Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = railway track curve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8211 KiB  
Article
An Experimental Study of Wheel–Rail Creep Curves Under Dry Contact Conditions Using V-Track
by Gokul J. Krishnan, Jan Moraal, Zili Li and Zhen Yang
Lubricants 2025, 13(7), 287; https://doi.org/10.3390/lubricants13070287 - 26 Jun 2025
Viewed by 481
Abstract
Friction behaviour at the wheel–rail interface is of critical importance for railway operations and maintenance and is generally characterised by creep curves. The V-Track test rig was used in this study to measure both the lateral and longitudinal creep curves with uncontaminated dry [...] Read more.
Friction behaviour at the wheel–rail interface is of critical importance for railway operations and maintenance and is generally characterised by creep curves. The V-Track test rig was used in this study to measure both the lateral and longitudinal creep curves with uncontaminated dry interface conditions, utilising contact pressures representative of operational railway wheel–rail systems. The novelties of this study are threefold. 1. With proper representations of train/track components, the V-Track tests revealed the effects of structural dynamics on measuring wheel–rail creep curves in real life. 2. Pure lateral and longitudinal creepage conditions were produced with two distinct experimental principles—displacement- and force-controlled—on the V-Track, i.e., by carefully controlling the angle of attack and the traction/braking torque, respectively, and thus the coefficient of friction from lateral and longitudinal creep curves measured on the same platform could be cross-checked. 3. The uncertainties in the measured creep curves were analysed, which was rarely addressed in previous studies on creep curve measurements. In addition, the measured creep curves were compared against the theoretical creep curves obtained from Kalker’s CONTACT. The influence of wheel rolling speed and torque direction on the creep curve characteristics was then investigated. The measurement results and findings demonstrate the reliability of the V-Track to measure wheel–rail creep curves and study the wheel–rail frictional rolling contact. Full article
(This article belongs to the Special Issue Tribology in Railway Engineering)
Show Figures

Figure 1

19 pages, 6160 KiB  
Article
Prediction of Rail Wear Under Different Railway Track Geometries Using Artificial Neural Networks
by Hong Zhang, Weichen Shuai, Linya Liu, Pengfei Zhang, Kejun Zhang, Hongsong Lin, Yuke Zhang and Wei Li
Infrastructures 2025, 10(7), 154; https://doi.org/10.3390/infrastructures10070154 - 23 Jun 2025
Viewed by 565
Abstract
The geometry of the railway track affects rail wear significantly. If the rail wear can be predicted and considered during the alignment design phase, the problems it causes can be mitigated at the source by optimizing the values and combinations of railway track [...] Read more.
The geometry of the railway track affects rail wear significantly. If the rail wear can be predicted and considered during the alignment design phase, the problems it causes can be mitigated at the source by optimizing the values and combinations of railway track geometry parameters. However, the relationship between railway track geometry and rail wear remains unclear. It is hard to acquire rail wear data for different alignments with varying geometric parameters during the alignment design phase. This study develops a PSO-ANN model to establish the mapping relationship between railway track geometry and rail wear, enabling prediction of rail wear based on track geometry parameters. The model achieves prediction accuracies of 96.70% for inner rail wear and 98.13% for outer rail wear. Compared with the conventional ANN model, the PSO-ANN model reduces the prediction errors by 22.54% for inner rail wear and 55.69% for outer rail wear. Sobol sensitivity analysis is conducted to analyze the influence of the track geometry parameters on rail wear, revealing that inner rail wear is mainly affected by curve radius, transition curve length, and superelevation, while outer rail wear is predominantly influenced by curve radius. Full article
Show Figures

Figure 1

18 pages, 3653 KiB  
Article
Modeling of Compound Curves on Railway Lines
by Wladyslaw Koc
Geomatics 2025, 5(2), 21; https://doi.org/10.3390/geomatics5020021 - 12 May 2025
Viewed by 719
Abstract
This article addresses the issue of designing compound curves, i.e., a geometric system consisting of two (or more) circular arcs of different radii, pointing in the same direction and directly connected to each other. Nowadays, compound curves are mainly used on tram lines; [...] Read more.
This article addresses the issue of designing compound curves, i.e., a geometric system consisting of two (or more) circular arcs of different radii, pointing in the same direction and directly connected to each other. Nowadays, compound curves are mainly used on tram lines; they also occur on railways (e.g., on mountain lines), but new ones are generally no longer being built there. Therefore, in relation to railway lines, the aim is to be able to recreate (i.e., model) the existing geometric layout with compound curves, so that it is then possible to correct this layout. An analytical method for designing track geometric systems was used, adapted to the mobile satellite measurement technique, in which calculations are carried out in the appropriate local Cartesian coordinate system. The basis of this system is the symmetrically arranged adjacent main directions of the route, and the beginning is located at the point of intersection of these directions. A number of detailed issues have been clarified and basic characteristic quantities have been determined, and the computational algorithm described in the paper leads to the solution of the problem in a sequential manner. The obtained possibilities of modeling the compound curves are illustrated by the provided calculation example. Full article
Show Figures

Figure 1

16 pages, 4962 KiB  
Article
Seismic Response Mitigation of Reinforced-Concrete High-Speed Railway Bridges with Hierarchical Curved Steel Dampers
by Mingshi Liang, Liqiang Jiang and Jianguang He
Materials 2025, 18(9), 2120; https://doi.org/10.3390/ma18092120 - 5 May 2025
Viewed by 574
Abstract
To address the seismic vulnerability of high-speed railway bridges (HSRBs) in seismically active regions, this study proposes a hierarchical curved steel damper (CSD) designed to mitigate excessive girder displacements induced by conventional isolation devices. The CSD integrates U-shaped and hollow diamond-shaped steel plates [...] Read more.
To address the seismic vulnerability of high-speed railway bridges (HSRBs) in seismically active regions, this study proposes a hierarchical curved steel damper (CSD) designed to mitigate excessive girder displacements induced by conventional isolation devices. The CSD integrates U-shaped and hollow diamond-shaped steel plates to achieve stable energy dissipation through coupled bending deformation. A finite element model is developed, and its hysteretic behavior is confirmed, with an energy dissipation coefficient of 1.82 and an equivalent damping ratio of 12.7%. An integrated high-speed railway track–bridge-CSD spatial coupling model is developed in OpenSees, which incorporates nonlinear springs for interlayer track interactions. Nonlinear time–history analyses under 40 spectrum-matched ground motions reveal that the CSD reduces transverse girder displacements by 73.7–79.2% and attenuates track slab acceleration peaks by 52.4% compared with uncontrolled cases. However, it increases the maximum bending moment at pier bases by up to 18.3%, necessitating supplemental energy-dissipating components for balanced force redistribution. This work provides a theoretical foundation and practical methodology for seismic response control and retrofitting of the HSRB in high-intensity seismic regions. Full article
Show Figures

Figure 1

19 pages, 4650 KiB  
Article
Simulation Analysis of an Electric Locomotive with a Hydraulic Wheelset Guidance System for Improved Performance in Curved Tracks
by Jan Kalivoda
Machines 2025, 13(4), 321; https://doi.org/10.3390/machines13040321 - 14 Apr 2025
Viewed by 447
Abstract
A reduction of forces acting between the railway track and the vehicle is one of the key issues in the design of modern rolling stock. Because the capabilities of reducing wheel–rail contact forces in track curves by conventional methods are encountered at their [...] Read more.
A reduction of forces acting between the railway track and the vehicle is one of the key issues in the design of modern rolling stock. Because the capabilities of reducing wheel–rail contact forces in track curves by conventional methods are encountered at their limits, innovative approaches in the design of vehicle suspension and wheelset guidance occur. Among them, an active wheelset steering appears to be very promising. However, an active wheelset steering system is rather complicated and expensive and raises many safety issues. Therefore, a passive hydraulic system that links longitudinal motions of axle boxes is proposed. The system is relatively simple and, compared to the active wheelset steering, does not need any energy supply or sensor system for the detection of a track shape. Two arrangements of the hydraulic system had been proposed and implemented in a simulation model. The simulation model is based on a cosimulation of two separate models, a multibody model of an electric locomotive, and a model of the hydraulic system. The goal of this study is to evaluate the contribution of the hydraulic system to the natural radial alignment of wheelsets in curves and thus to reduce the wear of wheels and to determine the parameters of the hydraulic system to maximize the wear reduction benefits while minimizing a decrease in critical speed. Simulations of a vehicle running in various scenarios, including a run in a real track section of a length of 20 km, have been performed. As a criterion for the wear of wheels and rails, a T-gamma wear number was used, from which a sum of frictional work in wheel–rail contacts was calculated. The results of the simulations and the comparison of hydraulic axle box connection systems and a standard locomotive are presented and discussed in the paper. The results obtained confirmed a significant potential benefit of the proposed hydraulic system in reducing wheel wear on curved tracks. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

23 pages, 13614 KiB  
Article
Study on Fatigue Characteristics of Cement-Emulsified Asphalt Mortar Under Coupled Effects of Humidity and Freeze–Thaw
by Shanshan Jin, Pengfei Liu, Zhen Wang, Daxing Zhou, Xiang Li, Zengmiao Xu, Yang Zhang, Yuling Yan and Yaodong Zhao
Coatings 2025, 15(4), 369; https://doi.org/10.3390/coatings15040369 - 21 Mar 2025
Viewed by 360
Abstract
Cement-emulsified asphalt mortar (CA mortar) is an organic–inorganic composite material composed of cement, emulsified asphalt, fine sand, water, and various admixtures. It is mainly used as the cushion layer for high-speed railway ballastless tracks. CA mortar cushion layers in North China often have [...] Read more.
Cement-emulsified asphalt mortar (CA mortar) is an organic–inorganic composite material composed of cement, emulsified asphalt, fine sand, water, and various admixtures. It is mainly used as the cushion layer for high-speed railway ballastless tracks. CA mortar cushion layers in North China often have to withstand the coupling effects of humidity and freeze–thaw, which has a very important impact on the fatigue performance of CA mortar. Based on the big data statistical results, the temperature conditions and cycle times of the CA mortar layer Freeze–Thaw cycle in North China were determined. Also, a fatigue performance test under humidity–freeze–thaw coupling conditions was designed and carried out. The fitting curve equations of fatigue stress and fatigue life under different humidity conditions and freeze–thaw coupling were established. The relationship between fatigue performance parameters K and n and humidity conditions was analyzed. This study shows that with the increase in humidity, the fatigue life of CA mortar under different humidity conditions shows an overall downward trend. The fatigue performance and fatigue life stress level sensitivity of CA mortar decrease with increasing humidity. The proportion of water damage and freeze–thaw damage to total damage increases with increasing humidity, which means that the humidity and freeze–thaw have a more significant impact on the fatigue properties of CA mortar. When the humidity is low, the fatigue cracks of CA mortar are mostly generated across the cement paste, and the macroscopic damage presents as longitudinal cracking. When the humidity is high, the fatigue cracks of CA mortar are mostly generated at the interface between aggregate and paste, and the macroscopic damage presents as oblique cracking. Based on the analysis of the damage mechanism, it is suggested that the humidity of CA mortar should be controlled below 25% in the actual project to ensure its durability. Full article
Show Figures

Figure 1

19 pages, 15598 KiB  
Article
Research on the Dynamic Response Characteristics of a Railway Vehicle Under Curved Braking Conditions
by Chunguang Zhao, Zhiyong Fan, Peixuan Li, Micheale Yihdego Gebreyohanes, Zhiwei Wang and Jiliang Mo
Vehicles 2025, 7(1), 18; https://doi.org/10.3390/vehicles7010018 - 15 Feb 2025
Viewed by 950
Abstract
When a railway train runs along a curved track with braking, the dynamic behaviors of the vehicle are extremely complex and difficult to accurately reveal due to the coupling effects between the wheel–rail interactions and the disc–pad frictions. Therefore, a rigid–flexible coupled trailer [...] Read more.
When a railway train runs along a curved track with braking, the dynamic behaviors of the vehicle are extremely complex and difficult to accurately reveal due to the coupling effects between the wheel–rail interactions and the disc–pad frictions. Therefore, a rigid–flexible coupled trailer car dynamics model of a railway train is established. In this model, the brake systems and vehicle system are dynamically coupled via the frictions within the braking interface, wheel–rail relationships and suspension systems. Furthermore, the effectiveness of the established model is validated by a comparison with the field test data. Based on this, the dynamic response characteristics of vehicle under curve and straight braking conditions are analyzed and compared, and the influence of the curve geometric parameters on vehicle vibration and operation safety is explored. The results show that braking on a curve track directly affects the vibration characteristics of the vehicle and reduces its operation safety. When the vehicle is braking on a curve track, the lateral vibration of the bogie frame significantly increases compared to the vehicle braking on a straight track, and the vibration intensifies as the curve radius decreases. When the curved track maintains equilibrium superelevation, the differences in primary suspension force, wheel–rail vertical force, and wheel axle lateral force between the inner and outer sides of the first and second wheelsets are relatively minor under both straight and curved braking conditions. Additionally, under these circumstances, the derailment coefficient is minimized. However, when the curve radius is 7000 m, with a superelevation of 40 mm, the maximum dynamic wheel load reduction rate of the inner wheel of the second wheelset is 0.54, which reaches 90% of the allowable limit value of 0.6 for the safety index, and impacts the vehicle running safety. Therefore, it is necessary to focus on the operation safety of railway trains when braking on curved tracks. Full article
Show Figures

Figure 1

21 pages, 1848 KiB  
Article
Two-Step Optimization Method of Freight Train Speed Curve Based on Rolling Optimization Algorithm and MPC
by Xubin Sun, Jingjing Li, Wei Zhang, Guiyang Sun, Xiyao Zhang and Hongze Xu
Vehicles 2025, 7(1), 17; https://doi.org/10.3390/vehicles7010017 - 14 Feb 2025
Viewed by 711
Abstract
Given the considerable length and weight of freight trains, their operation can be quite challenging. Improper operation may lead to train decoupling and derailment. Driver Advisory Systems (DASs) are used in some countries to assist train drivers by providing the speed curves, which [...] Read more.
Given the considerable length and weight of freight trains, their operation can be quite challenging. Improper operation may lead to train decoupling and derailment. Driver Advisory Systems (DASs) are used in some countries to assist train drivers by providing the speed curves, which are desired to be easy to track. Multi-mass train model is a good choice to depict the in-train forces in train speed curve generating, but its application is often hindered by the computation time. A single mass train model is considered as another choice to simplify the computation. To exploit the advantages of the multi-mass and single-mass models, this paper proposes a Two-step Optimization Method to generate the optimal speed curves for the freight trains. In the first step, the Rolling Optimization Algorithm (ROA) is proposed to optimize the speed curve on the basis of the single-mass model, taking the train energy consumption and punctuality as the optimization objectives. In order to assist the driver in operating the train smoothly, the speed curve generated by the ROA was tested on DAS, but it could not be followed accurately in the actual operation. To solve this problem, a Model Predictive Control (MPC) algorithm based on a multi-mass model is adopted as the second optimization step, which takes the output speed curve of the ROA as the reference speed curve. The MPC algorithm will generate a new speed curve, taking in-train forces, energy consumption and punctuality as the optimization indices. Simulations are carried out using the data from the Dalailong railway in China to evaluate the proposed method. The simulation results show that the speed curves generated by the Two-step Optimization Method are smoother than that of the ROA, and the throttle sequences are more conducive for the driver to follow in practical operation. The simulation results show that the energy consumption is reduced by 17.1% compared to that of the ROA simulation. The speed curve also can be integrated into the onboard DAS or the Automatic Train Operation (ATO) system, aiming to obtain a smooth and energy-efficient train operation. Full article
Show Figures

Figure 1

19 pages, 3743 KiB  
Article
Optimized Detection Algorithm for Vertical Irregularities in Vertical Curve Segments
by Rong Xie and Chunjun Chen
Appl. Sci. 2024, 14(22), 10753; https://doi.org/10.3390/app142210753 - 20 Nov 2024
Viewed by 903
Abstract
The vertical curve is designed to smooth sudden gradient changes in the longitudinal profile, enhancing train operational safety and passenger comfort. However, dynamic detection in these segments has consistently encountered issues with long-wavelength vertical irregularities exceeding tolerance limits. To investigate the root causes [...] Read more.
The vertical curve is designed to smooth sudden gradient changes in the longitudinal profile, enhancing train operational safety and passenger comfort. However, dynamic detection in these segments has consistently encountered issues with long-wavelength vertical irregularities exceeding tolerance limits. To investigate the root causes of this phenomenon and develop a targeted solution, a comprehensive vehicle-track dynamics simulation model was first constructed, based on the design principles for intercity railway vertical curves. The inertial reference method was then applied to process the acceleration and relative displacement data between the detection beam and the track, yielding virtual irregularities. These were compared with excitation irregularities to identify key factors affecting detection accuracy in vertical curve segments. Through further analysis of abnormal exceedances in detection data, the reference cancellation method was proposed. By employing smoothing filters and orthogonal least squares fitting, this method effectively removes track alignment components from the acceleration integration results. Detection errors under various conditions were then compared between the two methods to evaluate the feasibility and effectiveness of the reference cancellation approach. Results indicate that regions with increased longitudinal profile detection errors are primarily located at and near gradient transition points. The vertical curve radius was found to be the primary factor influencing the accuracy of long-wavelength irregularity detection. The proposed reference cancellation method effectively reduces detection errors in areas near gradient transition points to levels comparable to other track sections. Compared to the inertial reference method, the reference cancellation method reduces the maximum detection error by up to 71.77% and the root mean square error by up to 86.61%, effectively mitigating the abnormal exceedances associated with vertical curves. Full article
Show Figures

Figure 1

15 pages, 9667 KiB  
Article
Parameters Affecting Seismic Performance of Longitudinally Connected Track Lateral Blocks on Bridges Under Low-Cycle Reciprocating Loads
by Binbin He, Shenglin Xu, Yulin Feng and Jinping Li
Buildings 2024, 14(11), 3358; https://doi.org/10.3390/buildings14113358 - 23 Oct 2024
Viewed by 705
Abstract
In the current seismic analysis of high-speed railway track–bridge structures, the constitutive parameters of track lateral blocks (TLBs) are not uniform. A finite element model of the TLB’s main beam is established, which considers concrete plastic damage, interface bond between old and new [...] Read more.
In the current seismic analysis of high-speed railway track–bridge structures, the constitutive parameters of track lateral blocks (TLBs) are not uniform. A finite element model of the TLB’s main beam is established, which considers concrete plastic damage, interface bond between old and new concrete, and bond slip between anchorage steel bars (ASBs) and concrete. Quasi-static tests of nine TLBs with different numbers and ASB diameters at a 1:2 scale was carried out to verify the accuracy of the TLB finite element model in terms of the failure pattern, interface damage, hysteretic properties, and skeleton model. Based on the verified TLB finite element model, the influence of different TLB design parameters on its seismic performance parameters was studied. The results show that the established TLB finite element model is in good agreement with the test data in terms of failure pattern, interface damage, hysteretic properties, and skeleton model, which verifies the accuracy of the TLB finite element model. ASB number has the greatest influence on the TLB yield load, followed by ASB diameter, concrete strength, ASB strength, and ASB spacing. ASB diameter has the greatest influence on the TLB peak load, followed by ASB number, ASB strength, concrete strength, and ASB spacing. ASB diameter has the greatest influence on the TLB energy dissipation capacity, followed by ASB number, concrete strength, ASB strength, and ASB spacing. With the increase in concrete strength and ASB strength, TLB ductility decreases. When the ASB number is higher than eight or the diameter is higher than 12 mm and the corresponding interfacial steel bar ratio reaches 0.82%, the TLB ductility will decrease. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 3479 KiB  
Article
Modeling, System Identification, and Control of a Railway Running Gear with Independently Rotating Wheels on a Scaled Test Rig
by Tobias Posielek
Electronics 2024, 13(20), 3983; https://doi.org/10.3390/electronics13203983 - 10 Oct 2024
Viewed by 907
Abstract
The development and validation of lateral control strategies for railway running gears with independently rotating driven wheels (IRDWs) are an active research area due to their potential to enhance straight-track centering, curve steering performance, and reduce noise and wheel–rail wear. This paper focuses [...] Read more.
The development and validation of lateral control strategies for railway running gears with independently rotating driven wheels (IRDWs) are an active research area due to their potential to enhance straight-track centering, curve steering performance, and reduce noise and wheel–rail wear. This paper focuses on the practical application of theoretical models to a 1:5 scaled test rig developed by the German Aerospace Center (DLR), addressing the challenges posed by unmodeled phenomena such as hysteresis, varying damping and parameter identification. The theoretical model from prior work is adapted based on empirical measurements from the test rig, incorporating the varying open-loop stability of the front and rear wheel carriers, hysteresis effects, and other dynamic properties typically neglected in literature. A transparent procedure for identifying dynamic parameters is developed, validated through closed- and open-loop measurements. The refined model informs the design and tuning of a cascaded PI and PD controller, enhancing system stabilization by compensating for hysteresis and damping variations. The proposed approach demonstrates improved robustness and performance in controlling the lateral displacement of IRDWs, contributing to the advancement of safety-critical railway technologies. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

15 pages, 9640 KiB  
Article
Influence of Terrain on Windblown Sand Flow Field Characteristics around Railway Culverts
by Jiangang Xu, Ning Huang, Jie Zhang, Xiaoan Zhang, Guangtian Shi and Xuanmin Li
Sustainability 2024, 16(18), 8128; https://doi.org/10.3390/su16188128 - 18 Sep 2024
Cited by 1 | Viewed by 1123
Abstract
Aeolian sand hazards are often a threat to culverts, which are important channels and pieces of infrastructure of the desert railway. In addition to wind speed, wind direction, and culvert structure, terrain may also be an important reason for the formation of culvert [...] Read more.
Aeolian sand hazards are often a threat to culverts, which are important channels and pieces of infrastructure of the desert railway. In addition to wind speed, wind direction, and culvert structure, terrain may also be an important reason for the formation of culvert sand hazards. However, there are few studies on the effect of terrain on the sediment accumulation characteristics of culverts. This paper established computational fluid dynamics (CFD) models of railway culverts (flat and concave culverts) based on Euler’s two-fluid theory. An analysis of the influence of terrain on the distribution law of the flow fields and sand accumulation around railway culverts was carried out. The results show that the horizontal wind speed curves changes in a “W” shape along the centre axis surface from the forecourt to the rearcourt within a range of 30 m~66.8 m. Low-speed backflow is formed at the inlet and outlet of the culvert, and the minimum wind speed reaches −3.6 m/s and −4.2 m/s, respectively, when the height from the bottom of the culvert is 1.0 m and 1.5 m, resulting in intensified sand sedimentation. In concave culverts, the lower the roadbed height, the easier it is for sand to accumulate at the culvert outlet, the rearcourt, and the track; the sand volume fraction is close to 0.63, affecting the normal operation of the trains. On the contrary, the higher the roadbed, the easier it is for sand to accumulate at the culvert inlet, hindering the passage of engineering vehicles and reducing the function of the culverts. These results reveal that terrain plays a pivotal role in the sand accumulation around culverts and that it should be one of the key considerations for the design of new railway culverts. This work can provide a theoretical basis for preventing and managing sand hazards in railway culverts. Full article
Show Figures

Figure 1

20 pages, 1242 KiB  
Article
Interference with Signaling Track Circuits Caused by Rolling Stock: Uncertainty and Variability on a Test Case
by Sahil Bhagat and Andrea Mariscotti
Electronics 2024, 13(14), 2875; https://doi.org/10.3390/electronics13142875 - 22 Jul 2024
Cited by 2 | Viewed by 1547
Abstract
The demonstration of compliance of rolling stock against disturbance limits for railway signaling, and in particular track circuits, is subject to a large deal of variability, caused by the diverse values of the electrical parameters of the railway line and resulting transfer functions, [...] Read more.
The demonstration of compliance of rolling stock against disturbance limits for railway signaling, and in particular track circuits, is subject to a large deal of variability, caused by the diverse values of the electrical parameters of the railway line and resulting transfer functions, as well as the operating conditions of the rolling stock during tests. Instrumental uncertainty is evaluated with a type B approach and shown to be much less than the experimental variability. Repeated test runs in acceleration, coasting, cruising, and braking conditions are considered, deriving both max-hold (spread) and sample (or experimental) standard deviation curves compared to the respective mean values (type A approach to the evaluation of uncertainty, as defined in of the Guide to the Uncertainty in Measurement. The major source of variability affecting a significant portion of the spectrum is caused by the superposed oscillations of the onboard LC filter, for which different choices of the transformation window duration are discussed. The test runs and the acquired data covered, overall, 1 day of tests along about 300 km of the Italian 3 kV DC railway network. Full article
(This article belongs to the Section Electrical and Autonomous Vehicles)
Show Figures

Figure 1

19 pages, 11934 KiB  
Article
The Characteristics of Long-Wave Irregularities in High-Speed Railway Vertical Curves and Method for Mitigation
by Laiwei Jiang, Yangtenglong Li, Yuyuan Zhao and Minyi Cen
Sensors 2024, 24(13), 4403; https://doi.org/10.3390/s24134403 - 7 Jul 2024
Cited by 2 | Viewed by 1316
Abstract
Track geometry measurements (TGMs) are a critical methodology for assessing the quality of track regularities and, thus, are essential for ensuring the safety and comfort of high-speed railway (HSR) operations. TGMs also serve as foundational datasets for engineering departments to devise daily maintenance [...] Read more.
Track geometry measurements (TGMs) are a critical methodology for assessing the quality of track regularities and, thus, are essential for ensuring the safety and comfort of high-speed railway (HSR) operations. TGMs also serve as foundational datasets for engineering departments to devise daily maintenance and repair strategies. During routine maintenance, S-shaped long-wave irregularities (SLIs) were found to be present in the vertical direction from track geometry cars (TGCs) at the beginning and end of a vertical curve (VC). In this paper, we conduct a comprehensive analysis and comparison of the characteristics of these SLIs and design a long-wave filter for simulating inertial measurement systems (IMSs). This simulation experiment conclusively demonstrates that SLIs are not attributed to track geometric deformation from the design reference. Instead, imperfections in the longitudinal profile’s design are what cause abrupt changes in the vehicle’s acceleration, resulting in the measurement output of SLIs. Expanding upon this foundation, an additional investigation concerning the quantitative relationship between SLIs and longitudinal profiles is pursued. Finally, a method that involves the addition of a third-degree parabolic transition curve (TDPTC) or a full-wave sinusoidal transition curve (FSTC) is proposed for a smooth transition between the slope and the circular curve, designed to eliminate the abrupt changes in vertical acceleration and to mitigate SLIs. The correctness and effectiveness of this method are validated through filtering simulation experiments. These experiments indicate that the proposed method not only eliminates abrupt changes in vertical acceleration, but also significantly mitigates SLIs. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 5505 KiB  
Article
Multi-Objective Optimization of Bogie Stability for Minimum Radius Curve of Battery Track Engineering Vehicle
by Yang Shen, Jiayi Zhao, Chongyu Wang and Minggang Zhou
Appl. Sci. 2024, 14(12), 5231; https://doi.org/10.3390/app14125231 - 17 Jun 2024
Viewed by 1462
Abstract
A battery track engineering vehicle faces challenges such as derailment and other safety concerns when navigating an R20m minimum radius curve, primarily owing to its low vertical and horizontal stabilities. To address these issues, a methodology integrating genetic optimization algorithms with a rigid [...] Read more.
A battery track engineering vehicle faces challenges such as derailment and other safety concerns when navigating an R20m minimum radius curve, primarily owing to its low vertical and horizontal stabilities. To address these issues, a methodology integrating genetic optimization algorithms with a rigid and flexible coupled multi-body dynamics simulation is proposed to optimize the primary suspensions of the bogie of the vehicle. Initially, a multi-objective optimization model combining rigid and flexible coupled multi-body dynamics of battery track engineering vehicles with a genetic optimization algorithm was formulated. Subsequently, the optimal Latin hypercube design was applied to analyze the sensitivity of vertical and horizontal stability to various suspension parameters. Finally, a non-dominated sorting genetic algorithm (NSGA-II) and an archive-based micro genetic algorithm (AMGA) were applied to optimize the primary suspensions to enhance stability. Consequently, a set of optimal suspension parameter combinations was obtained. A notable enhancement was observed in the lateral stability of the optimized battery track engineering vehicles by 23.33% and in the vertical stability by 3.5% when traversing the R20m minimum radius curve, thereby establishing a theoretical foundation for further improving the running safety of railway vehicles and resolving the shortcomings of less research on the smallest radius curve. Full article
(This article belongs to the Special Issue Mechanical Properties and Performance Analysis of Vehicle Dynamics)
Show Figures

Figure 1

Back to TopTop