Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = radionuclide sorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2292 KB  
Article
Granules of SIV, AM-4, and ETS-4 Titanosilicate Sorbents Based on the Products of Processing Ti-Bearing Raw Materials of the Kola Peninsula and Their Sorption Behavior with Respect to 137Cs and 90Sr Radionuclides
by Galina O. Kalashnikova, Vitaly V. Milyutin, Natalya A. Nekrasova, Ekaterina A. Selivanova, Darya V. Gryaznova, Yakov A. Pakhomovsky, Victor N. Yakovenchuk, Lidiya G. Gerasimova, Gleb O. Samburov, Anastasia I. Knyazeva and Anatoliy I. Nikolaev
Appl. Sci. 2025, 15(23), 12640; https://doi.org/10.3390/app152312640 - 28 Nov 2025
Viewed by 180
Abstract
The paper focuses on a transition from studying synthetic analogs of rare titanosilicate minerals (lintisite, ivanyukite, and zorite) in the powdery state to investigating their new granulated forms. Five different methods for granulating titanosilicate samples are tested: fluidized bed and spray dry granulation, [...] Read more.
The paper focuses on a transition from studying synthetic analogs of rare titanosilicate minerals (lintisite, ivanyukite, and zorite) in the powdery state to investigating their new granulated forms. Five different methods for granulating titanosilicate samples are tested: fluidized bed and spray dry granulation, spray bed granulation, screw rotor granulation, and manual pressing of paste through a stainless-steel sieve with a 1 mm mesh size. The results of studying sorption of trace amounts of 137Cs and 90Sr radionuclides from model solutions of various compositions onto inorganic sorbents in powdered and granulated forms are presented. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

21 pages, 2294 KB  
Review
Thorium in Energy and Ecology: Prospects for Clean Fuel Sources and Protection of Water and Soil Systems from Radiation Risks
by Zhanna Alsar, Aisarat Gajimuradova, Zulkhair Mansurov, Nurtai Gubaidullin, Ahmed Hassanein and Zinetula Insepov
Energies 2025, 18(23), 6177; https://doi.org/10.3390/en18236177 - 25 Nov 2025
Viewed by 337
Abstract
Thorium occupies a unique position in the global energy agenda, being simultaneously considered a promising nuclear fuel and an ecological risk factor. Its fuel cycle (Th-232 → U-233) offers significant advantages over uranium, including reduced waste, improved resistance to burnup, and lower proliferation [...] Read more.
Thorium occupies a unique position in the global energy agenda, being simultaneously considered a promising nuclear fuel and an ecological risk factor. Its fuel cycle (Th-232 → U-233) offers significant advantages over uranium, including reduced waste, improved resistance to burnup, and lower proliferation risks, while molten salt reactor designs demonstrate potential to reduce electricity costs and consume transuranic elements from spent nuclear fuel. At the same time, the geochemical mobility of Th4+ ions, prone to forming soluble and colloidal species, increases the likelihood of their migration into soils and waters, with subsequent accumulation in biota and induction of radiotoxic effects. This study applied a comprehensive review of thorium’s energy potential and environmental risks, analyzing advances in reactor technology alongside mitigation methods such as coagulation, membrane separation, ion exchange, and adsorption with natural and modified sorbents. The findings emphasize that thorium’s strategic role in sustainable nuclear power is inseparable from the development of reliable safeguards to protect ecosystems. We conclude that a dual approach—integrating innovative reactor engineering with effective environmental countermeasures—will be essential for safe deployment of thorium technologies, ensuring their contribution to clean energy generation while minimizing ecological impacts. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

28 pages, 4866 KB  
Article
Modelling the Impact of Engineered Barrier Degradation on Radionuclide Release from a Lithuanian Near-Surface Repository
by Povilas Balčius, Dalia Grigaliūnienė, Gytis Bartkus and Povilas Poškas
Appl. Sci. 2025, 15(22), 12253; https://doi.org/10.3390/app152212253 - 18 Nov 2025
Viewed by 272
Abstract
Cementitious materials are widely used as engineered barriers in radioactive waste repositories due to their low permeability and ability to sorb radionuclides. However, the degradation of concrete under detrimental environmental impacts alters its ability to sorb radionuclides and may increase radionuclide release from [...] Read more.
Cementitious materials are widely used as engineered barriers in radioactive waste repositories due to their low permeability and ability to sorb radionuclides. However, the degradation of concrete under detrimental environmental impacts alters its ability to sorb radionuclides and may increase radionuclide release from the repository. The aim of this work was to investigate the effect of concrete barrier degradation on radionuclide migration in the near field of the Lithuanian near-surface repository. At first, changes in geochemical conditions in the repository were evaluated, and concrete degradation stages were defined using a reactive transport model. Then, sorption values (Kd values) corresponding to concrete degradation stages at different locations in the repository were selected, and radionuclide migration from the repository was modelled. Temporal as well as spatial changes in radionuclide sorption were taken into account. Long-lived weakly, moderately and strongly sorbed radionuclides (129I, 59Ni and 239Pu, respectively) were considered. It was found that, under the assumed conditions, changes in sorption values had no impact on 129I flux from the repository. Considering concrete degradation, 59Ni release was twice as high as in the case of non-degrading concrete, while 239Pu flux was similar to that obtained assuming constant sorption, as in degraded concrete. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

15 pages, 3266 KB  
Article
Nano-Functionalized Magnetic Carbon Composite for Purification of Man-Made Polluted Waters
by Tetyana I. Melnychenko, Vadim M. Kadoshnikov, Oksana M. Arkhipenko, Tetiana I. Nosenko, Iryna V. Mashkina, Lyudmila A. Odukalets, Sergey V. Mikhalovsky and Yuriy L. Zabulonov
C 2025, 11(4), 77; https://doi.org/10.3390/c11040077 - 13 Oct 2025
Viewed by 1185
Abstract
Among the main man-made water pollutants that pose a danger to the environment are oil products, heavy metals, and radionuclides, as well as micro- and nanoplastics. To purify such waters, it is necessary to use advanced methods, with sorption being one of them. [...] Read more.
Among the main man-made water pollutants that pose a danger to the environment are oil products, heavy metals, and radionuclides, as well as micro- and nanoplastics. To purify such waters, it is necessary to use advanced methods, with sorption being one of them. The aim of this work is to develop a nano-functionalized composite, comprising magnetically responsive, thermally expanded graphite (TEG) and the natural clay bentonite, and to assess its ability to purify man-made contaminated waters. Throughout the course of the research, the methods of scanning electron microscopy, optical microscopy, dynamic light scattering, radiometry, and atomic absorption spectrophotometry were used. The use of the TEG–bentonite composite for the purification of the model water, simulating radioactively contaminated nuclear power plant (NPP) effluent, reduced the content of organic substances by 10–15 times, and the degree of extraction of cesium, strontium, cobalt, and manganese was between 81.4% and 98.8%. The use of the TEG–bentonite composite for the purification of real radioactively contaminated water obtained from the object “Shelter” (“Ukryttya” in Ukrainian), in the Chernobyl Exclusion Zone, Ukraine, with high activity, containing organic substances, including micro- and nanoplastics, reduced the radioactivity by three orders of magnitude. The use of cesium-selective sorbents for additional purification of the filtrate allowed for further decontamination of radioactively contaminated water with an efficiency of 99.99%. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

15 pages, 5368 KB  
Article
Radioiodide Sorption on Natural and Acid-Treated Zeolite
by Petr Belousov, Ekaterina Tyupina, Pavel Kozlov, Yulia Izosimova, Inna Tolpeshta, Tatiana Koroleva, Boris Pokidko, Victoria Krupskaya and Anastasia Rumyantseva
Minerals 2025, 15(5), 494; https://doi.org/10.3390/min15050494 - 7 May 2025
Viewed by 804
Abstract
This work is devoted to the study of the effect of acid treatment on the structural and textural properties of natural zeolite and its sorption activity with respect to radioiodide. To carry out the experiments, natural zeolite was treated with nitric acid of [...] Read more.
This work is devoted to the study of the effect of acid treatment on the structural and textural properties of natural zeolite and its sorption activity with respect to radioiodide. To carry out the experiments, natural zeolite was treated with nitric acid of various concentrations at 20 and 90 degrees. The following methods were used to study the samples: XRD, SEM, DTA, XRF, FTIR, BET, and CEC analyses. Experiments on the sorption and desorption of radioiodide were carried out. The obtained results indicate that acid treatment results in the gradual leaching of aluminum from the crystal lattice and a significant increase in the specific surface area and microporosity of the zeolite. At the same time, the morphology of clinoptilolite is not significantly changed. Additional studies have shown that acid treatment leads to the hydrophobization of zeolite channels and the formation of an amorphous aluminosilicate phase, which makes a significant contribution to the increase in the specific surface area and microporosity. It was found that, with an increase in the degree of dealumination of the zeolite, there is an increase in the sorption properties with respect to radioiodide. The maximum values of sorption capacity were obtained after treating the zeolite with a 1 M nitric acid solution at 90 °C. With a further increase in the concentration of acid, critical changes in the structure of the zeolite occur, leading to a sharp decrease in the sorption capacity. Iodide sorption is not associated with physical adsorption in the micropores of the zeolite and the newly formed amorphous phase. The main mechanism of the sorption appears to be the interaction with silanol and bridging hydroxyl groups on the surface of the zeolite and the amorphous aluminosilicate phase. Full article
Show Figures

Figure 1

13 pages, 3515 KB  
Article
Mechanochemical-Activated Organomontmorillonite for Uranium Pollution Protection
by Iryna Kovalchuk, Iryna Farbun, Volodymyr Sydorchuk, Andrey Lakhnik and Olena Diyuk
AppliedChem 2025, 5(1), 5; https://doi.org/10.3390/appliedchem5010005 - 24 Feb 2025
Cited by 1 | Viewed by 1480
Abstract
The modification of the layered silicate with a structural type 2:1 montmorillonite by the cationic surfactant hexadecyltrimethylammonium bromide was carried out. The obtained organomontmorillonite was milled for 2–25 min in a high-energy planetary ball mill. The structural and physicochemical characteristics of the modified [...] Read more.
The modification of the layered silicate with a structural type 2:1 montmorillonite by the cationic surfactant hexadecyltrimethylammonium bromide was carried out. The obtained organomontmorillonite was milled for 2–25 min in a high-energy planetary ball mill. The structural and physicochemical characteristics of the modified montmorillonite and the mechanochemically activated montmorillonite were investigated using various methods such as X-ray diffraction, thermal analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and determination of the specific surface area as well as the parameters of the porous structure by the low-temperature adsorption–desorption of nitrogen. The modification of montmorillonite with the quaternary ammonium salt led to a slowdown of deformation and subsequent amorphization of the montmorillonite structure during the high-energy milling. Mechanochemical activation of the modified montmorillonite increased its sorption capacity nine times, with the maximum uranium sorption achieved after mechanochemical treatment for 10 min. Full article
Show Figures

Figure 1

21 pages, 1687 KB  
Review
Red Mud as an Adsorbent for Hazardous Metal Ions: Trends in Utilization
by Maja Rajković, Ivana Jelić, Marija Janković, Dragi Antonijević and Marija Šljivić-Ivanović
Toxics 2025, 13(2), 107; https://doi.org/10.3390/toxics13020107 - 28 Jan 2025
Cited by 8 | Viewed by 3154
Abstract
The increasing importance of waste materials utilization with the necessary modification to remove various pollutants from industrial wastewater has been a research focus over the past few decades. Using waste material from one industry to solve pollution problems in another ultimately leads toward [...] Read more.
The increasing importance of waste materials utilization with the necessary modification to remove various pollutants from industrial wastewater has been a research focus over the past few decades. Using waste material from one industry to solve pollution problems in another ultimately leads toward sustainable and circular approaches in environmental engineering, solving waste management and wastewater treatment issues simultaneously. In contemporary research and industry, there is a notable trend toward utilizing industrial wastes as precursors for adsorbent formation with a wide application range. In line with this trend, red mud, a byproduct generated during alumina production, is increasingly viewed as a material with the potential for beneficial reuse rather than strictly a waste. One of the potential uses of red mud, due to its specific composition, is in the removal of heavy metal and radionuclide ions. This study summarizes red mud’s potential as an adsorbent for wastewater treatment, emphasizing techno-economic analysis and sorption capacities. An overview of the existing research includes a critical evaluation of the adsorption performance, factors influencing efficiency rather than efficacy, and the potential for specific pollutant adsorption from aqueous solutions. This review provides a new approach to a circular economy implementation in wastewater treatment while guiding future research directions for sustainable and cost-effective solutions. Full article
Show Figures

Graphical abstract

31 pages, 30312 KB  
Article
Site-Specific Hydrogeological Characterization for Radiological Safety: Integrating Groundwater Dynamics and Transport
by Soo-Gin Kim, Hong-Il Kwon, Jeoung-Seok Yoon, Chan-Hong Kim, Hyo Heo and Chung-Mo Lee
Water 2025, 17(2), 186; https://doi.org/10.3390/w17020186 - 11 Jan 2025
Cited by 2 | Viewed by 1421
Abstract
The radiological impact of radionuclide transport via groundwater pathways at the Wolsong Low- and Intermediate-Level Waste (LILW) Disposal Center was estimated by considering site-specific characteristics, including hydrogeology, geochemistry, and land use. Human intrusion scenarios, such as groundwater well development, were analyzed to evaluate [...] Read more.
The radiological impact of radionuclide transport via groundwater pathways at the Wolsong Low- and Intermediate-Level Waste (LILW) Disposal Center was estimated by considering site-specific characteristics, including hydrogeology, geochemistry, and land use. Human intrusion scenarios, such as groundwater well development, were analyzed to evaluate potential pumping volumes and radionuclide migration pathways. Particular attention was given to the hydrological and geochemical aspects of radionuclide transport, with a focus on local aquifer heterogeneity, flow dynamics, and interactions with engineered barriers and surrounding rock formations that delay radionuclide migration through sorption and other retention mechanisms. Sorption coefficients (Kd), calibrated using site-specific geochemical data, were incorporated to ensure realistic modeling of radionuclide behavior. A hierarchical approach integrating scenario screening, particle tracking techniques, and mass transfer modeling was employed. Numerical simulations using FEFLOW ver. 7.3 and GoldSim ver. 14.0 software provided insights into near-field and far-field transport phenomena under well pumping conditions. The results revealed distinct spatial flux behaviors, where carbon-14 (14C) dominated near-field flux due to its high inventory, while technetium-99 (99Tc) emerged as the primary dose contributor in the far-field flux, owing to its anionic nature and limited sorption capacity. Additionally, under high-pH conditions near concrete barriers, cellulose degradation into isosaccharinic acid was identified, enhancing radionuclide mobility through complex formation. These findings underscore the importance of site-specific sorption and speciation parameters in safety assessment and highlight the need for accurate geochemical modeling to optimize waste placement and ensure long-term disposal safety. The outcomes provide valuable insights for optimizing waste placement and contribute to the development of evidence-based safety strategies for long-term performance assessment. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 3702 KB  
Article
Sorbents Based on Polyacrylonitrile Fiber for Complex Recovery of Artificial 137Cs and Natural Radionuclides from Natural Media
by Iuliia G. Shibetskaia, Viktoriia A. Razina, Nikolay A. Bezhin, Eduard A. Tokar’, Vladislav A. Turyanskiy, Natalia V. Zarubina, Oleg O. Shichalin, Sofia B. Yarusova and Ivan G. Tananaev
Water 2025, 17(2), 147; https://doi.org/10.3390/w17020147 - 8 Jan 2025
Cited by 1 | Viewed by 1447
Abstract
Sorbents based on polyacrylonitrile fiber, containing ferrocyanides of transition metals and manganese oxides (CoMn-PAN and FeMn-PAN) or iron(III) hydroxide (CoFe-PAN) in their structure were obtained, as confirmed by the results of X-ray diffraction and energy-dispersive analyses. The selectivity of the obtained sorbents was [...] Read more.
Sorbents based on polyacrylonitrile fiber, containing ferrocyanides of transition metals and manganese oxides (CoMn-PAN and FeMn-PAN) or iron(III) hydroxide (CoFe-PAN) in their structure were obtained, as confirmed by the results of X-ray diffraction and energy-dispersive analyses. The selectivity of the obtained sorbents was investigated, along with their ability to sorb Cs, Ba (as an analog of Ra), P, and Be from various natural media, including river water and seawater with varying salinity of 18.2 and 33.8 ‰. The data show that the sorbents are universal for the recovery of artificial 137Cs and natural radionuclides from the natural environments, including complex salt composition (seawater). Researching the obtained sorbents during marine expeditions confirmed the efficiency of the obtained materials based on transition metal ferrocyanides and manganese oxides (CoMn-PAN and FeMn-PAN) for the sorption of 137Cs, 7Be, 210Pb, 210Po, 226Ra, 228Ra, and 234Th. Additionally, the sorbent based on transition metal ferrocyanides and iron(III) hydroxide (CoFe-PAN) was effective for the sorption of 137Cs, 7Be, 32P, 33P, 210Pb, 210Po, and 234Th. Based on the obtained results, methods for comprehensively determining artificial 137Cs and natural radionuclides using these sorbents were developed. Full article
Show Figures

Figure 1

23 pages, 15720 KB  
Article
Composite Sorbents Based on Chitosan Polymer Matrix and Derivatives of 4-Amino-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide for Uranium Removal from Liquid Mineralized Media
by Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Daria D. Churakova, Oleg Yu. Slabko, Dmitry K. Patrushev, Nikita S. Markin and Eduard A. Tokar’
Gels 2025, 11(1), 24; https://doi.org/10.3390/gels11010024 - 1 Jan 2025
Viewed by 1528
Abstract
Composite adsorbents based on a natural biopolymer matrix of chitosan, to which 4-amino-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide and its Se derivative were attached, were synthesized. A complex of physicochemical analysis methods indicates that the direct introduction of a matrix with high ionic permeability into the reaction mixture [...] Read more.
Composite adsorbents based on a natural biopolymer matrix of chitosan, to which 4-amino-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide and its Se derivative were attached, were synthesized. A complex of physicochemical analysis methods indicates that the direct introduction of a matrix with high ionic permeability into the reaction mixture contributes to the formation of homogeneous particles of composite with developed surface morphology, which enhances the kinetic and capacitive parameters of uranium sorption in liquid media. It has been established that the direct introduction of a matrix with high ionic permeability into the reaction mixture contributes to the formation of homogeneous particles with a developed surface morphology, which enhances the kinetic and capacitive parameters of uranium sorption in liquid media. The synthesized materials had increased sorption-selective properties towards uranium in the pH range from 4 to 9 under static sorption conditions. The formation of the Se derivative of amidoxime during its attachment to the polymer matrix (Se-chit) contributes to the creation of a more chemically stable and highly effective adsorbent, compared to the direct binding of 4-amino-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide with chitosan (43AF-chit). The optimal parameters for the synthesis of materials were established. It was demonstrated that the ratio of amidoxime to chitosan should be within the range of 2:1 to 1:2. As the mass content of chitosan increases, the material gradually dissolves and transforms into a gel, resulting in the formation of liquid radioactive waste with a complex chemical composition. It was found that the kinetic sorption parameters of composite materials increase 2–10 times compared to those of non-composite materials. The sorption capacity of uranium in solutions with pH 6 and pH 8 can reach approximately 400–450 mg g−1. Under dynamic sorption conditions, the effective filtration cycle values (before uranium slips into the filtrate ≥ 50%) improve significantly when transitioning from a non-composite adsorbent to a composite one: increasing from 50 to 800 b.v. for pH 6 and from 2700 to 4000 b.v. for pH 8. These results indicate that the synthesized sorbents are promising materials for uranium removal from liquid media, suitable for both purification and the recovery of radionuclides as valuable raw materials. Full article
(This article belongs to the Special Issue Eco-Friendly Gels for Adsorption)
Show Figures

Graphical abstract

20 pages, 6946 KB  
Article
Composite Sorbents Based on Polymeric Se-Derivative of Amidoximes and SiO2 for the Uranium Removal from Liquid Mineralized Media
by Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Daria D. Churakova, Vladimir V. Korochencev, Oleg Yu. Slabko, Evgenij A. Eliseenko and Eduard A. Tokar’
Gels 2025, 11(1), 14; https://doi.org/10.3390/gels11010014 - 27 Dec 2024
Viewed by 1063
Abstract
A new composite material with enhanced sorption-selective properties for uranium recovery from liquid media has been obtained. Sorbents were synthesized through a polycondensation reaction of a mixture of 4-amino-N’-hydroxy-1,2,5-oxadiazole-3-carboximidamide (hereinafter referred to as amidoxime) and SiO2 in an environment of organic solvents [...] Read more.
A new composite material with enhanced sorption-selective properties for uranium recovery from liquid media has been obtained. Sorbents were synthesized through a polycondensation reaction of a mixture of 4-amino-N’-hydroxy-1,2,5-oxadiazole-3-carboximidamide (hereinafter referred to as amidoxime) and SiO2 in an environment of organic solvents (acetic acid, dioxane) and highly porous SiO2. To establish optimal conditions for forming the polymer sorption-active part and the synthesis as a whole, a series of composite adsorbents were synthesized with varying amidoxime/matrix ratios (35/65, 50/50, 65/35). The samples were characterized with FT-IR, XRD, SEM, EDX, XRFES spectroscopy and TGA. Under static conditions of uranium sorption, the dependence of the efficiency of radionuclide recovery from mineralized solutions of various acidities on the ratio of the initial components was established. In the pH range from 4 to 8 (inclusive), the uranium removal efficiency exceeds 95%, while the values of the distribution coefficients (Kd) exceed 104 cm3g−1. It was demonstrated that an increase in the surface development of the sorbents enhances such kinetic parameters of uranium sorption as diffusion rate by 10–20 times compared to non-porous materials. The values of the maximum static capacity exceed 700 mg g−1. The enhanced availability of adsorption centers, achieved through the use of a porous SiO2 matrix, significantly improves the kinetic parameters of the adsorbents. A composite with optimal physicochemical and sorption properties (amidoxime/matrix ratio of 50/50) was examined under dynamic conditions of uranium sorption. It was found that the maximum dynamic sorption capacity of porous materials is four times greater compared to that of a non-porous adsorbent Se-init. The effective filter cycle exceeds 3200 column volumes—twice that of an adsorbent with a monolithic surface. These results indicate the promising potential of the developed materials for uranium sorption from liquid mineralized media under dynamic conditions across a wide pH range. Full article
(This article belongs to the Special Issue Eco-Friendly Gels for Adsorption)
Show Figures

Figure 1

18 pages, 2383 KB  
Article
Retention of Nickel and Cobalt in Boda Claystone Formation
by Ottó Czömpöly, Fruzsina Szabó, Margit Fábián, Tamás Kolonits, Zsolt Fogarassy, Dániel Zámbó, Marc Aertsens and János Osán
Minerals 2024, 14(12), 1299; https://doi.org/10.3390/min14121299 - 22 Dec 2024
Cited by 1 | Viewed by 1107
Abstract
The Boda Claystone Formation (BCF) is considered to serve as a natural barrier to the potential high-level radioactive waste repository in Hungary. In order to evaluate the radionuclide retention capacity of the albitic claystone of the BCF, the adsorption and diffusion properties of [...] Read more.
The Boda Claystone Formation (BCF) is considered to serve as a natural barrier to the potential high-level radioactive waste repository in Hungary. In order to evaluate the radionuclide retention capacity of the albitic claystone of the BCF, the adsorption and diffusion properties of the rock for Ni2+ and Co2+ cations (activation products) were investigated separately and in competitive conditions when the two ions were simultaneously added. Batch sorption experiments were performed with powdered and conditioned albitic claystone samples in synthetic pore water to obtain adsorption isotherms. In addition, adsorption tests were performed on petrographic thin sections to check the transferability between dispersed and compact systems. Correlation analysis of microscopic X-ray fluorescence elemental maps recorded on thin sections suggested that nickel is primarily bound to clay minerals (mainly illite and chlorite), which was confirmed by (scanning) transmission electron microscopy measurements. Around illite particles, a newly formed nickel-rich few atomic layer thick phyllosilicate phase was identified. The discrepancy between the experimental and modeled adsorption isotherm at high concentrations could be explained with this nickel-rich new phase. Apart from Cin = 10−3 M and only Ni2+ or Co2+ in the source, the apparent diffusion coefficients of Ni2+ and Co2+ (Cin = 10−3–10−2 M) were found to be similar. Overall, the BCF shows promising capabilities to retain the studied radionuclides. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

17 pages, 1884 KB  
Article
Retardation of Chlorine-36 by Cementitious Materials Relevant to the Disposal of Radioactive Wastes
by Matthew Isaacs, Steve Lange, Antoni E. Milodowski, Dirk Bosbach, David Read and Guido Deissmann
Minerals 2024, 14(10), 1017; https://doi.org/10.3390/min14101017 - 9 Oct 2024
Cited by 2 | Viewed by 1528
Abstract
The activation product chlorine-36 (36Cl) is an important radionuclide within the context of the disposal of nuclear wastes, due to its long half-life and environmental mobility. Its behaviour in a range of potential cementitious encapsulants and backfill materials was studied by [...] Read more.
The activation product chlorine-36 (36Cl) is an important radionuclide within the context of the disposal of nuclear wastes, due to its long half-life and environmental mobility. Its behaviour in a range of potential cementitious encapsulants and backfill materials was studied by evaluating its uptake by pure cement hydration phases and hardened cement pastes (HCP). Limited uptake of chloride was observed on calcium silicate hydrates (C-S-H) by electrostatic sorption and by calcium monosulphoferroaluminate hydrate (AFm) phases, due to anion exchange/solid solution formation. Diffusion of 36Cl through cured monolithic HCP samples, representative of cementitious materials considered for use in deep geological repositories across Europe, revealed a markedly diverse migration behaviour. Two of the matrices, a ground granulated blast furnace slag/ordinary Portland cement blend (GGBS–OPC) and an ordinary Portland cement (CEM I) effectively retarded 36Cl migration, retaining the radionuclide in narrow, reactive zones. The migration behaviour of 36Cl within the cementitious matrices is not strictly correlated to the measured sorption distribution ratios (Rd-values), suggesting that physical factors related to the microstructure can also have a distinct effect on diffusion behaviour. The findings have implications when selecting cementitious grouts and/or backfill materials for 36Cl-bearing radioactive wastes. Full article
(This article belongs to the Special Issue Radionuclide Interactions with Natural and Synthetic Solids)
Show Figures

Figure 1

22 pages, 7958 KB  
Article
THC Modelling of Bentonite Barrier of Geological Repository in Granite and Its Impact on Long-Term Safety
by Asta Narkuniene, Dalia Grigaliuniene and Gintautas Poskas
Appl. Sci. 2024, 14(17), 7851; https://doi.org/10.3390/app14177851 - 4 Sep 2024
Cited by 2 | Viewed by 3506
Abstract
As in any other industry, nuclear energy results in the accumulation of some waste, which needs to be managed safely and responsibly due to its radiotoxicity. In the case of highly radioactive waste, geological disposal in stable rock is considered a broadly accepted [...] Read more.
As in any other industry, nuclear energy results in the accumulation of some waste, which needs to be managed safely and responsibly due to its radiotoxicity. In the case of highly radioactive waste, geological disposal in stable rock is considered a broadly accepted solution. For the evaluation of the long-term safety of a geological repository, the assessment of radionuclide transport needs to be carried out. Radionuclide transport through engineered and natural barriers of the repository will highly depend on the barriers’ transport-related properties, which will be determined by coupled thermal, hydraulic, chemical, mechanical, biological, and radiation processes taking place in those barriers. In this study, the thermo-hydro-chemical (THC) state of bentonite was analysed considering CO2 gas diffusion and temperature-dependent solubility in water. Reactive transport modelling of bentonite under non-isothermal conditions was performed with the COMSOL Multiphysics software (v6.0), coupled with the geochemical solver Phreeqc via the iCP interface. The modelling demonstrated that the consideration of chemical processes in bentonite had no significant influence on non-reactive Cl transport; however, it would be important for other radionuclides whose sorption in porous media depends on the porewater pH. Based on the modelling results, changes in the bentonite mineralogical composition and, subsequently, porosity depend on the partial CO2 pressure at the bentonite–granite boundary. In the case of low CO2 partial pressure at the bentonite–granite interface, the calcite dissolution led to a slight porosity increase, while higher CO2 partial pressure led to decreased porosity near the interface. Full article
Show Figures

Figure 1

17 pages, 2332 KB  
Article
Automation of Copper-Mediated 18F-Fluorination of Aryl Pinacol Boronates Using 4-Dimethylaminopyridinium Triflate
by Mikhail A. Nadporojskii, Viktoriya V. Orlovskaya, Olga S. Fedorova, Dmitry S. Sysoev and Raisa N. Krasikova
Molecules 2024, 29(14), 3342; https://doi.org/10.3390/molecules29143342 - 16 Jul 2024
Cited by 2 | Viewed by 2459
Abstract
Currently, the copper-mediated radiofluorination of aryl pinacol boronates (arylBPin) using the commercially available, air-stable Cu(OTf)2Py4 catalyst is one of the most efficient synthesis approaches, greatly facilitating access to a range of radiotracers, including drug-like molecules with nonactivated aryl scaffolds. Further adjustment of this [...] Read more.
Currently, the copper-mediated radiofluorination of aryl pinacol boronates (arylBPin) using the commercially available, air-stable Cu(OTf)2Py4 catalyst is one of the most efficient synthesis approaches, greatly facilitating access to a range of radiotracers, including drug-like molecules with nonactivated aryl scaffolds. Further adjustment of this methodology, in particular, the [18F]fluoride recovery step for the routine preparation of radiotracers, has been the focus of recent research. In our recent study, an organic solution of 4-dimethylaminopyridinium trifluoromethanesulfonate (DMAPOTf) was found to be an efficient PTC for eluting radionuclides retained on the weak anion exchange cartridge, Oasis WAX 1cc, employing the inverse sorption–elution protocol. Notably, the following Cu-mediated radiofluorination of arylBPin precursors in the presence of the Cu(OTf)2(Py)4 catalyst can be performed with high efficiency in the same solvent, bypassing not only the conventional azeotropic drying procedure but any solvent replacement. In the current study, we aimed to translate this methodology, originally developed for remote-controlled operation with manual interventions, into the automated synthesis module on the TRACERlab automation platform. The adjustment of the reagent amounts and solvents allowed for high efficiency in the radiofluorination of a series of model arylBPin substrates on the TRACERlab FXFE Pro synthesis module, which was adapted for nucleophilic radiofluorinations. The practical applicability of the developed radiofluorination approach with DMAPOTf elution was demonstrated in the automated synthesis of 6-L-[18F]FDOPA. The radiotracer was obtained with an activity yield (AY; isolated, not decay-corrected) of 5.2 ± 0.5% (n = 3), with a synthesis time of ca. 70 min on the TRACERlab FX N Pro automation platform. The obtained AY was comparable with one reported by others (6 ± 1%) using the same boronate precursor, while a slightly higher AY of 6-L-[18F]FDOPA (14.5 ± 0.5%) was achieved in our previous work using commercially available Bu4NOTf as the PTC. Full article
(This article belongs to the Special Issue Advance in Radiochemistry)
Show Figures

Figure 1

Back to TopTop