall survival (OS) were observed between the groups (p = 0.896). Tumor location, metastatic status, and UICC stage were significant predictors for both endpoints in univariate analysis. However, none of these association were confirmed in multivariate analyses. Conclusions: Very close surgical margins (<1 mm) may increase the risk of local recurrence in high-grade osteosarcoma; however, they do not appear to affect overall survival. Full article
(This article belongs to the Special Issue Clinical Treatment of Osteosarcoma)
Show Figures

Figure 1

12 pages, 1039 KiB  
Article
Early Positive Fluid Balance Associates with Increased Mortality in Neurological Critically Ill Patients: A 10-Year Cohort Study
by Dae Yeon Kim, Sung-Jin Lee, Sook-Young Woo and Jeong-Am Ryu
J. Clin. Med. 2025, 14(15), 5518; https://doi.org/10.3390/jcm14155518 - 5 Aug 2025
Abstract
Background: Fluid management is a critical aspect of care for neurocritically ill patients, yet the optimal approach remains unclear. The relationship between fluid balance and clinical outcomes in these patients requires further investigation, particularly regarding the timing and volume of fluid administration. [...] Read more.
Background: Fluid management is a critical aspect of care for neurocritically ill patients, yet the optimal approach remains unclear. The relationship between fluid balance and clinical outcomes in these patients requires further investigation, particularly regarding the timing and volume of fluid administration. Methods: This retrospective observational study analyzed 2186 adult patients admitted to the neurosurgical intensive care unit (ICU) from January 2013 to December 2022. We employed a generalized additive model (GAM) with cubic spline smoothing to examine non-linear relationships between fluid balance and mortality. The maximally selected rank statistics method was used to determine the optimal cutoff value for fluid balance. Associations between fluid balance patterns and 28-day mortality were analyzed using a multivariable logistic regression model. Results: Initial analysis identified fluid balance on day 1 as the most significant predictor of mortality; patients with positive fluid balance showed a higher 28-day mortality. Non-survivors showed significantly higher fluid input throughout the 7-day observation period, particularly during the first 24 h (4444 mL vs. 3978 mL, p = 0.007). Multivariable analysis confirmed that fluid balance on day 1 remained independently associated with 28-day mortality after adjusting for confounders (adjusted odd ratio 1.705, 95% confidence interval: 1.001–2.905, p = 0.049). Additionally, the relationship between fluid input day 1 and mortality demonstrated a progressively increasing probability of 28-day mortality with higher fluid volumes. Early fluid balance, particularly during the first 24 h of ICU admission, shows a significant association with mortality in neurocritically ill patients. Conclusions: These findings emphasize the crucial importance of careful fluid management in the early phase of neurocritical care and suggest that implementation of strict fluid monitoring protocols, especially during the initial period of care, may improve patient outcomes. Full article
(This article belongs to the Section Brain Injury)
Show Figures

Figure 1

17 pages, 2230 KiB  
Article
Enhancing Diffusion-Based Music Generation Performance with LoRA
by Seonpyo Kim, Geonhui Kim, Shoki Yagishita, Daewoon Han, Jeonghyeon Im and Yunsick Sung
Appl. Sci. 2025, 15(15), 8646; https://doi.org/10.3390/app15158646 (registering DOI) - 5 Aug 2025
Abstract
Recent advancements in generative artificial intelligence have significantly progressed the field of text-to-music generation, enabling users to create music from natural language descriptions. Despite the success of various models, such as MusicLM, MusicGen, and AudioLDM, the current approaches struggle to capture fine-grained genre-specific [...] Read more.
Recent advancements in generative artificial intelligence have significantly progressed the field of text-to-music generation, enabling users to create music from natural language descriptions. Despite the success of various models, such as MusicLM, MusicGen, and AudioLDM, the current approaches struggle to capture fine-grained genre-specific characteristics, precisely control musical attributes, and handle underrepresented cultural data. This paper introduces a novel, lightweight fine-tuning method for the AudioLDM framework using low-rank adaptation (LoRA). By updating only selected attention and projection layers, the proposed method enables efficient adaptation to musical genres with limited data and computational cost. The proposed method enhances controllability over key musical parameters such as rhythm, emotion, and timbre. At the same time, it maintains the overall quality of music generation. This paper represents the first application of LoRA in AudioLDM, offering a scalable solution for fine-grained, genre-aware music generation and customization. The experimental results demonstrate that the proposed method improves the semantic alignment and statistical similarity compared with the baseline. The contrastive language–audio pretraining score increased by 0.0498, indicating enhanced text-music consistency. The kernel audio distance score decreased by 0.8349, reflecting improved similarity to real music distributions. The mean opinion score ranged from 3.5 to 3.8, confirming the perceptual quality of the generated music. Full article
Show Figures

Figure 1

26 pages, 9053 KiB  
Article
Numerical Study of the Use of a Flapping Foil in Energy Harvesting with Suction- and Blower-Based Control
by Yalei Bai, Huimin Yao and Min Zheng
Aerospace 2025, 12(8), 698; https://doi.org/10.3390/aerospace12080698 - 5 Aug 2025
Abstract
The method of extracting energy from a fluid environment using flapping foils offers advantages such as structural simplicity and environmental friendliness. However, its low energy harvesting efficiency remains a significant factor limiting its development. This study employs suction and blower-based control (SBC) to [...] Read more.
The method of extracting energy from a fluid environment using flapping foils offers advantages such as structural simplicity and environmental friendliness. However, its low energy harvesting efficiency remains a significant factor limiting its development. This study employs suction and blower-based control (SBC) to enhance the energy harvesting efficiency of flapping foils. Using an orthogonal experimental design and numerical methods, 49 representative combinations of SBC geometries were selected for numerical simulation. The effects and priority rankings of geometric parameters on foil performance were statistically analyzed. It was found that under the optimal geometry (the suction slot position is 0.54c, the injection slot position is 0.79c, the width of the slot is 0.015c, the angle of the suction slot is −3°, and the angle of the injection slot is −9°), the energy harvesting efficiency can reach 40.7%. Furthermore, under laminar flow conditions, the benefit of SBC increases with higher Reynolds numbers (Re). At Re = 2200, SBC maximized the improvement in energy harvesting efficiency by 76%. No significant correlation was observed between the flapping amplitude and the SBC effect. However, the reduced frequency significantly influences the efficiency improvement generated by SBC. The SBC method shifts the foil’s optimal operating region towards lower reduced frequencies, which benefits energy harvesting efficiency. The research presented herein may have potential applications in the development of marine energy systems and bio-inspired propulsion. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

29 pages, 430 KiB  
Article
Advanced Manifold–Metric Pairs
by Pierros Ntelis
Mathematics 2025, 13(15), 2510; https://doi.org/10.3390/math13152510 - 4 Aug 2025
Abstract
This article presents a novel mathematical formalism for advanced manifold–metric pairs, enhancing the frameworks of geometry and topology. We construct various D-dimensional manifolds and their associated metric spaces using functional methods, with a focus on integrating concepts from mathematical physics, field theory, topology, [...] Read more.
This article presents a novel mathematical formalism for advanced manifold–metric pairs, enhancing the frameworks of geometry and topology. We construct various D-dimensional manifolds and their associated metric spaces using functional methods, with a focus on integrating concepts from mathematical physics, field theory, topology, algebra, probability, and statistics. Our methodology employs rigorous mathematical construction proofs and logical foundations to develop generalized manifold–metric pairs, including homogeneous and isotropic expanding manifolds, as well as probabilistic and entropic variants. Key results include the establishment of metrizability for topological manifolds via the Urysohn Metrization Theorem, the formulation of higher-rank tensor metrics, and the exploration of complex and quaternionic codomains with applications to cosmological models like the expanding spacetime. By combining spacetime generalized sets with information-theoretic and probabilistic approaches, we achieve a unified framework that advances the understanding of manifold–metric interactions and their physical implications. Full article
40 pages, 8651 KiB  
Article
Cosmic Evolution Optimization: A Novel Metaheuristic Algorithm for Numerical Optimization and Engineering Design
by Rui Wang, Zhengxuan Jiang and Guowen Ding
Mathematics 2025, 13(15), 2499; https://doi.org/10.3390/math13152499 - 3 Aug 2025
Viewed by 134
Abstract
This study proposes a novel metaheuristic algorithm, Cosmic Evolution Optimization (CEO), for numerical optimization and engineering design. Inspired by the cosmic evolution process, CEO simulates physical phenomena including cosmic expansion, universal gravitation, stellar system interactions, and celestial orbital resonance.The algorithm introduces a multi-stellar [...] Read more.
This study proposes a novel metaheuristic algorithm, Cosmic Evolution Optimization (CEO), for numerical optimization and engineering design. Inspired by the cosmic evolution process, CEO simulates physical phenomena including cosmic expansion, universal gravitation, stellar system interactions, and celestial orbital resonance.The algorithm introduces a multi-stellar framework system, which incorporates search agents into distinct subsystems to perform simultaneous exploration or exploitation behaviors, thereby enhancing diversity and parallel exploration capabilities. Specifically, the CEO algorithm was compared against ten state-of-the-art metaheuristic algorithms on 29 typical unconstrained benchmark problems from CEC2017 across different dimensions and 13 constrained real-world optimization problems from CEC2020. Statistical validations through the Friedman test, the Wilcoxon rank-sum test, and other statistical methods have confirmed the competitiveness and effectiveness of the CEO algorithm. Notably, it achieved a comprehensive Friedman rank of 1.28/11, and the winning rate in the Wilcoxon rank-sum tests exceeded 80% in CEC2017. Furthermore, CEO demonstrated outstanding performance in practical engineering applications such as robot path planning and photovoltaic system parameter extraction, further verifying its efficiency and broad application potential in solving real-world engineering challenges. Full article
Show Figures

Figure 1

9 pages, 206 KiB  
Article
Examining the Relationship Between Balance and Functional Status in the Geriatric Population
by Eleni Vermisso, Effrosyni Stamou, Garyfallia Tsichli, Ioanna Foteinou and Anna Christakou
Med. Sci. 2025, 13(3), 110; https://doi.org/10.3390/medsci13030110 - 2 Aug 2025
Viewed by 184
Abstract
Background/Objectives: Aging is associated with a gradual decline in physical capabilities, often leading to impaired balance and reduced functional status, which are major contributors to falls in older adults. Although many studies have assessed these variables independently, a limited amount of research has [...] Read more.
Background/Objectives: Aging is associated with a gradual decline in physical capabilities, often leading to impaired balance and reduced functional status, which are major contributors to falls in older adults. Although many studies have assessed these variables independently, a limited amount of research has explored the direct relationship between balance and functional status in a healthy geriatric population. The aim of this study was to investigate the relationship between balance and functional capacity and to assess the influence of demographic factors such as age, comorbidities, smoking status, and history of falls. Methods: A sample of community-dwelling older adults (19 women, 16 men) (n = 35), aged 60 years and above (M = 78 years; SD = 9.23) from Sparta, Greece, took part in the present study. Participants were assessed using three validated tools: (a) the Five Times Sit-to-Stand test, (b) the Timed Up-and-Go test, and (c) the Berg Balance Scale. Spearman’s rank correlation coefficient was used for statistical analysis (α = 0.05). Results: Age was positively correlated with poorer performance in the Five Times Sit-to-Stand (r = 0.40; p < 0.01) and the Timed Up-and-Go test (r = 0.47; p < 0.01) and negatively correlated with Berg Balance Scale scores (r = −0.51; p < 0.01). Comorbidities and smoking were also associated with the Berg Balance Scale. A strong negative correlation was observed between balance and the other two functional tests (Five Times Sit-to-Stand: r = −0.51; Timed Up-and-Go: r = −0.66; both p < 0.01). Conclusions: The findings highlight the importance of evaluating both balance and functional capacity in older adults as interrelated factors that can significantly influence quality of life and fall risk. Future research with larger and more diverse populations is recommended to confirm the present findings and to use exercise programs to prevent falls in the geriatric population. Full article
13 pages, 1293 KiB  
Article
Integration of an OS-Based Machine Learning Score (AS Score) and Immunoscore as Ancillary Tools for Predicting Immunotherapy Response in Sarcomas
by Isidro Machado, Raquel López-Reig, Eduardo Giner, Antonio Fernández-Serra, Celia Requena, Beatriz Llombart, Francisco Giner, Julia Cruz, Victor Traves, Javier Lavernia, Antonio Llombart-Bosch and José Antonio López Guerrero
Cancers 2025, 17(15), 2551; https://doi.org/10.3390/cancers17152551 - 1 Aug 2025
Viewed by 173
Abstract
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related [...] Read more.
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related prognostic model—termed the AS score—using data from two independent sarcoma cohorts. Methods: A prognostic model was developed using a previously characterized cohort of 25 angiosarcoma samples. Candidate genes were identified via the Maxstat algorithm (Maxstat v0.7-25 for R), combined with log-rank testing. The AS score was then computed by weighing normalized gene expression levels according to Cox regression coefficients. For external validation, transcriptomic data from TCGA Sarcoma cohort (n = 253) were analyzed. The Immunoscore—which reflects the tumor immune microenvironment—was inferred using the ESTIMATE package (v1.0.13) in R. All statistical analyses were performed in RStudio (v 4.0.3). Results: Four genes—IGF1R, MAP2K1, SERPINE1, and TCF12—were ultimately selected to construct the prognostic model. The resulting AS score enabled the classification of angiosarcoma cases into two prognostically distinct groups (p = 0.00012). Cases with high AS score values, which included both cutaneous and non-cutaneous forms, exhibited significantly poorer outcomes, whereas cases with low AS scores were predominantly cutaneous. A significant association was observed between the AS score and the Immunoscore (p = 0.025), with higher Immunoscore values found in high-AS score tumors. Validation using TCGA sarcoma cohort confirmed the prognostic value of both the AS score (p = 0.0066) and the Immunoscore (p = 0.0029), with a strong correlation between their continuous values (p = 2.9 × 10−8). Further survival analysis, integrating categorized scores into four groups, demonstrated robust prognostic significance (p = 0.00021). Notably, in tumors with a low Immunoscore, AS score stratification was not prognostic. In contrast, among cases with a high Immunoscore, the AS score effectively distinguished outcomes (p < 0.0001), identifying a subgroup with poor prognosis but potential sensitivity to immunotherapy. Conclusions: This combined classification using the AS score and Immunoscore has prognostic relevance in sarcoma, suggesting that angiosarcomas with an immunologically active microenvironment (high Immunoscore) and poor prognosis (high AS score) may be prime candidates for immunotherapy and this approach warrants prospective validation. Full article
(This article belongs to the Special Issue Genomics and Transcriptomics in Sarcoma)
Show Figures

Figure 1

13 pages, 239 KiB  
Article
Haglund’s Deformity with Preoperative Achilles Tendon Rupture: A Retrospective Comparative Study
by Kevin A. Wu, Alexandra N. Krez, Katherine M. Kutzer, Albert T. Anastasio, Zoe W. Hinton, Kali J. Morrissette, Andrew E. Hanselman, Karl M. Schweitzer, Samuel B. Adams, Mark E. Easley, James A. Nunley and Annunziato Amendola
Complications 2025, 2(3), 19; https://doi.org/10.3390/complications2030019 - 1 Aug 2025
Viewed by 96
Abstract
Introduction: Haglund’s deformity, characterized by bony enlargement at the back of the heel, often coincides with Achilles tendon pathology due to impingement on the retrocalcaneal bursa and tendon insertion. Surgical management of Haglund’s deformity with a preexisting Achilles tendon rupture is complex, and [...] Read more.
Introduction: Haglund’s deformity, characterized by bony enlargement at the back of the heel, often coincides with Achilles tendon pathology due to impingement on the retrocalcaneal bursa and tendon insertion. Surgical management of Haglund’s deformity with a preexisting Achilles tendon rupture is complex, and understanding the outcomes of this subset of patients is essential for optimizing treatment strategies. Methods: This retrospective study reviewed patients undergoing open surgical management for Haglund’s syndrome between January 2015 and December 2023. Patients with chronic degenerative changes secondary to Haglund’s deformity and a preoperative Achilles tendon rupture were compared to those without. Data on demographics, surgical techniques, weightbearing protocols, and complications were collected. Univariate analysis was performed using χ2 or Fisher’s exact test for categorical variables, and the T-test or Wilcoxon rank-sum test for continuous and ordinal variables, with normality assessed via the Shapiro–Wilk test. Results: Four hundred and three patients were included, with 13 having a preoperative Achilles tendon rupture. There was a higher incidence of preoperative ruptures among males. Surgical repair techniques and postoperative weightbearing protocols varied, though were not randomized. Complications included persistent pain, wound breakdown, infection, plantar flexion weakness, and revision surgery. While patients with Haglund’s deformity and a preoperative Achilles tendon rupture demonstrated a trend toward higher complication rates, including postoperative rupture and wound breakdown, these differences were not statistically significant in our analysis. Conclusions: A cautious approach is warranted in managing these patients, with careful consideration of surgical planning and postoperative rehabilitation. While our findings provide valuable insights into managing patients with Haglund’s deformity and preoperative Achilles tendon rupture, the retrospective design, limited sample size of the rupture group, and short duration of follow-up restrict generalizability and the strength of the conclusions by limiting the power of the analysis and underestimating the incidence of long-term complications. Therefore, the results of this study should be interpreted with caution. Further studies with larger patient cohorts, validated functional outcome measures, and comparable follow-up durations between groups are needed to confirm these results and optimize treatment approaches. Full article
28 pages, 746 KiB  
Article
Comparing Microprocessor-Controlled and Non-Microprocessor-Controlled Prosthetic Knees Across All Classified Domains of the ICF Model: A Pragmatic Clinical Trial
by Charlotte E. Bosman, Bregje L. Seves, Jan H. B. Geertzen, Behrouz Fard, Irene E. Newsum, Marieke A. Paping, Aline H. Vrieling and Corry K. van der Sluis
Prosthesis 2025, 7(4), 89; https://doi.org/10.3390/prosthesis7040089 (registering DOI) - 1 Aug 2025
Viewed by 195
Abstract
Background: The use of lower limb prosthesis can impact all aspects of daily life, activities and participation. Various studies have compared the microprocessor-controlled knee (MPK) to the non-microprocessor-controlled knee (NMPK) using a variety of different outcome measures, but results are inconsistent and raise [...] Read more.
Background: The use of lower limb prosthesis can impact all aspects of daily life, activities and participation. Various studies have compared the microprocessor-controlled knee (MPK) to the non-microprocessor-controlled knee (NMPK) using a variety of different outcome measures, but results are inconsistent and raise the question of which type of knee is most effective. Therefore, we aimed to assess the effect of MPKs compared to NMPKs across all classified ICF domains in adult prosthesis users. Methods: Participants performed baseline measurements with the NMPK (T0). One week later, they started a four-to-six-week trial period with the MPK. Afterward, measurements were repeated with the MPK (T1). Functional tests (6MWT, TUG-test and activity monitor) and questionnaires (ABC, SQUASH, USER-P and PEQ) were used. For statistical analyses, paired t-tests, Wilcoxon signed-rank tests and Chi2 test were applied. The Benjamini–Hochberg procedure was applied to correct for multiple testing. Results: Twenty-five participants were included. Using an MPK compared to an NMPK significantly resulted in improvements in balance and walking confidence, safety, walking distance and self-reported walking ability, as well as a decrease in number of stumbles and falls. Additionally, participants using an MPK were significantly more satisfied with their participation, experienced fewer restrictions, reported greater satisfaction with the appearance and utility of the MPK, experienced less social burden and reported better well-being, compared to using an NMPK. Conclusions: Using an MPK instead of an NMPK can lead to significant improvements in all classified ICF domains, such as improved walking ability, confidence and satisfaction and reduced fall risk. Full article
(This article belongs to the Section Orthopedics and Rehabilitation)
Show Figures

Figure 1

18 pages, 3493 KiB  
Article
Red-Billed Blue Magpie Optimizer for Modeling and Estimating the State of Charge of Lithium-Ion Battery
by Ahmed Fathy and Ahmed M. Agwa
Electrochem 2025, 6(3), 27; https://doi.org/10.3390/electrochem6030027 - 31 Jul 2025
Viewed by 196
Abstract
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique [...] Read more.
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique is the battery storage system since its cost is low compared to other techniques. Therefore, batteries are employed in several applications like power systems, electric vehicles, and smart grids. Due to the merits of the lithium-ion (Li-ion) battery, it is preferred over other kinds of batteries. However, the accuracy of the Li-ion battery model is essential for estimating the state of charge (SOC). Additionally, it is essential for consistent simulation and operation throughout various loading and charging conditions. Consequently, the determination of real battery model parameters is vital. An innovative application of the red-billed blue magpie optimizer (RBMO) for determining the model parameters and the SOC of the Li-ion battery is presented in this article. The Shepherd model parameters are determined using the suggested optimization algorithm. The RBMO-based modeling approach offers excellent execution in determining the parameters of the battery model. The suggested approach is compared to other programmed algorithms, namely dandelion optimizer, spider wasp optimizer, barnacles mating optimizer, and interior search algorithm. Moreover, the suggested RBMO is statistically evaluated using Kruskal–Wallis, ANOVA tables, Friedman rank, and Wilcoxon rank tests. Additionally, the Li-ion battery model estimated via the RBMO is validated under variable loading conditions. The fetched results revealed that the suggested approach achieved the least errors between the measured and estimated voltages compared to other approaches in two studied cases with values of 1.4951 × 10−4 and 2.66176 × 10−4. Full article
Show Figures

Figure 1

29 pages, 9521 KiB  
Article
The Chemical Fingerprint of Smokeless Powders: Insights from Headspace Odor Volatiles
by Miller N. Rangel, Andrea Celeste Medrano, Haylie Browning, Shawna F. Gallegos, Sarah A. Kane, Nathaniel J. Hall and Paola A. Prada-Tiedemann
Powders 2025, 4(3), 21; https://doi.org/10.3390/powders4030021 - 29 Jul 2025
Viewed by 740
Abstract
Smokeless powders are a commonly used low explosive within the ammunition industry. Their ease of purchase has allowed criminals to use these products to build improvised explosive devices. Canines have become a vital tool in locating such improvised devices. With differing fabrication processes, [...] Read more.
Smokeless powders are a commonly used low explosive within the ammunition industry. Their ease of purchase has allowed criminals to use these products to build improvised explosive devices. Canines have become a vital tool in locating such improvised devices. With differing fabrication processes, one of the most difficult challenges for canine handlers is the optimal selection of training aids to choose as odor targets to allow for broad generalization. Several studies have been underway to understand the chemical odor characterization of smokeless powders, which can help provide canine teams with essential information to understand odor signatures from powder varieties. In this study, a SPME method optimization was conducted using unburned smokeless powders to provide a chemical odor profile assessment. Concurrently, statistical analysis using PCA and Spearman’s rank correlations was performed to explore whether odor volatile composition depicted associations between and within powder brands. The results showed that a longer extraction time (24 h) was optimal across all powders, as this yielded higher compound abundance and number of extracted odor volatiles. The optimal SPME fiber varied per powder, depicting the complexity of powder composition. There were 66 highly frequent compounds among the 18 powders, including 2-ethyl-1-hexanol, diphenylamine (DPA), and dibutyl phthalate. Principal component analysis (PCA) showed that while powders may be of the same type (single/double base), they can still portray clustering differences across and within brands. The Spearman’s rank correlation within powder type suggested that the double-base powders had a slightly higher similarity index when compared with the single-base powder types. Understanding the volatile odor profiles of various smokeless powders can enhance canine training by informing the selection of effective training aids and supporting odor generalization. Full article
Show Figures

Figure 1

21 pages, 2355 KiB  
Article
Analysis of Residents’ Understanding of Encroachment Risk to Water Infrastructure in Makause Informal Settlement in the City of Ekurhuleni
by Mpondomise Nkosinathi Ndawo, Dennis Dzansi and Stephen Loh Tangwe
Urban Sci. 2025, 9(8), 294; https://doi.org/10.3390/urbansci9080294 - 29 Jul 2025
Viewed by 321
Abstract
This study investigates the encroachment risk in the Makause informal settlement by analysing resident survey data to identify key contributing factors and build predictive models. Encroachment threatens the water infrastructure through damage, contamination, and service disruptions, highlighting the need for informed, community-based planning. [...] Read more.
This study investigates the encroachment risk in the Makause informal settlement by analysing resident survey data to identify key contributing factors and build predictive models. Encroachment threatens the water infrastructure through damage, contamination, and service disruptions, highlighting the need for informed, community-based planning. The data was collected from 105 residents, with responses (“Yes,” “No,” “Unsure”) analysed using descriptive statistics and a one-way ANOVA to identify significant differences across categories. The ReliefF algorithm was used to rank the importance of features predicting the encroachment risk. These inputs were then used to train, validate, and test an Artificial Neural Network (ANN) model. The Artificial Neural Network demonstrated a high predictive accuracy, achieving correlation coefficients above 95% and low mean squared errors. The ANOVA identified statistically significant mean differences for selected variables, while ReliefF helped determine the most influential predictors. A high agreement level (p > 0.900) between predicted and actual responses confirmed the model’s validity. This research introduces an innovative, data-driven framework that integrates machine learning and a statistical analysis to support municipalities and utility providers in engaging informal communities to protect infrastructure. While this study is limited to Makause and may be affected by a self-reported bias, it demonstrates the potential of Artificial Neural Networks and ReliefF in enhancing the risk analysis and infrastructure management in informal settlements. Full article
Show Figures

Figure 1

27 pages, 3840 KiB  
Article
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023
by Pablo O. Canziani, S. Gabriela Lakkis and Adrián E. Yuchechen
Atmosphere 2025, 16(8), 914; https://doi.org/10.3390/atmos16080914 - 29 Jul 2025
Viewed by 243
Abstract
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the [...] Read more.
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the relationships between large-scale climate drivers and monthly rainfall are considered. Results show that, except for Córdoba, the complete anomaly timeseries trend analysis for all other stations yielded null trends over the centennial study period. Considerable month-to-month variability is observed for all locations together with the existence of low-frequency decadal to interdecadal variability, both for monthly precipitation anomalies and for statistically significant excess and deficit months. Linear fits considering oceanic climate indicators as drivers of variability yield significant differences between locations, while not between full records and seasonally sampled. Issues regarding the use of linear analysis to quantify variability, the dispersion along the timeline of record extreme rainy months at each location, together with the evidence of severe daily precipitation events not necessarily coinciding with the ranking of the rainiest months at each location, highlights the challenges of understanding the drivers of variability of both monthly and severe daily precipitation and the need of using extended centennial timeseries whenever possible. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

26 pages, 2330 KiB  
Article
Enhanced Dung Beetle Optimizer-Optimized KELM for Pile Bearing Capacity Prediction
by Bohang Chen, Mingwei Hai, Gaojian Di, Bin Zhou, Qi Zhang, Miao Wang and Yanxiu Guo
Buildings 2025, 15(15), 2654; https://doi.org/10.3390/buildings15152654 - 27 Jul 2025
Viewed by 231
Abstract
The safety associated with the bearing capacity of pile foundations is intrinsically linked to the overall safety, stability, and economic viability of structural systems. In response to the need for rapid and precise predictions of pile bearing capacity, this study introduces a kernel [...] Read more.
The safety associated with the bearing capacity of pile foundations is intrinsically linked to the overall safety, stability, and economic viability of structural systems. In response to the need for rapid and precise predictions of pile bearing capacity, this study introduces a kernel extreme learning machine (KELM) prediction model optimized through a multi-strategy improved beetle optimization algorithm (IDBO), referred to as the IDBO-KELM model. The model utilizes the pile length, pile diameter, average effective vertical stress, and undrained shear strength as input variables, with the bearing capacity serving as the output variable. Initially, experimental data on pile bearing capacity was gathered from the existing literature and subsequently normalized to facilitate effective integration into the model training process. A detailed introduction of the multi-strategy improved beetle optimization algorithm (IDBO) is provided, with its superior performance validated through 23 benchmark functions. Furthermore, the Wilcoxon rank sum test was employed to statistically assess the experimental outcomes, confirming the IDBO algorithm’s superiority over other prevalent metaheuristic algorithms. The IDBO algorithm was then utilized to optimize the hyperparameters of the KELM model for predicting pile bearing capacity. In conclusion, the statistical metrics for the IDBO-KELM model demonstrated a root mean square error (RMSE) of 4.7875, a coefficient of determination (R2) of 0.9313, and a mean absolute percentage error (MAPE) of 10.71%. In comparison, the baseline KELM model exhibited an RMSE of 6.7357, an R2 of 0.8639, and an MAPE of 18.47%. This represents an improvement exceeding 35%. These findings suggest that the IDBO-KELM model surpasses the KELM model across all evaluation metrics, thereby confirming its superior accuracy in predicting pile bearing capacity. Full article
Show Figures

Figure 1

Back to TopTop