Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = radon (222Rn)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3976 KB  
Article
Control of Exposure Assessment Parameters to Ionising Radiation Under New Air Exchange (Ventilation) Conditions: A Case Study of the Underground Tourist Route in Książ
by Katarzyna Wołoszczuk, Agata Grygier, Krystian Skubacz, Eliška Fialová, Petr P. S. Otahal, Zuzanna Pawłowska, Dagmara Eulalia Tchorz-Trzeciakiewicz and Mirosław Szyłak-Szydłowski
Sustainability 2026, 18(1), 474; https://doi.org/10.3390/su18010474 - 2 Jan 2026
Viewed by 379
Abstract
Radon (222Rn) is a naturally occurring radioactive noble gas that is a major source of ionising radiation in the environment. Many measurement techniques can be used to monitor 222Rn concentrations in the workplace. The main purpose of conducting such measurements [...] Read more.
Radon (222Rn) is a naturally occurring radioactive noble gas that is a major source of ionising radiation in the environment. Many measurement techniques can be used to monitor 222Rn concentrations in the workplace. The main purpose of conducting such measurements is to identify locations of exposure, determine the effective dose for workers and, if necessary, define actions for reducing the exposure. As part of this study, a series of measurements were conducted in the underground tourist route at Książ Castle in Poland. The route has been open to visitors since late 2018. The measurements included long- and short-term tests. Passive and active methods were used to measure the 222Rn activity concentration. Additionally, the potential alpha energy concentration and ambient and radioactive aerosol size distributions were measured. Finally, the annual effective dose for workers was estimated. The dose was calculated while factoring in the legal regulations in the Czech Republic and Poland to demonstrate their effect on the final results. The obtained values were low—they did not exceed 0.218 mSv (for the specified exposure time)—indicating the effectiveness of natural ventilation and a low radiation risk to personnel. Full article
Show Figures

Figure 1

21 pages, 8224 KB  
Article
Hypothesis-Driven Conceptual Model for Groundwater–Surface Water Interaction at Aguieira Dam Reservoir (Central Portugal) Based on Principal Component Analysis and Hierarchical Clustering
by Gustavo Luís, Alcides Pereira and Luís Neves
Water 2025, 17(20), 2933; https://doi.org/10.3390/w17202933 - 11 Oct 2025
Viewed by 687
Abstract
The interaction between groundwater and surface water can be significant in lakes or irrigation channels, as well as in large dam reservoirs or along portions of them. To evaluate this interaction at a sampling location directly controlled by a large dam equipped with [...] Read more.
The interaction between groundwater and surface water can be significant in lakes or irrigation channels, as well as in large dam reservoirs or along portions of them. To evaluate this interaction at a sampling location directly controlled by a large dam equipped with reversible pump-turbines, data from Rn-222 and physicochemical parameters at specific depths and times were obtained and studied using Principal Component Analysis and Hierarchical Clustering. Dimension 1 explains 45.3% of the total variability in the original data, which can be interpreted as the result of external factors related to seasonal variability (e.g., temperature, turbulent flow, and precipitation), while Dimension 2 explains up to 31.2% and can be interpreted as the variability related to groundwater inputs. Five hierarchical clusters based on these dimensions were considered and were related to the temporal variability observed in the water column throughout the year, as well as the depth relationships observed between successive surveys. A hypothesis-driven conceptual piston-like effect model is proposed for groundwater–surface water interactions, considering the identified relationships between variables, including higher Rn-222 concentrations in surface water after heavy rain. According to this simplified conceptual model, water infiltrates in a weathered granitic recharging area; during heavy rain, it is forced through the fracture systems of a lesser-weathered granite. Thus, an overall increase in pressure over the hydrological system forces the older radon-enriched water to discharge into the Mondego River. This work highlights the importance of exploratory techniques such as PCA and Hierarchical Clustering, in addition to underlying knowledge of the geological setting, for the proposal of simplified conceptual models that help in the management of important reservoirs. This work also demonstrates the utility of Rn-222 as a simple tracer of groundwater discharge into surface water. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 849 KB  
Systematic Review
Health Effects and Preventive Strategies for Radon Exposure: A Systematic Review of the Literature
by Luigi Cofone, Marise Sabato, Chiara Colombo, Stefania Scalingi, Antonio Montesi, Lorenzo Paglione and Federica Patania
J. Respir. 2025, 5(4), 16; https://doi.org/10.3390/jor5040016 - 10 Oct 2025
Cited by 2 | Viewed by 1990
Abstract
Introduction: Radon is a radioactive noble gas formed from uranium decay in the Earth’s crust. The most significant isotope, 222Rn, emits alpha particles capable of damaging lung tissue and inducing cancer. Radon exposure is affected by geophysical and building characteristics and is [...] Read more.
Introduction: Radon is a radioactive noble gas formed from uranium decay in the Earth’s crust. The most significant isotope, 222Rn, emits alpha particles capable of damaging lung tissue and inducing cancer. Radon exposure is affected by geophysical and building characteristics and is recognized as a Group 1 carcinogen by the IARC. Despite regulatory thresholds (e.g., EURATOM standards), health risks remain. Various mitigation methods aim to reduce indoor radon exposure and its impact. Materials and Methods: This systematic review followed PRISMA guidelines. PubMed, Scopus, and Web of Science were searched up to 28 February 2025, using a defined string. Studies with original data on radon exposure and lung cancer risk or mitigation efficacy were included. Independent screening and quality assessment (Newcastle–Ottawa Scale) were conducted by multiple reviewers. Results: Of the 457 studies identified, 14 met the inclusion criteria. Eleven of these investigated the link between indoor radon and lung cancer risk, and three evaluated mitigation strategies. Radon levels were commonly measured using passive alpha track detectors. Levels varied depending on geographical location, season, building design and ventilation, these were higher in rural homes and during the colder months. Case–control studies consistently found an increased lung cancer risk with elevated radon exposure, especially among smokers. Effective mitigation methods included sub-slab depressurisation and balanced ventilation systems, which significantly reduced indoor radon concentrations. Adenocarcinoma was the most common lung cancer subtype in non-smokers, whereas squamous and small cell carcinomas were more prevalent in smokers exposed to radon. Discussion and Conclusions: This review confirms the robust association between indoor radon exposure and lung cancer. Risks persist even below regulatory limits and are amplified by smoking. While mitigation techniques are effective, their application remains uneven across regions. Stronger public education, building codes, and targeted interventions are needed, particularly in high-risk areas. To inform future prevention and policy, further research should seek to clarify radon’s molecular role in lung carcinogenesis, especially among non-smokers. Full article
Show Figures

Figure 1

24 pages, 5303 KB  
Article
Preliminary Documentation and Radon Tracer Studies at a Tourist Mining Heritage Site in Poland’s Old Copper Basin: A Case Study of the “Aurelia” Gold Mine
by Lidia Fijałkowska-Lichwa and Damian Kasza
Appl. Sci. 2025, 15(17), 9743; https://doi.org/10.3390/app15179743 - 4 Sep 2025
Viewed by 932
Abstract
This study presents the results of preliminary documentation and radon tracer investigations conducted at the “Aurelia” Mine in Złotoryja. Measurements of 222Rn activity concentrations were carried out between 17 March and 26 August 2023, while terrestrial laser scanning (TLS) for mapping purposes [...] Read more.
This study presents the results of preliminary documentation and radon tracer investigations conducted at the “Aurelia” Mine in Złotoryja. Measurements of 222Rn activity concentrations were carried out between 17 March and 26 August 2023, while terrestrial laser scanning (TLS) for mapping purposes was performed on 16 November 2024. The radon data exhibited a consistently right-skewed distribution, with skewness coefficients ranging from 0.9 to 8.2 and substantial standard deviations, indicating significant data dispersion. Outliers and extreme outliers were identified as key factors influencing average radon activity concentrations from April through August, whereas data from March displayed homogeneity, with no detected anomalies. The average 222Rn activity concentrations recorded from March to July ranged from 51.4 Bq/m3 to 65.9 Bq/m3. In contrast, July and August showed elevated average values (75.8 Bq/m3 and 5784.8 Bq/m3, respectively) due to the presence of outliers and extreme values. Upon removal of these anomalies, the adjusted means were 73.8 Bq/m3 and 1003.6 Bq/m3, respectively, resulting in reduced skewness and improved representativeness. These findings suggest that the annual average radon concentrations at the “Aurelia” Mine remain compliant with the regulatory threshold of 300 Bq/m3 set by the Atomic Law Act, with exceedances likely related to atypical or rare geophysical phenomena requiring further statistical validation. August exhibited a significant occurrence of outliers and extreme outliers in 222Rn activity concentration data, particularly concentrated between the 13th and 17th days of the month. This anomaly is hypothesized to be associated with geological processes, notably mining-induced seismic events within the LGOM (Legnica–Głogów Copper District) region. It is proposed that periodic transitions between tensional and compressional phases within the rock mass, triggered by mining activity, may lead to abrupt increases in radon exhalation, potentially occurring before or after seismic events with a magnitude exceeding 2.5. Although the presented data provide preliminary evidence supporting the influence of tectonic kinematic changes on subsurface radon dynamics, further systematic observations are required to confirm this relationship. At the current stage, the hypothesis remains speculative but may contribute to the broader understanding of radon behavior in geologically active underground environments. Complementing the geochemical analysis, TLS enabled detailed geological mapping and 3D spatial modeling of the mine’s underground tourist infrastructure. The resulting simplified linked data model—integrating radon activity concentrations, geological structures, and spatial parameters—provides a foundational framework for developing a comprehensive GIS database. This integrative approach highlights the feasibility of combining tracer studies with spatial and cartographic data to improve radon risk assessment models and ensure regulatory compliance in underground occupational settings. Full article
(This article belongs to the Special Issue Advances in Environmental Monitoring and Radiation Protection)
Show Figures

Figure 1

15 pages, 1110 KB  
Article
Natural Radionuclides 222Rn and 226Ra in Shallow Groundwater of Nysa County (SW Poland): Concentrations, Background, and Radiological Risk
by Piotr Maciejewski and Jakub Ładziński
Water 2025, 17(17), 2596; https://doi.org/10.3390/w17172596 - 2 Sep 2025
Viewed by 1394
Abstract
Natural radionuclides may occur in groundwater and pose health risks when present in elevated concentrations. This study evaluates the quality of shallow groundwater in Nysa County (SW Poland) based on the activity concentrations of natural radionuclides radon (222Rn) and radium ( [...] Read more.
Natural radionuclides may occur in groundwater and pose health risks when present in elevated concentrations. This study evaluates the quality of shallow groundwater in Nysa County (SW Poland) based on the activity concentrations of natural radionuclides radon (222Rn) and radium (226Ra) and estimates the associated radiological risk from water ingestion. Twenty-three groundwater samples were collected from private wells located within two distinct geological units: the Fore-Sudetic Block and the Opole Trough. Activity concentrations of 222Rn and 226Ra were measured using the liquid scintillation counting method. A spatial distribution model for 222Rn was developed using inverse distance weighting in QGIS. Local hydrogeochemical background levels were determined using the Q-Dixon test, interquartile range, and Shapiro–Wilk normality test. The background ranged from 2.6 to 3.9 Bq·L−1 in the Opole Trough and from 0 to 10.7 Bq·L−1 in the Fore-Sudetic Block. The lower detection limit (0.05 Bq·L−1) for 226Ra activity concentration measurements was not exceeded. Effective dose rates were calculated in accordance with the recommendations of the International Commission on Radiological Protection and United Nations Scientific Committee on the Effects of Atomic Radiation. Doses ranged from <1 µSv to over 120 µSv·y−1. Although all samples met national regulatory standards (≤1 mSv·y−1), the World Health Organization reference level (0.1 mSv·y−1) was exceeded in two cases. The results support the need for the radiological monitoring of unregulated private wells and provide a scientific basis for the refinement of legal frameworks and health protection strategies. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 3596 KB  
Article
Radon Exposure to the General Population of the Fernald Community Cohort
by John F. Reichard, Swade Barned, Angelico Mendy and Susan M. Pinney
Atmosphere 2025, 16(8), 939; https://doi.org/10.3390/atmos16080939 - 5 Aug 2025
Viewed by 831
Abstract
The Fernald Feed Materials Production Center (FMPC), located in Fernald, Ohio, USA, released radon (Rn) as a byproduct of the processing of uranium materials during the years from 1951 to 1989. Rn is a colorless, odorless gas that emits charged alpha radiation that [...] Read more.
The Fernald Feed Materials Production Center (FMPC), located in Fernald, Ohio, USA, released radon (Rn) as a byproduct of the processing of uranium materials during the years from 1951 to 1989. Rn is a colorless, odorless gas that emits charged alpha radiation that interacts with cells in the lung and trachea-bronchial tree, leading to DNA damage, mutations, and tumor initiation. The purpose of this project was to use evidence collected by the Fernald Dosimetry Reconstruction Project and other sources to estimate the outdoor Rn exposure to individuals in the community immediately surrounding the FMPC during the years of plant operation. Using previously tabulated source terms, diffusion and meteorological data, and self-reported detailed residential histories, we estimated radon exposure for approximately 9300 persons who lived at more than 14,000 addresses. The results indicated that a portion of the population cohort experiences mean annual Rn exposure exceeding the U.S. Environmental Protection Agency (EPA) action limit of 4 pCiL−1. These exposure estimates support the analysis of the incidence of lung cancer in the Fernald Community Cohort (FCC). Full article
Show Figures

Figure 1

24 pages, 3436 KB  
Article
Peculiarities of 222Radon and 238Uranium Behavior in Mineral Waters of Highland Terrains
by George Chelnokov, Vasilii Lavrushin, Natalya Kharitonova, Andrey Pavlov and Farid Salikhov
Water 2025, 17(15), 2211; https://doi.org/10.3390/w17152211 - 24 Jul 2025
Cited by 1 | Viewed by 805
Abstract
Mineral waters from two tectonically active mountain systems within the Alpine-Himalayan orogenic belt, the Pamir and the Greater Caucasus (Elbrus region), were analyzed for 222Rn activity and 238U concentrations to establish correlations with geological conditions, physicochemical characteristics of water, and to [...] Read more.
Mineral waters from two tectonically active mountain systems within the Alpine-Himalayan orogenic belt, the Pamir and the Greater Caucasus (Elbrus region), were analyzed for 222Rn activity and 238U concentrations to establish correlations with geological conditions, physicochemical characteristics of water, and to assess the potential health risk associated with 238U and 222Rn. It was found that in mineral waters of the Pamir, the concentrations of 238U (0.004–13.3 µg/L) and activity of 222Rn (8–130 Bq/L) are higher than in the Elbrus area: 0.04–3.74 µg/L and 6–33 Bq/L, respectively. Results indicate that uranium mobility in water is strongly influenced by T, pH, and Eh, but is less affected by the age of host rocks or springs′ elevation, whereas radon activity in waters depends on the age of rocks, spring elevation, 238U content, and values of δ18O and δ2H in water. This study reveals fundamental geological distinctions governing uranium and radon sources in the mineral waters of these regions. Isotopic evidence (222Rn and 3He/4He) demonstrates crustal radon sources prevail in Pamir, whereas the Elbrus system suggests mantle-derived components. The U concentrations do not exceed 30 µg/L, and most water samples (94%) showed 222Rn activities below 100 Bq/L, complying with the drinking water exposure limits recommended by the World Health Organization and European Union Directive. However, in intermountain depressions of the Pamirs, at low absolute elevations (~2300 m), radon concentrations in water can increase significantly, which requires special attention and study. Full article
Show Figures

Figure 1

38 pages, 9589 KB  
Article
Identification of Interactions Between the Effects of Geodynamic Activity and Changes in Radon Concentration as Markers of Seismic Events
by Lidia Fijałkowska-Lichwa, Damian Kasza, Marcin Zając, Tadeusz A. Przylibski and Marek Kaczorowski
Appl. Sci. 2025, 15(15), 8199; https://doi.org/10.3390/app15158199 - 23 Jul 2025
Viewed by 661
Abstract
This article describes the interactions between radon emissions and tectonic movements that accompany seismic activity as a function of time. The interpretation is based on advanced data analysis methods, such as Fourier wavelet transform, SGolay correlation analysis, and time-based data categorization. The dataset [...] Read more.
This article describes the interactions between radon emissions and tectonic movements that accompany seismic activity as a function of time. The interpretation is based on advanced data analysis methods, such as Fourier wavelet transform, SGolay correlation analysis, and time-based data categorization. The dataset comprised the measurement results of 222Rn activity concentrations and the effects of the tectonic activity of rock masses acquired from two water-tube tiltmeters and five SRDN-3 radon probes. The analysis included four seismic events with moderate and light magnitudes (≥4.0), with a hypocenter at a depth of 1–10 km, located approximately 75 km from the research site. Each seismic shock had a different distribution of rock mass phases recorded by the integrated (probe-tiltmeter) measurement system. The results indicate that at the research site, the radon-tectonic signal is best identified between 25 and 48 h and between 49 and 72 h before the seismic shock. Positive correlations between the tectonic signal and the radon signal associated with the tension phase in the rock mass and negative correlations between the tectonic signal and the radon signal associated with the compression phase allow the description of the behavior of the rock mass before the seismic shock. Mixed correlations (positive and negative) indicate that both the stress and strain phases of the rock mass are recorded. The observed correlations seem particularly promising, as they can be recorded already 1–3 days before the seismic event, allowing an appropriately early response to the expected seismic event. Full article
Show Figures

Figure 1

16 pages, 1677 KB  
Article
222Rn Exhalation Rate of Building Materials: Comparison of Standard Experimental Protocols and Radiological Health Hazard Assessment
by Francesco Caridi, Lorenzo Pistorino, Federica Minissale, Giuseppe Paladini, Michele Guida, Simona Mancini, Domenico Majolino and Valentina Venuti
Appl. Sci. 2025, 15(14), 8015; https://doi.org/10.3390/app15148015 - 18 Jul 2025
Viewed by 1092
Abstract
This study evaluates the accuracy of 222Rn exhalation rates from building materials using two standard experimental protocols, thus addressing the increasing importance of rapid radon assessment due to health concerns and regulatory limits. In detail, six types of natural stones frequently employed [...] Read more.
This study evaluates the accuracy of 222Rn exhalation rates from building materials using two standard experimental protocols, thus addressing the increasing importance of rapid radon assessment due to health concerns and regulatory limits. In detail, six types of natural stones frequently employed for the construction of buildings of historical-artistic relevance were analyzed using the closed chamber method (CCM) combined with the Durridge Rad7 system, by using two experimental protocols that differed in the measurement duration: 10 days (Method 1) versus 24 h (Method 2). Obtained results revealed that the radon exhalation rates ranged from 0.004 to 0.072 Bq h−1, which are moderate to low if compared to studies in other regions. Statistical comparison using the u-test confirmed equivalence between protocols (u-test ≤ 2), thus supporting the validity of the faster Method 2 for practical applications. Furthermore, to estimate the potential indoor radon levels and determine the associated radiological risks to human health, for the investigated natural stones, the Markkanen room model was employed. As a result, simulated indoor radon concentrations remained well below regulatory thresholds (maximum value: 37.3 Bq m−3), thus excluding any significant health concerns under typical indoor conditions. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

23 pages, 3633 KB  
Article
Characterization of DNA Methylation Episignatures for Radon-Induced Lung Cancer
by Ziyan Yan, Huixi Chen, Yuhao Liu, Lin Zhou, Jiaojiao Zhu, Yifan Hou, Xinyu Zhang, Zhongmin Chen, Yilong Wang, Ping-Kun Zhou and Yongqing Gu
Int. J. Mol. Sci. 2025, 26(14), 6873; https://doi.org/10.3390/ijms26146873 - 17 Jul 2025
Viewed by 971
Abstract
Radon (Rn) exposure has a strong association with lung cancer risk and is influenced by epigenetic modifications. To investigate the characterization of DNA methylation (DNAm) episignatures for radon-induced lung cancer, we detected the specific changes in DNAm in blood and lung tissues using [...] Read more.
Radon (Rn) exposure has a strong association with lung cancer risk and is influenced by epigenetic modifications. To investigate the characterization of DNA methylation (DNAm) episignatures for radon-induced lung cancer, we detected the specific changes in DNAm in blood and lung tissues using reduced representation bisulfite sequencing (RRBS). We identified the differentially methylated regions (DMRs) induced by radon exposure. The bioinformatics analysis of the DMR-mapped genes revealed that pathways in cancer were affected by radon exposure. Among them, the DNAm episignatures of MAPK10, PLCG1, PLCβ3 and PIK3R2 were repeated between lung tissue and blood, and validated by the MassArray. In addition, radon exposure promoted lung cancer development in the genetic engineering mouse model (GEMM), accompanied by decreased MAPK10 and increased PLCG1, PLCβ3, and PIK3R2 with mRNA and protein levels. Conclusively, radon exposure significantly changes the genomic DNAm patterns in lung tissue and blood. The DNAm episignatures of MAPK10, PLCG1, PLCβ3 and PIK3R2 have a significant influence on radon-induced lung cancer. This brings a new perspective to understanding the pathways involved in radon-induced lung cancer and offers potential targets for developing blood-based biomarkers and epigenetic therapeutics. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1884 KB  
Article
Study of Radon Radiation in the Area of the Akchatau Polymetallic Mine, Republic of Kazakhstan
by Yuriy Pak, Dmitriy Pak, Vladimir Matonin, Diana Ibragimova, Pavel Timoshenko, Yuriy Barkov, Anar Tebayeva and Pavel Medvedev
Atmosphere 2025, 16(7), 769; https://doi.org/10.3390/atmos16070769 - 23 Jun 2025
Viewed by 954
Abstract
The data on the volumetric radon activity of the Akchatau territory were systematized in the context of radioecological safety. Radon (Rn222 and Rn220) and indoor radon (isotopes Po, Pb, and Bi) make a significant contribution to radon radiation in residential [...] Read more.
The data on the volumetric radon activity of the Akchatau territory were systematized in the context of radioecological safety. Radon (Rn222 and Rn220) and indoor radon (isotopes Po, Pb, and Bi) make a significant contribution to radon radiation in residential and industrial premises. Increased radon concentration in a number of areas is associated with the Akchatau tungsten–molybdenum mine. The source of radon in geological terms is acid leucocratic granites in the northwestern and southeastern parts of the studied territory. Seasonal assessment of radon radiation was carried out using modern devices “Alfarad Plus” and “Ramon-Radon”. Frequency analysis of the average annual equivalent equilibrium concentration (EEC) in 181 premises showed that only in 47.5% of the premises does the volumetric radon activity not exceed the current standards (200 Bq/m3). Differentiated values of radon concentration were obtained in cases where daily and seasonal observations were carried out. In 43.1% of premises, the effective dose varies from 6.6 mSv/year to 33 mSv/year, and for 9.4% of premises, from 33 mSv/year to 680 mSv/year. The increased radon concentration is caused by high exhalation from the soil surface, the radioactivity of building materials, and low air exchange in the surveyed premises. In the northwestern part of Akchatau, anomalous zones were found where the exposure dose rate of gamma radiation exceeds 0.6 mkSv/hour. An objective assessment of radon largely depends on a number of factors that take into account the geological, technical, atmospheric, and climatic conditions of the region. Therefore, when planning an optimal radon rehabilitation strategy, it is necessary to take the following factors into account: the design features of residential premises and socio-economic conditions. Practical recommendations are given for radiation-ecological and hygienic monitoring of radon safety levels in the environment to reduce effective doses on the population. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

20 pages, 1544 KB  
Article
Radon/Thoron and Progeny Concentrations in Dwellings: Influencing Factors and Lung Cancer Risk in the Rutile Bearing Area of Akonolinga, Cameroon
by Kitcha Sime Fayette, Gondji Dieu Souffit, Oumar Bobbo Modibo, Ndjana Nkoulou II Joseph Emmanuel, Chutima Kranrod, Masahiro Hosoda, Saïdou and Shinji Tokonami
Atmosphere 2025, 16(7), 767; https://doi.org/10.3390/atmos16070767 - 22 Jun 2025
Viewed by 1463
Abstract
This paper reports the levels of radon (Rn), thoron (Tn), and their progeny (TnP) concentrations in dwellings; studies factors influencing these concentrations; and assesses the associated lung cancer risk in Akonolinga’s area in Cameroon, where rutile deposits have been identified but are not [...] Read more.
This paper reports the levels of radon (Rn), thoron (Tn), and their progeny (TnP) concentrations in dwellings; studies factors influencing these concentrations; and assesses the associated lung cancer risk in Akonolinga’s area in Cameroon, where rutile deposits have been identified but are not yet industrially exploited. Indoor Rn and Tn were determined using CR39-based detectors. Additionally, Rn in soil gas, 226Ra, and 232Th concentrations in soil were measured using Markus 10, high purity germanium detector (HPGe), respectively. On average, indoor Rn, Tn concentration, and the equilibrium equivalent Thoron concentration (EETC) or TnP were 39.5, 68.1, and 5.0 Bq m−3, respectively. Average concentrations of Rn in soil gas, 226Ra, and 232Th in soil were 24.3 kBq m−3, 17 Bq kg−1, and 27 Bq kg−1, respectively. Correlation analysis indicates that indoor radon and thoron levels were tightly linked with factors such as their precursor concentrations in soil, the building materials, dwelling architecture, and inhabitant living habits. Furthermore, it was observed that Rn and TnP were the major contributors to the inhalation effective dose, accounting for 39.6% and 56.7% of the total, respectively. The estimated excess lifetime cancer risk (ELCR) from the exposition to Rn and TnP was found to be 2.93 × 10−3 and 4.36 × 10−3, respectively, exceeding the global average, raising health concerns. Full article
(This article belongs to the Special Issue Environmental Radon Measurement and Radiation Exposure Assessment)
Show Figures

Figure 1

15 pages, 4398 KB  
Article
Silver-Exchanged Clinoptilolite-Rich Natural Zeolite for Radon Removal from Air
by Marin Senila, Oana Cadar, Robert-Csaba Begy, Claudiu Tanaselia, Dorina Simedru and Cecilia Roman
Materials 2025, 18(7), 1465; https://doi.org/10.3390/ma18071465 - 26 Mar 2025
Cited by 6 | Viewed by 1396
Abstract
Radon (Rn) is a hazardous radioactive gas that poses significant health risks in enclosed indoor environments. This study investigates the potential of silver-exchanged clinoptilolite-rich natural zeolite (NZ-Ag+) for the removal of Rn from air. Natural zeolite (NZ) was thermally treated and [...] Read more.
Radon (Rn) is a hazardous radioactive gas that poses significant health risks in enclosed indoor environments. This study investigates the potential of silver-exchanged clinoptilolite-rich natural zeolite (NZ-Ag+) for the removal of Rn from air. Natural zeolite (NZ) was thermally treated and further modified to enhance its adsorption characteristics. The thermally treated NZ (200 °C) was first exchanged in Na+ form, since Na+ is more easily exchanged in clinoptilolite with hydrated Ag+ ions than the other exchangeable cations. The modification with Ag+ was carried out at room temperature using ultrasonic processing to obtain (NZ-Ag+). The materials were characterized in terms of chemical composition, cation exchange capacity, mineralogy, total surface area, pore volume, and thermal behavior. Rn adsorption experiments were performed using a closed-circuit system, and the efficiency of NZ-Ag+ was compared with that of NZ. The results indicate that NZ-Ag+ exhibits superior Rn adsorption capacity, achieving up to 50% higher retention efficiency compared to NZ. The improved performance is attributed to enhanced adsorption facilitated by silver ion clusters interacting with radon atoms. These results suggest that silver-exchanged zeolite represents a promising material for radon mitigation in air filtration systems, with potential applications in residential and occupational settings. Full article
Show Figures

Figure 1

28 pages, 10033 KB  
Article
The Role of Mechanical Ventilation in Indoor Air Quality in Schools: An Experimental Comprehensive Analysis
by Vincenzo Ballerini, Maddalena Coccagna, Matteo Bisi, Antonella Volta, Lorenzo Droghetti, Eugenia Rossi di Schio, Paolo Valdiserri and Sante Mazzacane
Buildings 2025, 15(6), 869; https://doi.org/10.3390/buildings15060869 - 11 Mar 2025
Cited by 8 | Viewed by 2645
Abstract
Indoor air quality (IAQ) plays a vital role in supporting both the physical and mental well-being of individuals in enclosed spaces, and the role of mechanical ventilation systems has gained increasing attention due to building design’s focus on energy efficiency and thus airtight [...] Read more.
Indoor air quality (IAQ) plays a vital role in supporting both the physical and mental well-being of individuals in enclosed spaces, and the role of mechanical ventilation systems has gained increasing attention due to building design’s focus on energy efficiency and thus airtight constructions. This study investigated the pre–post effects of installing a heat recovery mechanical ventilation system (MVHR) on indoor air quality in a high school classroom in Ferrara, Italy. The analysis focused on experimental measurements of temperature (T), relative humidity (RH), and carbon dioxide (CO2) both inside and outside the same classroom, which had constant occupancy (17 students) for an entire school year, allowing a comparison between natural and mechanical ventilation. With a comprehensive approach, particulate matter (PM2.5), volatile organic compounds (VOCs), and radon levels (Rn) were monitored as well, after the installation of the MVHR. By comparing natural and mechanical ventilation, the study highlights the strengths and limitations of the ventilation system implemented, together with an evaluation of the system’s energy consumption, including a 2 kW post-heating battery. In terms of results, the MVHR demonstrated clear benefits in managing CO2 levels and improving sensory, olfactory, and psychophysical well-being, as well as the attention levels of students. In detail, under natural ventilation, peak concentrations exceeded 4500 ppm, while mechanical ventilation kept them below 1500 ppm. The average CO2 concentration during occupancy dropped from 2500 ppm to around 1000 ppm, achieving a 62% reduction. However, beneficial effects were not observed for other parameters, such as PM2.5, VOCs, or radon. The latter displayed annual average values around 21 Bq/m3 and peaks reaching 56 Bq/m3. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 5421 KB  
Article
Indoor Radon Monitoring in Residential Areas in the Vicinity of Coal Mining Operations in the Mpumalanga Province, South Africa
by Paballo M. Moshupya, Seeke C. Mohuba, Tamiru A. Abiye, Ian Korir and Sifiso Nhleko
Atmosphere 2025, 16(3), 290; https://doi.org/10.3390/atmos16030290 - 28 Feb 2025
Cited by 4 | Viewed by 1473
Abstract
Coal mining and combustion have the potential to increase exposure to radon, a form of radioactive gas recognized as one of the major contributors to lung cancer incidents. In South Africa, coal is used as the primary energy source for producing electricity and [...] Read more.
Coal mining and combustion have the potential to increase exposure to radon, a form of radioactive gas recognized as one of the major contributors to lung cancer incidents. In South Africa, coal is used as the primary energy source for producing electricity and for heating, predominantly in informal settlements and township communities. Most of the existing coal-fired power plants are found in the Mpumalanga province. This paper presents long-term radon (222Rn) measurements in dwellings surrounding coal mining centres in the Mpumalanga province and evaluates their contributions to indoor radon exposures. The indoor radon measurements were conducted using solid-state nuclear track detectors and were performed during warm and cold seasons. It was found that the overall indoor radon activity concentrations ranged between 21 Bq/m3 and 145 Bq/m3, with a mean value of 40 Bq/m3. In all the measured dwellings, the levels were below the WHO reference level of 100 Bq/m3 and 300 Bq/m3 reference level recommended by the IAEA and ICRP, with the exception of one dwelling that was poorly ventilated. The results reveal that individuals residing in the surveyed homes are not exposed to radon levels higher than the WHO, ICRP, and IAEA reference levels. The main source influencing indoor radon activity concentrations was found to be primarily the concentration of uranium found in the geological formations in the area, with ventilation being an additional contributing factor of radon levels in dwellings. To maintain good air quality in homes, it is recommended that household occupants should keep their dwellings well ventilated to keep indoor radon levels as low as possible. Full article
Show Figures

Figure 1

Back to TopTop