Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = radiochemistry laboratory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3108 KiB  
Article
Design and Construction of a Radiochemistry Laboratory and cGMP-Compliant Radiopharmacy Facility
by Angela Asor, Abdullah Metebi, Kylie Smith, Kurt Last, Elaine Strauss and Jinda Fan
Pharmaceuticals 2024, 17(6), 680; https://doi.org/10.3390/ph17060680 - 25 May 2024
Cited by 3 | Viewed by 3175
Abstract
The establishment of a compliant radiopharmacy facility within a university setting is crucial for supporting fundamental and preclinical studies, as well as for the production of high-quality radiopharmaceuticals for clinical testing in human protocols as part of Investigational New Drug (IND) applications that [...] Read more.
The establishment of a compliant radiopharmacy facility within a university setting is crucial for supporting fundamental and preclinical studies, as well as for the production of high-quality radiopharmaceuticals for clinical testing in human protocols as part of Investigational New Drug (IND) applications that are reviewed and approved by the U.S. Food and Drug Administration (FDA). This manuscript details the design and construction of a 550 ft2 facility, which included a radiopharmacy and a radiochemistry laboratory, to support radiopharmaceutical development research and facilitate translational research projects. The facility was designed to meet FDA guidelines for the production of aseptic radiopharmaceuticals in accordance with current good manufacturing practice (cGMP). A modular hard-panel cleanroom was constructed to meet manufacturing classifications set by the International Organization of Standardization (ISO), complete with a gowning room and an anteroom. Two lead-shielded hot cells and two dual-mini hot cells, connected via underground trenches containing shielded conduits, were installed to optimize radioactive material transfer while minimizing personnel radiation exposure. Concrete blocks and lead bricks provided sufficient and cost-effective radiation shielding for the trenches. Air quality was controlled using pre-filters and high-efficiency particulate air (HEPA) filters to meet cleanroom ISO7 (Class 10,000) standards. A laminar-flow biosafety cabinet was installed in the cleanroom for preparation of sterile dose vials. Noteworthy was a laminar-flow insert in the hot cell that provided a shielded laminar-flow sterile environment meeting ISO5 (class 100) standards. The design included the constant control and monitoring of differential air pressures across the cleanroom, anteroom, gowning room, and controlled research space, as well as maintenance of temperature and humidity. The facility was equipped with state-of-the-art equipment for quality control and release testing of radiopharmaceuticals. Administrative controls and standard operating procedures (SOPs) were established to ensure compliance with manufacturing standards and regulatory requirements. Overall, the design and construction of this radiopharmacy facility exemplified a commitment to advancing fundamental, translational, and clinical applications of radiopharmaceutical research within an academic environment. Full article
(This article belongs to the Special Issue Recent Advancements in Radiochemistry and PET Radiotracer Development)
Show Figures

Figure 1

15 pages, 2121 KiB  
Article
Radionuclides’ Recovery from Seawater Using FIC and FIC A Sorbents
by Nikolay A. Bezhin, Vitaliy V. Milyutin, Natalia V. Kuzmenkova, Iuliia G. Shibetskaia, Ol’ga N. Kozlovskaia, Evgeniy V. Slizchenko, Victoria A. Razina and Ivan G. Tananaev
Materials 2023, 16(11), 4181; https://doi.org/10.3390/ma16114181 - 4 Jun 2023
Cited by 2 | Viewed by 1801
Abstract
To solve radioecological and oceanological problems (estimate the vertical transport, flows of particulate organic carbon, phosphorus biodynamics, submarine groundwater discharge, etc.), it is necessary to determine the natural values of the radionuclides’ activity in seawater and particulate matter. For the first time, the [...] Read more.
To solve radioecological and oceanological problems (estimate the vertical transport, flows of particulate organic carbon, phosphorus biodynamics, submarine groundwater discharge, etc.), it is necessary to determine the natural values of the radionuclides’ activity in seawater and particulate matter. For the first time, the radionuclides’ sorption from seawater was studied using sorbents based on activated carbon modified with iron(III) ferrocyanide (FIC) and based on activated carbon modified with iron(III) hydroxide (FIC A—activated FIC) obtained by FIC sorbent treatment with sodium hydroxide solution. The possibility of trace amounts of phosphorus, beryllium, and cesium recovery in laboratory conditions has been investigated. Distribution coefficients, dynamic, and total dynamic exchange capacities were determined. The physicochemical regularities (isotherm and kinetics) of sorption have been studied. The results obtained are characterized via Langmuir, Freindlich, and Dubinin–Radushkevich isotherm equations, as well as pseudo-first and pseudo-second-order kinetic models, intraparticle diffusion, and the Elovich model. Under expeditionary conditions, the sorption efficiency of 137Cs using FIC sorbent, 7Be, 32P, and 33P—using FIC A sorbent with a single-column method by adding a stable tracer, as well as the sorption efficiency of radionuclides 210Pb and 234Th with their natural content by FIC A sorbent in a two-column mode from large volumes of seawater was assessed. High values of efficiency of their recovery by the studied sorbents were achieved. Full article
Show Figures

Figure 1

13 pages, 1903 KiB  
Article
7Be Recovery from Seawater by Sorbents of Various Types
by Nikolay A. Bezhin, Iuliia G. Shibetskaia, Ol’ga N. Kozlovskaia, Evgeniy V. Slizchenko and Ivan G. Tananaev
Materials 2023, 16(11), 4088; https://doi.org/10.3390/ma16114088 - 31 May 2023
Cited by 2 | Viewed by 1377
Abstract
For the first time, a comprehensive study of sorbents based on manganese dioxide was carried out for beryllium sorption from seawater in laboratory and expeditionary conditions. The possibility of using several commercially available sorbents based on manganese dioxide (Modix, MDM, DMM, PAN-MnO2 [...] Read more.
For the first time, a comprehensive study of sorbents based on manganese dioxide was carried out for beryllium sorption from seawater in laboratory and expeditionary conditions. The possibility of using several commercially available sorbents based on manganese dioxide (Modix, MDM, DMM, PAN-MnO2) and phosphorus(V) oxide (PD) for 7Be recovery from seawater for solving oceanological problems was evaluated. Beryllium sorption under static and dynamic conditions was studied. The distribution coefficients and dynamic and total dynamic exchange capacities were determined. Sorbents Modix (Kd = (2.2 ± 0.1) × 103 mL/g) and MDM (Kd = (2.4 ± 0.2) × 103 mL/g) showed high efficiency. The dependences of the degree of recovery on time (kinetics) and the capacity of the sorbent on the beryllium equilibrium concentration in solution (isotherm) were established. The data obtained were processed using kinetic models (intraparticle diffusion, pseudo-first and pseudo-second orders, Elovich model) and sorption isotherm equations (Langmuir, Freindlich, Dubinin–Radushkevich). The paper contains results of expeditionary studies to evaluate the sorption efficiency of 7Be from large volumes of the Black Sea water by various sorbents. We also compared the sorption efficiency of 7Be for the considered sorbents with aluminum oxide and previously obtained sorbents based on iron(III) hydroxide. Full article
Show Figures

Figure 1

31 pages, 2418 KiB  
Article
Optimizing the Safety and Efficacy of Bio-Radiopharmaceuticals for Cancer Therapy
by Cyprine Neba Funeh, Jessica Bridoux, Thomas Ertveldt, Timo W. M. De Groof, Dora Mugoli Chigoho, Parinaz Asiabi, Peter Covens, Matthias D’Huyvetter and Nick Devoogdt
Pharmaceutics 2023, 15(5), 1378; https://doi.org/10.3390/pharmaceutics15051378 - 30 Apr 2023
Cited by 12 | Viewed by 6877
Abstract
The precise delivery of cytotoxic radiation to cancer cells through the combination of a specific targeting vector with a radionuclide for targeted radionuclide therapy (TRT) has proven valuable for cancer care. TRT is increasingly being considered a relevant treatment method in fighting micro-metastases [...] Read more.
The precise delivery of cytotoxic radiation to cancer cells through the combination of a specific targeting vector with a radionuclide for targeted radionuclide therapy (TRT) has proven valuable for cancer care. TRT is increasingly being considered a relevant treatment method in fighting micro-metastases in the case of relapsed and disseminated disease. While antibodies were the first vectors applied in TRT, increasing research data has cited antibody fragments and peptides with superior properties and thus a growing interest in application. As further studies are completed and the need for novel radiopharmaceuticals nurtures, rigorous considerations in the design, laboratory analysis, pre-clinical evaluation, and clinical translation must be considered to ensure improved safety and effectiveness. Here, we assess the status and recent development of biological-based radiopharmaceuticals, with a focus on peptides and antibody fragments. Challenges in radiopharmaceutical design range from target selection, vector design, choice of radionuclides and associated radiochemistry. Dosimetry estimation, and the assessment of mechanisms to increase tumor uptake while reducing off-target exposure are discussed. Full article
(This article belongs to the Special Issue Radiopharmaceuticals: From Design to Applications)
Show Figures

Graphical abstract

14 pages, 5415 KiB  
Article
Design and Manufacture of a Test Device for Radiosynthesizer Vacuum Pumps
by Victor Amador Diaz, Scott E. Snyder and Amy L. Vavere
Instruments 2023, 7(2), 15; https://doi.org/10.3390/instruments7020015 - 6 Apr 2023
Viewed by 3192
Abstract
Vacuum pump wear is the most prevalent failure mode of the IBA Synthera® automated radiochemistry system. Rebuilding or replacing the pump causes equipment downtime and increases the radiation exposure of the service personnel. We built a dedicated test device to assess new [...] Read more.
Vacuum pump wear is the most prevalent failure mode of the IBA Synthera® automated radiochemistry system. Rebuilding or replacing the pump causes equipment downtime and increases the radiation exposure of the service personnel. We built a dedicated test device to assess new or rebuilt pumps prior to installation, thus reducing downtime and radiation exposure during repairs. The Testbed incorporates a microprocessor that actuates the pump, valves, and pressure sensor; communicates with the user through lights, buttons, and an alphanumeric screen; and outputs test results to a laptop. The Testbed increases productivity and safety in the radiochemistry laboratory. Full article
Show Figures

Figure 1

15 pages, 8779 KiB  
Article
Estimation of 226Ra and 228Ra Content Using Various Types of Sorbents and Their Distribution in the Surface Layer of the Black Sea
by Ol’ga N. Kozlovskaia, Iuliia G. Shibetskaia, Nikolay A. Bezhin and Ivan G. Tananaev
Materials 2023, 16(5), 1935; https://doi.org/10.3390/ma16051935 - 26 Feb 2023
Cited by 3 | Viewed by 1818
Abstract
Radium isotopes have traditionally been used as tracers of surface and underground fresh waters in land–ocean interactions. The concentration of these isotopes is most effective on sorbents containing mixed oxides of manganese. During the 116 RV Professor Vodyanitsky cruise (22 April–17 May 2021), [...] Read more.
Radium isotopes have traditionally been used as tracers of surface and underground fresh waters in land–ocean interactions. The concentration of these isotopes is most effective on sorbents containing mixed oxides of manganese. During the 116 RV Professor Vodyanitsky cruise (22 April–17 May 2021), a study about the possibility and efficiency of 226Ra and 228Ra recovery from seawater using various types of sorbents was conducted. The influence of seawater flow rate on the sorption of 226Ra and 228Ra isotopes was estimated. It was indicated that the Modix, DMM, PAN-MnO2, and CRM-Sr sorbents show the best sorption efficiency at a flow rate of 4–8 column volumes per minute. Additionally, the distribution of biogenic elements (dissolved inorganic phosphorus (DIP), silicic acid, and the sum of nitrates and nitrites), salinity, and 226Ra and 228Ra isotopes was studied in the surface layer of the Black Sea in April–May 2021. Correlation dependencies between the concentration of long-lived radium isotopes and salinity are defined for various areas of the Black Sea. Two processes control the dependence of radium isotope concentration on salinity: conservative mixing of riverine and marine end members and desorption of long-lived radium isotopes when river particulate matter meets saline seawater. Despite the high long-lived radium isotope concentration in freshwater in comparison with that in seawater, their content near the Caucasus shore is lower mainly because riverine waters meet with a great open seawater body with a low content of these radionuclides, and radium desorption processes take place in an offshore area. The 228Ra/226Ra ratio derived from our data displays freshwater inflow spreading over not only the coastal region, but also the deep-sea region. The lowered concentration of the main biogenic elements corresponds to high-temperature fields because of their intensive uptake by phytoplankton. Therefore, nutrients coupled with long-lived radium isotopes trace the hydrological and biogeochemical peculiarities of the studied region. Full article
Show Figures

Figure 1

15 pages, 4449 KiB  
Article
Assessment of Seasonal Variability in Phosphorus Biodynamics by Cosmogenic Isotopes 32P, 33P around Balaklava Coast
by Mariya A. Frolova, Nikolay A. Bezhin, Evgeniy V. Slizchenko, Ol’ga N. Kozlovskaia and Ivan G. Tananaev
Materials 2023, 16(5), 1791; https://doi.org/10.3390/ma16051791 - 22 Feb 2023
Cited by 3 | Viewed by 1617
Abstract
The sorption efficiency of phosphorus from seawater by aluminum oxide and sorbents based on Fe(OH)3 obtained by various methods (using prepared sodium ferrate or precipitation of Fe(OH)3 with ammonia) was assessed. It was shown that phosphorus was recovered most efficiently at [...] Read more.
The sorption efficiency of phosphorus from seawater by aluminum oxide and sorbents based on Fe(OH)3 obtained by various methods (using prepared sodium ferrate or precipitation of Fe(OH)3 with ammonia) was assessed. It was shown that phosphorus was recovered most efficiently at a seawater flow rate of one-to-four column volumes per minute with a sorbent based on hydrolyzed polyacrylonitrile fiber with a precipitation of Fe(OH)3 with ammonia. Based on the results obtained, a method for phosphorus isotopes recovery with this sorbent was suggested. Using this method, the seasonal variability of phosphorus biodynamics in the Balaklava coastal area was estimated. For this purpose, the short-lived isotopes of cosmogenic origin 32P and 33P were used. Volumetric activity profiles of 32P and 33P in particulate and dissolved forms were obtained. Based on 32P and 33P volumetric activity, indicators of phosphorus biodynamics were calculated: the time, rate, and degree of phosphorus circulation to inorganic and particulate organic forms. In spring and summer, elevated values of phosphorus biodynamic parameters were determined. This is explained by the peculiarity of the economic and resort activities of Balaklava, which negatively affect the state of the marine ecosystem. The results obtained can be used to assess the dynamics of changes in the content of forms of dissolved and suspended phosphorus, and the biodynamic parameters when performing a comprehensive environmental assessment of the state of coastal waters. Full article
Show Figures

Figure 1

13 pages, 3071 KiB  
Article
Estimation of 137Cs Distribution and Recovery Using Various Types of Sorbents in the Black Sea Surface Layer
by Nikolay A. Bezhin, Dmitriy A. Kremenchutskii, Evgeniy V. Slizchenko, Ol’ga N. Kozlovskaia, Iuliia G. Shibetskaia, Vitaliy V. Milyutin and Ivan G. Tananaev
Processes 2023, 11(2), 603; https://doi.org/10.3390/pr11020603 - 16 Feb 2023
Cited by 5 | Viewed by 1889
Abstract
Monitoring 137Cs in seawater is necessary for the timely detection of radioactive contamination. The possibility of sorption and the sorption efficiency of 137Cs from seawater were studied for the first time during several cruises of the R/V (research vessel) Professor Vodyanitsky [...] Read more.
Monitoring 137Cs in seawater is necessary for the timely detection of radioactive contamination. The possibility of sorption and the sorption efficiency of 137Cs from seawater were studied for the first time during several cruises of the R/V (research vessel) Professor Vodyanitsky using various types of sorbents based on transition metal ferrocyanides (Anfezh, Niket, Uniket, FSS, FD-M, FIC, Termoxid 35, NKF-C) and zirconium phosphate (Termoxid 3A). The influence of the seawater flow rate and volume of the sorbent used for the recovery of 137Cs was estimated. The ferrocyanide sorbents Niket, Uniket, Termoxid 35, and FIC showed the best sorption efficiency (60–100%) at a seawater flow rate of 2–4 column volumes per minute. The data obtained during three cruises on the R/V Professor Vodyanitsky were analyzed. A detailed (28 sampling points) spatial distribution of 137Cs in the Black Sea along the southern coast of Crimea was studied using the sorbents that showed the best characteristics. An increase in 137Cs activity in the study area was not found, and the average activity was 9.01 ± 0.87 Bq/m3. Full article
Show Figures

Figure 1

10 pages, 1727 KiB  
Article
Physical and Chemical Regularities of Phosphorus and Beryllium Recovery by the Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III)
by Nikolay A. Bezhin, Mariya A. Frolova, Ol’ga N. Kozlovskaia, Evgeniy V. Slizchenko, Iuliia G. Shibetskaia and Ivan G. Tananaev
Processes 2022, 10(10), 2010; https://doi.org/10.3390/pr10102010 - 5 Oct 2022
Cited by 8 | Viewed by 1757
Abstract
The paper investigates the physicochemical regularities (kinetics and isotherm) of phosphorus and beryllium recovery by sorbents based on polyacrylonitrile (PAN) fiber and Fe(OH)3 obtained by various methods: PAN or pre-hydrolyzed PAN with precipitation of FeCl3 with ammonia, using ready-made or electrochemically [...] Read more.
The paper investigates the physicochemical regularities (kinetics and isotherm) of phosphorus and beryllium recovery by sorbents based on polyacrylonitrile (PAN) fiber and Fe(OH)3 obtained by various methods: PAN or pre-hydrolyzed PAN with precipitation of FeCl3 with ammonia, using ready-made or electrochemically generated Na2FeO4, pre-hydrolyzed PAN treated with an alkaline solution of Na2FeO4, as well as their comparison with granular aluminum oxide. The Langmuir, Freudlich and Dubinin–Radushkevich models show high performance of materials for sorption of stable P and Be used as tracers for the release of 7Be, 32P, and 33P from seawater. The obtained kinetic data are processed using kinetic models of intraparticle diffusion and the pseudo-first-order, pseudo-second-order, and Elovich models. Optimal conditions for obtaining sorbents are established, namely, the effect of NaOH concentration at the stages of preparation on the properties of sorbents based on the PAN fiber and Fe(OH)3 obtained by various methods. Full article
Show Figures

Figure 1

9 pages, 715 KiB  
Article
Tritium Labeling and Phase Distribution of 18-Crown-6 and Its Derivatives for Further Reprocessing of Radium Waste
by Andrey G. Kazakov, Taisya Y. Ekatova, Julia S. Babenya, Sergey E. Vinokurov and Gennady A. Badun
Energies 2022, 15(19), 6867; https://doi.org/10.3390/en15196867 - 20 Sep 2022
Cited by 2 | Viewed by 1974
Abstract
To date, the world has accumulated a large amount of long-lived radioactive materials that need to be disposed of or reprocessed. Such materials include nuclear legacy objects containing 226Ra, which is an important material for obtaining a wide range of isotopes for [...] Read more.
To date, the world has accumulated a large amount of long-lived radioactive materials that need to be disposed of or reprocessed. Such materials include nuclear legacy objects containing 226Ra, which is an important material for obtaining a wide range of isotopes for nuclear medicine via irradiation in reactors, cyclotrons, and electron accelerators. For the selective recovery of 226Ra from waste materials, crown-ether (CE) 18-crown-6 (18C6) or its derivatives can be used, which, however, have not been widely studied for these purposes. In our work, the key property of 18C6 and its derivatives, the phase distribution, was studied using tritium labeling. The possibility of introducing a tritium label into CEs molecules using thermal activation of tritium has been demonstrated; a high specific activity of the obtained compounds was achieved (from 18 to 108 TBq/mol). Methods for chromatographic purification of the studied CEs were developed. The distribution of 18C6 and its derivatives between various organic solvents and water was studied in detail for the first time. Subsequently, the obtained data will allow us to choose conditions for the selective recovery of 226Ra from aged sources. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

10 pages, 1293 KiB  
Article
Photonuclear Alchemy: Obtaining Medical Isotopes of Gold from Mercury Irradiated on Electron Accelerators
by Andrey G. Kazakov, Julia S. Babenya, Taisya Y. Ekatova, Sergey S. Belyshev, Vadim V. Khankin, Omar Albaghdadi, Alexander A. Kuznetsov, Illarion I. Dovhyi, Nikolay A. Bezhin and Ivan G. Tananaev
Molecules 2022, 27(17), 5532; https://doi.org/10.3390/molecules27175532 - 28 Aug 2022
Cited by 3 | Viewed by 2579
Abstract
In our work, the photonuclear production of 198,199Au isotopes for nuclear medicine purposes was studied, and a method for their recovery from irradiated mercury was developed. The yields of the corresponding nuclear reactions were determined, and a comparison of various methods of [...] Read more.
In our work, the photonuclear production of 198,199Au isotopes for nuclear medicine purposes was studied, and a method for their recovery from irradiated mercury was developed. The yields of the corresponding nuclear reactions were determined, and a comparison of various methods of obtaining gold radioisotopes was provided. New sorbents based on benzo-15-crown-5, which selectively binds gold, were studied, and the optimal conditions for Au recovery with a high degree of purification from mercury were found. It was established that, for the fast and quantitative recovery of Au isotopes, it was necessary to add at least 0.1 mg of the carrier. As a result, the developed method can be regularly used to obtain 198,199Au for the research of radiopharmaceuticals based on them. Full article
(This article belongs to the Special Issue Novel Targeted Radiopharmaceuticals for Diagnosis and Therapy)
Show Figures

Figure 1

18 pages, 3827 KiB  
Article
The Study of Amidoxime-Functionalized Cellulose Separate Th(IV) from Aqueous Solution
by Yiling Zhi, Guojian Duan, Zhiwei Lei, Hui Chen, Haobo Zhang, Huining Tian and Tonghuan Liu
Gels 2022, 8(6), 378; https://doi.org/10.3390/gels8060378 - 15 Jun 2022
Cited by 15 | Viewed by 2769
Abstract
Selective extraction of low-concentration thorium (Th(IV)) from wastewater is a very important research topic. In this paper, amidoxime cellulose was synthesized, and its composition and structure were characterized by FT-IR, SEM, XPS, and elemental analysis. The adsorption experiment results showed that the adsorption [...] Read more.
Selective extraction of low-concentration thorium (Th(IV)) from wastewater is a very important research topic. In this paper, amidoxime cellulose was synthesized, and its composition and structure were characterized by FT-IR, SEM, XPS, and elemental analysis. The adsorption experiment results showed that the adsorption reaction was a spontaneous exothermic process. When the solid–liquid ratio was 0.12 g/L and the pH value was 3.5, the adsorption percentage of the Th(IV) in water onto amidoxime-functionalized cellulose (AO-CELL) could reach over 80%. The maximum adsorption capacity can reach to 450 mg/g. At the same time, the adsorption selectivity, desorption process and reusability of the material were also studied. The results showed that the AO-CELL had a good selectivity for Th(IV) in the system with Sr2+, Cu2+, Mg2+, Zn2+, Pb2+, Ni2+, and Co2+ as co-ions. In the nitric acid concentration of 0.06 mol/L system, the AO-CELL desorption rate of Th(IV) can reach 95%, and the adsorption rate of Th(IV) in aqueous solution of AO-CELL is still above 60% when the AO-CELL is reused four times. The above results show that the amidoxime cellulose adsorption material synthesized by our research group has good selective adsorption performance for Th(IV) of a low concentration in an aqueous solution and has a good practical application value. Full article
(This article belongs to the Special Issue Recent Research Trends in New Generation Polymer Gels)
Show Figures

Figure 1

8 pages, 900 KiB  
Article
Recovery of 177Lu from Irradiated HfO2 Targets for Nuclear Medicine Purposes
by Andrey G. Kazakov, Taisya Y. Ekatova, Julia S. Babenya, Sergey S. Belyshev, Vadim V. Khankin, Alexander A. Kuznetsov, Sergey E. Vinokurov and Boris F. Myasoedov
Molecules 2022, 27(10), 3179; https://doi.org/10.3390/molecules27103179 - 16 May 2022
Cited by 4 | Viewed by 3103
Abstract
A new method of production of one of the most widely used isotopes in nuclear medicine, 177Lu, with high chemical purity was developed; this method includes irradiation of the HfO2 target with bremsstrahlung photons. The irradiated target was dissolved in HF [...] Read more.
A new method of production of one of the most widely used isotopes in nuclear medicine, 177Lu, with high chemical purity was developed; this method includes irradiation of the HfO2 target with bremsstrahlung photons. The irradiated target was dissolved in HF and then diluted and placed onto a column filled with LN resin. Quantitative sorption of 177Lu could be observed during this process. The column later was rinsed with the mixture of 0.1 M HF and 1 M HNO3 and then 2 M HNO3 to remove impurities. Quantitative desorption of 177Lu was achieved by using 6 M HNO3. The developed method of 177Lu production ensures high purification of this isotope from macroquantities of hafnium and zirconium and radioactive impurities of carrier-free yttrium. The content of 177mLu in 177Lu in photonuclear production was determined. Due to high chemical and radionuclide purity, 177Lu obtained by the developed method can be used in nuclear medicine. Full article
Show Figures

Graphical abstract

11 pages, 2144 KiB  
Article
Yields of Photo-Proton Reactions on Nuclei of Nickel and Separation of Cobalt Isotopes from Irradiated Targets
by Andrey G. Kazakov, Julia S. Babenya, Taisya Y. Ekatova, Sergey S. Belyshev, Vadim V. Khankin, Alexander A. Kuznetsov, Sergey E. Vinokurov and Boris F. Myasoedov
Molecules 2022, 27(5), 1524; https://doi.org/10.3390/molecules27051524 - 24 Feb 2022
Cited by 2 | Viewed by 2438
Abstract
Nowadays, cobalt isotopes 55Co, 57Co, and 58mCo are considered to be promising radionuclides in nuclear medicine, with 55Co receiving the most attention as an isotope for diagnostics by positron emission tomography. One of the current research directions is dedicated [...] Read more.
Nowadays, cobalt isotopes 55Co, 57Co, and 58mCo are considered to be promising radionuclides in nuclear medicine, with 55Co receiving the most attention as an isotope for diagnostics by positron emission tomography. One of the current research directions is dedicated to its production using electron accelerators (via photonuclear method). In our work, the yields of nuclear reactions occurring during the irradiation of natNi and 60Ni by bremsstrahlung photons with energy up to 55 MeV were determined. A method of fast and simple cobalt isotopes separation from irradiated targets using extraction chromatography was developed. Full article
(This article belongs to the Special Issue Metal-Based Radiopharmaceuticals in Inorganic Chemistry)
Show Figures

Figure 1

24 pages, 467 KiB  
Review
Radiolabeled PSMA Inhibitors
by Oliver C. Neels, Klaus Kopka, Christos Liolios and Ali Afshar-Oromieh
Cancers 2021, 13(24), 6255; https://doi.org/10.3390/cancers13246255 - 13 Dec 2021
Cited by 36 | Viewed by 6972
Abstract
PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and [...] Read more.
PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review. Full article
(This article belongs to the Special Issue Radiopharmaceuticals for Oncological Diseases)
Back to TopTop