Next Article in Journal
Immune Milieu and Genomic Alterations Set the Triple-Negative Breast Cancer Immunomodulatory Subtype Tumor Behavior
Next Article in Special Issue
Auger Emitter Conjugated PARP Inhibitor for Therapy in Triple Negative Breast Cancers: A Comparative In-Vitro Study
Previous Article in Journal
Urine-Based Metabolomics and Machine Learning Reveals Metabolites Associated with Renal Cell Carcinoma Stage
Previous Article in Special Issue
New Radionuclides and Technological Advances in SPECT and PET Scanners
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Radiolabeled PSMA Inhibitors

1
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany
2
Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
3
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
4
INRASTES, Radiochemistry Laboratory, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
5
Department of Nuclear Medicine, Bern University Hospital (Inselspital), Freiburgstrasse 18, 3010 Bern, Switzerland
*
Author to whom correspondence should be addressed.
Cancers 2021, 13(24), 6255; https://doi.org/10.3390/cancers13246255
Submission received: 4 November 2021 / Revised: 10 December 2021 / Accepted: 11 December 2021 / Published: 13 December 2021
(This article belongs to the Special Issue Radiopharmaceuticals for Oncological Diseases)

Abstract

:

Simple Summary

Prostate cancer remains one of the leading causes of cancer death in men worldwide. Despite the recent success in the development and clinical application of radiopharmaceuticals targeting the prostate-specific membrane antigen (PSMA) for diagnosis and endoradiotherapy of prostate cancer, more research is ongoing to further investigate and improve patient care and quality of life. Herein, an overview of novel developments and applications for small molecule and low-molecular weight radiolabeled PSMA inhibitors with an outlook to clinical translation is given.

Abstract

PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review.

1. Introduction

Radiopharmaceuticals targeting the prostate-specific membrane antigen (PSMA) have seen great success in Nuclear Medicine for both diagnosis and endoradiotherapy of prostate cancer (PCa) [1,2] thus paving the way for (radio)theranostics [3,4,5] with guidelines being published by international experts and societies [6,7,8,9,10,11,12,13,14,15,16,17,18,19].
[68Ga]Ga-PSMA-11 (gozetotide) [20,21,22,23] and [18F]DCFPyL (piflufolastat) [24,25,26,27] as diagnostic imaging agents have been approved in the US by the Food and Drug Administration (FDA) since 1st December 2020 [28,29,30,31,32] and 27th May 2021 [33,34], respectively. Meanwhile, [18F]PSMA-1007 [35,36,37,38] is awaiting regulatory approval in European countries pending a phase 3 clinical study being completed (NCT04102553). [99mTc]Tc-MIP-1404 (trofolostat) is a highly promising SPECT agent [39,40,41,42]. Monographs have been published by the European Directorate for the Quality of Medicines (EDQM) for [68Ga]Ga-PSMA-11 (Ph. Eur. Monograph 3044) and [18F]PSMA-1007 (Ph. Eur. Monograph 3116) which came into force 1st April 2021 and 1st July 2021, respectively [43]. Alberts et al. recently reported an overview that evaluated the most commonly used PET radiopharmaceuticals for the diagnosis of prostate cancer [44].
The most prominent ligands used for PSMA-targeted endoradiotherapy with beta and alpha emitters are PSMA I&T [45,46,47,48] and PSMA-617 (vipivotide tetraxetan) [49,50,51,52]. The latter radiopharmaceutical is expected to receive marketing authorization in several countries after successfully accomplishing a phase 3 clinical study using [177Lu]Lu-PSMA-617 (NCT03511664) [53,54,55]. In response to this predicted breakthrough, infrastructural challenges should be addressed in the capacity planning of Nuclear Medicine therapy departments in the future [56]. Moreover, the experience of patients enrolled in a clinical trial involving radioactive treatment [57] and the necessity of a proper patient selection by PET imaging prior endoradiotherapy demands further attention [58,59,60].
In the future, a much broader acceptance and application of PSMA theranostics can be anticipated when diagnosis and treatment are being reimbursed by health insurances [61]. Amongst the aforementioned radiopharmaceuticals, several other radioligands targeting PSMA are either under clinical investigation or have been translated into a clinical setting (Table 1) [19,62]. The combination of radionuclide therapy with other treatment strategies offers new opportunities for patient care, these potential alternatives have been reviewed by Sandhu et al. and Zhang et al. [63,64]. This review aims to provide an overview of novel developments and applications in the area of small-molecule and low-molecular weight-based radiolabeled PSMA inhibitors [65], keeping their prospective clinical translation in mind.

2. Quality and Technical Improvements of PSMA Inhibitors

2.1. Quality Issues and Technical Improvements

Although radiolabeled PSMA inhibitors are used extensively for clinical applications, including radiotracers for which quality standards have been established by legally applicable specific monographs [43], special care needs to be taken during radiosynthesis and quality control of the radiopharmaceuticals.
Iudicello et al. showed that PSMA-11, which is used as a reference standard and precursor for the synthesis of [68Ga]Ga-PSMA-11, when dissolved in acidic aqueous solution forms a natFe-PSMA-11 complex (a side product with two diastereomeric forms similar to the ones previously reported for [68Ga]Ga-PSMA-11) resulting thus, in lower radiochemical yield, chemical purity and radiochemical purity [91,92]. As a consequence, for storage of the PSMA-11 solution, EDTA was added to transchelate the Fe iron from the HBED-CC chelator.
Five-membered ring systems can be formed as radioactive side-products by a thermally mediated and pH-dependent condensation reaction of the Glu-urea-Lys binding motif during synthesis of [177Lu]Lu-PSMA-617 [93]. These side-products did not show any binding affinity to PSMA and were rapidly excreted via the kidneys from the body of five patients. The synthesis of [177Lu]Lu-PSMA-617 could be optimized by adjustment of pH and temperature and subsequent reduction of side-products, however, the risk of formation of unwanted radioactive side-products for PSMA inhibitors bearing the Glu-urea-Lys binding motif still remains [93].
Reaction temperature during radiolabeling plays an important role as shown above. Attempts have been made to replace DOTA, which requires time and heating for complexing radiometals, with a different chelator that allows low temperature radiolabeling in particular for the alpha-particle emitting isotope 225Ac. Thiele et al. showed that the eighteen-membered macrocyclic chelator macropa is suitable to complex 225Ac at room temperature (RT) in 5 min with high stability in human serum over 8 days [94]. Macropa was then conjugated to the PSMA/albumin binding ligand RPS-070 and radiolabeled with 225Ac within 20 min at RT. [225Ac]Ac-macropa-RPS-070 was tested in LNCaP tumor bearing mice where it showed high in vivo stability and high kidney uptake after 4 h (52 ± 16% ID/g), which then cleared rapidly, while tumor uptake (13 ± 3% ID/g) washout was slower. Reissig et al. expanded the “macropa”-principle by adding one or two alkyne moieties for conjugation of biomolecules using the copper-catalyzed azide-alkyne-cycloaddition [95]. A PSMA binding block was attached via click chemistry to obtain either the monomer mcp-M-PSMA or the dimer mcp-D-PSMA. Radiolabeling was done within 1 h at RT, both [225Ac]Ac-mcp-M-PSMA and [225Ac]Ac-mcp-D-PSMA were evaluated in vitro and in vivo using LNCaP cells and the corresponding xenograft mouse model. It is noticeable that the tumor uptake for the monomer was higher within the first hour and then decreased while the tumor uptake for the dimer constantly increased within 24 h making it more suitable for a therapy approach [95].
Radiopharmaceuticals are also prepared via so-called cold kits, for a long time established in Nuclear Medicine by reconstitution with the eluate of 99mTc generators [96]. More recently, this approach has seen a wider application also for PET radiopharmaceuticals with three commercially available kits using either PSMA-11 (Illuccix and isoPROtrace-11) or THP-PSMA (GalliProst) for radiolabeling with the eluate of a 68Ge/68Ga generator [97]. Illuccix has been approved by the Australian Therapeutic Goods Administration (TGA) on 2nd November 2021 [98].

2.2. Salivary Gland Uptake

Uptake in the salivary glands is the dose-limiting factor during endoradiotherapy with small-molecule PSMA inhibitors, resulting in (partially reversible) xerostomia when applied with 177Lu, and severe to persistent xerostomia when applied with 225Ac [50,51]. The quality of life for patients can, therefore, be significantly impaired despite preventive strategies, e.g., injection of botulinum toxin, external cooling, or gustatory stimulation have been described [99,100,101,102,103]. The uptake mechanism of PSMA inhibitors in salivary glands has not been thoroughly investigated to date, a more comprehensive review concerning known mechanisms is described by Heynickx et al. [103]. Tönnesmann et al. showed in quantitative autoradiography experiments that in the salivary glands of pigs for small-molecule and low-molecular weight PSMA inhibitors the uptake is highly non-specific and at the same time specific while the exact ratio is not yet understood [104]. Attempts to minimize the uptake of the PSMA-targeted radiopharmaceutical in the salivary glands have been made following the modifications at the inhibitor component. This resulted in low salivary gland uptake and very low tumor uptake [105]. Two independent preclinical studies demonstrated that additional substance amount-dependent administration of nonradioactive PSMA ligand (PSMA-11 or DCFPyL, respectively) and reduction of the effective molar activity significantly reduces the radioligand uptake ([177Lu]Lu-PSMA-617 or [18F]DCFPyL, respectively) in the salivary glands (Table 2) [106,107]. However, these promising results need to be confirmed in further preclinical and clinical studies.

3. PSMA Inhibitors for Guided Surgery

3.1. PSMA Inhibitors for Radioguided Surgery

In addition to the properties for noninvasive single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging, the radiation exposed from the radionuclide bound to the PSMA inhibitor can also be used for the detection of tumor entities during intraoperative surgery using a gamma probe in a practice named radioguided surgery (RGS) [108].
PSMA I&T and PSMA-617 radiolabeled with 111In were initially used for SPECT imaging and RGS [75,79,80,109,110], with both showing detection rates lower than [68Ga]Ga-PSMA-11 [111]. However, due to the limited availability of [111In]InCl3, PSMA I&T derived Mas3-y-nal-k(Sub-KuE) (PSMA I&S) was developed and radiolabeled with 99mTc [81]. [99mTc]Tc-PSMA I&S RGS using a gamma probe was applied in a clinical setting after identifying tumor lesions with [68Ga]Ga-PSMA-11 PET [112,113]. In a study including 210 PCa patients, high detection rates were found for [99mTc]Tc-PSMA I&S for PSA levels > 4 ng/mL [114]. The radiation dosimetry of [99mTc]Tc-PSMA I&S, which was performed in a single-center study, resulted in comparable effective doses with other 99mTc radiopharmaceuticals and lower effective doses than either 68Ga- or 18F-radiolabeled PSMA inhibitors ([99mTc]Tc-PSMA I&S: 0.0052 mSv/MBq, [68Ga]Ga-PSMA-11: 0.0236 mSv/MBq, [18F]PSMA-1007: 0.022 mSv/MBq) [115,116,117].
As an undesirable consequence of RGS, personnel are typically exposed to constant radiation from the radiopharmaceutical. The occupational radiation exposure for workers involved in RGS using [99mTc]Tc-PSMA I&S was determined with a maximum dose of 0.32 mSv/year for 100 procedures [118]. When laparoscopic gamma probes are used for sentinel lymph node dissection [119] they suffer from practical limitations, due to rotational impairment of the probe [120]. This limitation has been circumvented by the development of a drop-in probe, which can be controlled by grasps of the DaVinci robotic-assisted surgery system, thereby providing additional rotational freedom and reducing the radiation dose [121]. A first-in-human application has been reported for [99mTc]Tc-PSMA I&S after preoperative [68Ga]Ga-PSMA-11 PET/CT [122]. In an experimental study with seven patients, the drop-in concept was tested with [68Ga]Ga-PSMA-11 using a beta probe instead of a gamma probe. After an additional dose of approximately 70 MBq [68Ga]Ga-PSMA-11 per patient prior surgery, the obtained surgical specimens were evaluated ex vivo using a DaVinci robotic system equipped with the drop-in beta probe [123]. Radiation dose to workers limits the use to 62 procedures/year of this technique, but improvements towards a lower occupational radiation dose are feasible. Alternative imaging technologies focusing on beta-radiation emission, e.g., Cerenkov luminescence imaging using [68Ga]Ga-PSMA-11 are currently under early clinical investigation [124,125,126,127,128,129,130].

3.2. PSMA Inhibitors for Fluorescence-Guided Surgery and/or Targeted Photodynamic Therapy

Aside from radionuclide detection for radioguided surgery, an attractive alternative for intraoperative guided surgery is radiolabeled molecules functionalized with fluorescent dyes for optical/fluorescence imaging [131,132,133,134]. A variety of commercially available dyes with different absorptions and emission spectra used for dual-labeled imaging agents has been reported [135]. Dual-labeled agents allow preoperative nuclear imaging (prestaging/staging) and subsequent treatment planning while fluorescence imaging makes surgical tumor resection possible and more accurate due to the high spatial resolution.
Baranski et al. studied the PSMA-11 derived hybrid compound Glu-urea-Lys-HBED-CC-IRDye800CW in vitro and in vivo in LNCaP-tumor bearing mice and healthy pigs [136]. [68Ga]Ga-Glu-urea-Lys-HBED-CC-IRDye800CW showed an increased tumor uptake in mice compared to [68Ga]Ga-PSMA-11 (13.66 ± 3.73% ID/g vs. 4.89 ± 1.34% ID/g) [136,137]. Non-radiolabeled Glu-urea-Lys-HBED-CC-IRDye800CW has been investigated in healthy pigs using a DaVinci robotic system. A PSMA-specific fluorescence signal has been shown in vivo and ex vivo for both mice and pigs. More recently, the linker design of Glu-urea-Lys-HBED-CC-IRDye800CW was modified by insertion of histidine- and glutamic acid spacers ((HE)3) near the PSMA binding motif to further reduce background uptake in non-target tissue and to accelerate excretion [138,139]. Glu-urea-Lys-(HE)3-HBED-CC-IRDye800CW (PSMA-914) was used in a proof-of-concept study, with a first, pre-operative PET/CT imaging, 1-day prior surgery in a patient with high-risk prostate carcinoma and a second PET/CT imaging, after the surgical removal of the primary tumor [140]. 68Ga-radiolabeled PSMA-914 and PSMA-914 alone were administered 1-h prior to PET imaging and DaVinci robot-assisted prostatectomy respectively.
Schottelius et al. conjugated the disulfonated analog of the far-red cyanine dye Cy5 to PSMA I&T to obtain the hybrid imaging agent PSMA I&F (DOTAGA-D-Lys(Nε-Sulfo-Cy5)-D-(3-iodo)Tyr-D-(3-iodo)Tyr-D-Lys(Nε-Sub-KuE) [141]. Tumor uptake in LNCaP xenograft-bearing mice was comparable between [68Ga]Ga-PSMA I&F and [68Ga]Ga-PSMA I&T (4.5 ± 1.8% ID/g vs. 4.9 ± 1.6% ID/g) while kidney uptake was almost doubled for [68Ga]Ga-PSMA I&F (105.8 ± 22.7% ID/g vs. 53.3 ± 9.0% ID/g).
One limitation/challenge regarding the utilization of fluorescent dyes is that the detection efficacy of tumor lesions is limited to superficial tissue [142,143]. Certain dyes can also be used for photodynamic therapy [144]. In this approach, a dye can also simultaneously act as a photosensitizer which is selectively activated with long wavelength light, subsequently causing reactive oxygen species (ROS) formation leading to the induction of immediate cell death [108]. Derks et al. synthesized a variety of Glu-urea-Lys-based PSMA-targeting ligands conjugated to IRDye700DX [145]. The most promising candidate PSMA-N064 consists of a DOTAGA chelator, additional glutamic acid residues in the linker structure, a Glu-urea-Lys binding motif, and a fluorophore. After radiolabeling of PSMA-N064 with 111In, an increased tumor uptake of up to 2 h post injection (13.1 ± 2.3% ID/g) was determined in mice bearing LS1754T colon carcinoma cells transfected with human PSMA (LS1754T-PSMA). The tumors could be visualized using SPECT/CT and near infrared fluorescence scanners. Interestingly, the incorporation of the fluorophore leads to a higher internalization in tumor cells than the corresponding ligand without the dye (15.1 ± 0.8% ID/g vs. 6.7 ± 1.1% ID/g). Accordingly, the fluorophore parts may have a positive impact on tumor uptake [136,145]. Samples obtained from biopsies of human normal tissue could be distinguished from tumor tissue after incubation with PSMA-N064 using fluorescence imaging. In a proof-of-concept study for targeted photodynamic therapy, the incubation of LS1754T-PSMA cells with PSMA-N064 and exposure to NIR light resulted in reduced cell viability (34 ± 3.2%).

4. Multitargeted PSMA Inhibitors

4.1. PSMA + Albumin

PSMA inhibitors used for endoradiotherapy, such as PSMA-617 and PSMA I&T are rapidly excreted via the kidneys, increasing the radiation exposure to these organs [146]. Introducing albumin-binding groups into the chemical structure of small molecules can increase their blood circulation time, which can potentially lead to enhanced tumor uptake, while the reduction of injected activity results in lower non-target tissue doses [147,148].
The 4-(p-iodophenyl)acetic acid moiety was employed as an albumin-binding group by Kelly et al. in radiotracers bearing a DOTA chelator and a urea-based PSMA binding-motif radiolabeled with 131I (RPS-025) and 177Lu (RPS-063 & RPS-067). This modification lead to a 4-fold higher tumor uptake compared to [177Lu]Lu-PSMA-617, however, kidney-uptake was still significantly high [149,150]. It was observed that the use of polyethylene glycol (PEG) linkers of varying lengths had a dramatic impact on PSMA binding affinity as well as blood clearance [150]. Replacement of the albumin-binding group 4-(p-iodophenyl)acetic acid moiety with 4-(p-iodophenyl)butanoic acid (RPS-072) further reduced radiation exposure to the kidney and blood clearance [151].
Benešová et al. used the 4-(p-iodophenyl)butanoic acid moiety as an albumin-binding group in a similar way and extended the linker entity with aspartate residues to counterbalance the lipophilicity of the albumin-binding group [152]. Three radioligands consisting of a DOTA chelator, the aforementioned linker, the albumin-binding group and a urea-based PSMA binding motif (PSMA-ALB-02, PSMA-ALB-05 and PSMA-ALB-97) were radiolabeled with 177Lu and evaluated against [177Lu]Lu-PSMA-617 in PC-3 PIP tumor bearing mice with all three ligands showing a high tumor-to-blood ratio but still high kidney uptake. These results were further optimized by the replacement of the 4-(p-iodophenyl)butanoic acid moiety with (p-tolyl)butanoic acid [153], as the latter demonstrated a reduced albumin-binding affinity [147]. The most promising candidate PSMA-ALB-56 was compared against PSMA-617 in a therapy study of PC-3 PIP tumor bearing mice. [177Lu]Lu-PSMA-ALB-56 showed a better median survival time of the treated mice than [177Lu]Lu-PSMA-617 when the same activity was applied (5 MBq/mouse), with 4/6 of the [177Lu]Lu-PSMA-ALB-56-treated mice surviving the study. The use of 2-PMPA improved the tumor-to-kidney ratio by reducing kidney uptake of [177Lu]Lu-PSMA-ALB-56 [154]. In a recently published clinical study, ten patients with metastatic castration resistant prostate cancer (mCRPC) received [177Lu]Lu-PSMA-ALB-56 endoradiotherapy with a higher absorbed dose in tumor lesions and similar salivary gland-uptake compared to PSMA-617 and PSMA I&T [155]. Nevertheless, kidney and red marrow uptake in these patients remains high, this demands further preclinical optimization of albumin-binding PSMA radioligands (e.g., upon utilization of ibuprofen as an albumin-binding entity) [156,157,158].

4.2. PSMA + GRPr

Apart from PSMA, gastrin-releasing peptide receptors (GRPr) are frequently highly expressed in PCa tumors. The bombesin peptide (BBN = Pyr1-Gln2-Arg3-Leu4-Gly5-Asn6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Leu13-Met14-NH2) is considered a potent agonist for GRPr, while over the years several BBN analogs (either agonists or antagonists of GRPr) have been radiolabeled and evaluated for potential application in Nuclear Medicine [159,160]. The expression of both receptors in tumors is heterogeneous [161], a fact that could potentially result in reduced image quality or false-negative results. A recent preclinical study, which evaluated retrospectively frozen prostatectomy samples (n = 20) with tissular microimaging using [111In]In-PSMA-617 and the GRPr antagonist [111In]In-RM2 ([111In]In-DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2), showed that for [111In]In-PSMA-617 the binding was high and independent of the metastatic risk (p = 0.665), Gleason score (p = 0.555), or PSA value (p = 0.404), while [111In]In-RM2 exhibited a significantly higher binding in the low metastatic risk group (p = 0.046), in the low PSA value group (p = 0.001), and in samples with Gleason 6 score (p = 0.006) [162]. A limited number of patients have been screened with a PSMA-targeting imaging agent ([68Ga]Ga-PSMA-11 or [18F]DCFPyL) and the GRPr antagonist [68Ga]Ga-RM2 [163,164,165,166,167] resulting rather in a complementing than in a competing approach of PSMA vs. GRPr imaging [165,168].
However, in order to overcome this limitation, and increase specificity and sensitivity of the imaging method, the heterodimers approach has been described for a combination of various targets [169,170]. Specifically, heterodimers (Hd) targeting PSMA/GRPr have been recently reviewed by Liolios et al. [171]. The first reported heterodimer targeting both PSMA and GRPr consisted of the acyclic chelator HBED-CC, which was linked to either side via its two carboxylic groups not participating at the complexation of the radiometal with the Lys-CO-Glu-OH PSMA binding motif and the GRPr agonist H2N-PEG2-[D-Tyr6,beta-Ala11,Thi13,Nle14)BN(6–14) [172]. The BBN analog, in this case, was structurally relevant to [68Ga]GaBZH3 (DOTA-PEG2-[D-tyr6, beta-Ala11, Thi13, Nle14] BN(6–14)), which contained a modified BBN sequence, resistant to peptidases, and which has been clinically tested [173,174]. The heterodimer Glu-urea-Lys(Ahx)-HBED-CC-BZH3 (Hd-1) showed affinity values comparable to the monomers (PSMA IC50 = 25 ± 5.4 nM, GRPr IC50 = 9.0 ± 1.8 nM) during in vitro testing in PC-3 (GRPr-positive, androgen independent) and LNCaP (PSMA-positive, androgen depended) cells. Specific cell-binding (either surface bound or internalized) for the 68Ga labeled heterodimer was similar to the control 68Ga-monomers, while tumor uptake in LNCaP and AR42J (GRPr positive) xenografts were 5.44 ± 1.54% ID/g and 3.34 ± 1.05% ID/g, respectively at 1 h p.i. Tumors were clearly visible during micro-PET imaging (1 h p.i.), however, a high kidney uptake was noted (110.46 ± 8.80% ID/g, 1 h, p.i.), which was minimized during PSMA block (16.04 ± 3.94% ID/g), but remained unaffected during GRPr block (109.52 ± 34.52% ID/g) clearly indicating the role of PSMA receptors regarding kidney accumulation. This heterodimer was improved to reduce kidney uptake by the addition of so-called (HE)n (n = 1–3) amino acid spacers between the HBED-CC chelator and the PSMA pharmacophore [138]. The new heterodimers (HEn, where n = 0, Hd-2, n = 1, Hd-3, n = 2, Hd-4, n = 3, Hd-5), when tested in vitro they showed high affinity in all cell lines tested: PC-3 (IC50 = 4.40 to 7.72 nM), AR42J (IC50 = 2.58 to 5.06 nM) and LNCaP (IC50 = 17.4 to 42.4 nM), which were comparable to the respective monomers for each case (PC-3, 3.65 nM, AR42J, 1.29 nM, LNCaP 7.5 nM). During the in vivo experiments in mice with PC-3 ad LNCaP xenografts the HE2 spacer in addition to the reduction of kidney uptake, also managed to increase tumor uptake for both xenografts (Table 3).
Bandari et al. synthesized and radiolabeled with the PET radionuclide 64Cu, the heterodimer: DUPA-6-Ahx-(64Cu-NODAGA)-5-Ava-BBN(7–14)NH2 [175]. The heterodimer (Hd-6) was evaluated in vitro in PC-3 and LNCaP cells, where it showed high affinity (PC-3: IC50 = 11.1 ± 0.46 nM; LNCaP: IC50 = 1.16 ± 1.35 nM), while during in vivo MicroPET scintigraphy the xenografted PC-3 and LNCaP tumors were clearly visible at 18 h p.i. Bandari et al. also synthesized the heterodimer [DUPA-6-Ahx-Lys(DOTA)-6-Ahx-RM2] using the antagonist BN peptide (BBN ANT) sequence of RM2 (BBN ANT = D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) (Hd-7), which was labeled with 68Ga, 111In, or 177Lu for theranostic applications [176]. In a later study and based on this structure, Bandari et al. synthesized and evaluated several heterodimeric ligands testing different spacer groups in addition to 6-Ahx connecting the BBN peptide with the chelator DO3A (DUPA-6-Ahx-[DO3A]-X-BBN ANT, where DO3A = 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid and X = 5-aminovaleric acid, 5-Ava; 6- aminohexanoic acid, 6-Ahx; 8-aminooctanoic acid, 8-Aoc; and para-aminobenzoic acid, AMBA). In vitro testing revealed low IC50 values for PC-3 (4–7 nM), and LNCaP cells (10–16 nM), both before and after metalation with natIn and natLu [177]. Among the different candidates, the heterodimer DUPA-6-Ahx-[DO3A]-8-Aoc -BBN ANT (Hd-8) was selected as the optimal candidate for further in vivo testing with PC-3 and LNCaP xenografts. The selection criterion was its higher accumulation in the pancreas (5.45 ± 0.47% ID/g, 1 h p.i.) during biodistribution studies in normal mice, which clearly indicated GRPr targeting since the normal pancreas is known to overexpress GRPr receptors. The selected heterodimer after radiolabeling with 111In and 177Lu presented high stability, both in PBS and in human serum after 4 h of incubation (at RT), while minor radiolytic degradation was observed at the 24 h. In vivo biodistribution experiments in mice carrying PC-3 or PC-3 PIP xenografts showed rapid elimination (85% of the injected dose, 4 h p.i.) of each tracer (111In or 177Lu) from the bloodstream with excretion profiles being primarily via the renal-urinary pathway. Kidney uptake was also high ranging from 8.90 ± 1.40% ID/g to 32.2 ± 28.8% ID/g (until 4 h p.i.), which was also expected considering PSMA expression in this organ. Tracer uptake in xenografted tumors ranged from 4.74 ± 0.90 to 7.51 ± 2.61% ID/g, with the highest values observed at 1 h p.i. and gradually decaying thereafter. Higher tumor values were observed for the 177Lu labeled compound in both xenografts, which according to the authors was due to the presence of more nonradioactive [DUPA-6-Ahx-([natLu]-Lu-DO3A)-8-Aoc-BBN ANT] in comparison to the 111In labeled analog [177]. Possibly, the nonradioactive ligand blocked the clearance route of the radioactive tracer, resulting in higher kidney radioactivity and more importantly in higher circulating amounts of [DUPA-6-Ahx-([177Lu]-Lu-DO3A)-8-Aoc-BBN ANT], which eventually was accumulated in the tumors. This hypothesis in combination with the increased radioactivity amounts observed in normal organs during the blocking experiments further noted the importance of high specific activity for such radiopharmaceutical applications and further enhancement of heterodimeric ligands, i.e., with albumin binders.
Mendoza-Figueroa et al. designed a heterodimeric 68Ga-labeled radiotracer ([68Ga]Ga-iPSMA-BN) (Hd-9) consisting of an iPSMA (Nal-Lys-CO-Glu-OH) and a Lys3-Bombesin part linked to a DOTA chelator. When [68Ga]Ga-iPSMA-BN was evaluated against the monomers [68Ga]Ga-iPSMA and [68Ga]Ga-BN in vitro and in vivo in LNCaP cells and PC-3 cells, it showed superiority against each monomer [68Ga]Ga-iPSMA and [68Ga]Ga-BN, in both cell lines and animal models (Table 3) [178]. The same group has published a study where they evaluated this heterodimer labeled with 177Lu [179]. The heterodimer showed a significant decrease in LNCaP (10.15%) and PC-3 (40.10% at 48 h) viability in vitro, and a high LNCaP and PC-3 tumor uptake in ex vivo biodistributions (5.21 and 3.21% ID/g at 96 h, respectively), and Micro-SPECT/CT imaging studies (SUVmax of 1.93 ± 0.30 and 1.76 ± 0.10 in LNCaP and PC-3, respectively), possibly influenced by the heterobivalent effect. More recently, biokinetics and dosimetry data have been obtained for [68Ga]Ga-iPSMA-BN in a study of four healthy patients showing specific uptake in the pancreas (GRPr expressing) and salivary glands (PSMA expressing) [180].
Mitran et al. synthesized the heterodimer NOTA-DUPA-RM26 (BQ7800) consisting of (Hd-10) (DUPA = 2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid) consisting of a Glu-CO-Glu PSMA-binding motif and the GRPr antagonist RM26 (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2). Both binding motifs were coupled via glutamic acid and contain NOTA as a chelator for radiolabeling with either 68Ga or 111In [181]. In vitro preclinical evaluation resulted in high affinity for GRPr (IC50 = 4.0 ± 1.0 nM) and rather low for PSMA (IC50 = 824 ± 230 nM). However, at 1 h p.i., tumor uptake in PC-3 PIP xenografts for [111In]In-BQ7800 (12 ± 2% ID/g) and [68Ga]Ga-BQ7800 (8 ± 2% ID/g) was higher than the one in normal organs and was decreased thereafter. However, kidney uptake was similar to the tumor uptake, while increased uptake was observed in organs expressing GRPr receptors. Attempts to improve the PSMA-specific tumor uptake were made by incorporating phenylalanine into the linker of the PSMA-binding motif and shortening of the PEG linker (BQ7812). The tumor uptake of [111In]In-BQ7812 (Hd-11) was doubled compared to [111In]In-BQ7800, but the modifications also led to a three-fold increase of uptake in the kidneys [182].
Finally, three additional bispecific heterodimers based on RM2 peptide sequence (D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) and PSMA-617 are reported [183]. The two pharmacophores were linked via the spacer: X-triazolyl-Tyr-PEG2, where X = 0 (Hd-12), PEG2 (Hd-13), (CH2)8 (Hd-14). The resulting heterodimers were radio-iodinated and evaluated in vitro for binding specificity, cellular retention, and affinity. In vivo specificity and tumor uptake for all heterodimers was studied in PC-3 and LNCaP xenografts (Table 3), while [125I]I-Hd-13 was also evaluated in PC-3 PIP xenografts where it showed high tumor accumulation (30– 35% ID/g at 3 h p.i.). However, this was followed by high kidney radioactivity values like the first heterodimer: [68Ga]Ga-Hd-1.
Table 3. Heterodimers targeting PSMA/GRPr, tumor uptake (1 h p.i.) expressed as (% ID/g) in PC-3, AR42J, LNCaP or PC-3 PIP xenografts (Mean value ± Std).
Table 3. Heterodimers targeting PSMA/GRPr, tumor uptake (1 h p.i.) expressed as (% ID/g) in PC-3, AR42J, LNCaP or PC-3 PIP xenografts (Mean value ± Std).
HeterodimerTumor Uptake (1 h p.i.; &24 h p.i., # 96 h p.i.) (% ID/g ± SD)Ref.
PC-3AR42JLNCaPPC-3 PIP
[68Ga]Ga-Hd-1-3.34 ± 1.045.44 ± 1.54 -[172]
[68Ga]Ga-Hd-20.84 ± 0.18-2.38 ± 0.05-[138]
[68Ga]Ga-Hd-32.67 ± 1.25-2.41 ± 1.24-
[68Ga]Ga-Hd-42.23 ± 0.27-10.66 ± 4.19-
[68Ga]Ga-Hd-51.66 ± 0.41 -3.22 ± 0.22-
[64Cu]Cu-Hd-6----[175]
Hd-7----[176]
([111In]In-Hd-84.74 ± 0.90--5.38 ± 1.07[177]
[177Lu]Lu-Hd-87.51 ± 2.61--7.37 ± 2.89[177]
[68Ga]Ga-Hd-97.39 ± 0.65-13.67 ± 3.88-[178]
[177Lu]Lu-Hd-91.76 ± 0.10 &
~ 3.21 #
-1.93 ± 0.3 &
~ 5.21 #
-[179]
[111In]In-Hd-10---12.0 ± 2.0 [181]
[68Ga]Ga-Hd-10---8.0 ± 2.0[181]
[111In]In-Hd-11---16.10 ± 2.96[182]
[125I]I-Hd-123.0 ± 0.3 11.0 ± 3.0 [183]
[125I]I-Hd-134.3 ± 0.6 10.0 ± 3.0
[125I]I-Hd-142.2 ± 0.6 3.0 ± 2.0~ 21.0

4.3. PSMA + Integrin αvβ3

Two heterobivalent imaging agents targeting PSMA and integrin-αvβ3 surface markers, both overexpressed in certain tumor epithelium and/or neovasculature were synthesized and evaluated by Shallal et al. [184]. Integrins αvβ3 are considered an ideal target for the development of radioligands, since they are overexpressed on tumor vasculature due to angiogenesis, and on the cell membrane in various tumors, i.e., ovarian cancer, neuroblastoma, breast cancer and melanoma [185]. The tripeptide RGD (arginine-glycine-aspartic) amino acid sequence and its cyclic RGD (cRGD) analogs specifically bind to the integrin αvβ3 receptor and thus have provided the platform for the development of various radioligands [185]. The heterodimers consisted of Lys-CO-Glu-OH PSMA binding motif connected to the Lys of a cyclic cRGDfK peptide (cyclo-(Arg-Gly-Asp-D-Phe-Lys)) and coupled either to the DOTA chelator for radiolabeling (Hd-15) or to the dye IRDye800CW (Hd-16). In vitro testing in PC-3 PIP and U87-MG cells and in isolated proteins showed low affinity with high IC50 values for the both PSMA and αvβ3 receptors, i.e., Hd-15: PC-3 PIP, IC50 = 479 nM, U87-MG, IC50 = 1536 nM, Hd-16: integrin αvβ3 IC50 = 90 nM. In vivo, optical imaging and ex vivo biodistribution studies for Hd-16 showed specific tumor uptake for PC-3 PIP tumors expressing PSMA, and U87-MG tumors expressing integrin αvβ3. Tumor uptake was dose-dependent, and even at the lowest dose (0.5 nmol) the tumors were clearly visible. However, this study did not include a metalated or a radiolabeled version of Hd-15 [184].

5. Future Methods and Concepts for PSMA Inhibitor Radiolabeling

The fluoroglycosylation method by Maschauer et al. [186] has been applied to obtain 2-[18F]FGlc-PSMA and 6-[18F]FGlc-PSMA with the latter example highlighting a 10-fold decrease in kidney uptake in PC-3 PIP tumor bearing mice compared to 2-[18F]FGlc-PSMA and [68Ga]Ga-PSMA-11 [187].
Greifenstein et al. used a squaric acid (SA) moiety to link the Glu-urea-Lys PSMA binding motif with the chelator [188]. Out of three SA-PSMA inhibitors with different chelators, DOTAGA.SA.PSMA emerged as a lead structure to be compared against 68Ga-radiolabeled PSMA-617 and PSMA-11. [68Ga]Ga-DOTAGA.SA.PSMA showed tumor uptake in LNCaP tumor bearing mice comparable with [68Ga]Ga-PSMA-617 and lower than [68Ga]Ga-PSMA-11 (5.6 ± 0.3% ID/g vs. 6.5 ± 1.0% ID/g vs. 12.8 ± 1.5% ID/g), but significantly lower uptake in kidneys (3.2 ± 0.5% ID/g vs. 16.2 ± 5.7% ID/g vs. 210.8 ± 8.1% ID/g) and in other organs (60 min p.i.) showing thus a potential as therapeutic agent [189].
The isotopic exchange chemistry for the fluorine isotopes 19F/18F has been described by Schirrmacher et al. using silicon-fluoride-acceptor (SiFA) building blocks [190]. This concept has been adopted for PSMA inhibitors, which also introduce a chelator into the molecule in close proximity to the SiFA motif in order to increase hydrophilicity [191]. This permits the radiolabeling of the molecule with either 18F at the SiFA building block or with a radiometal of choice (e.g., 68Ga, 177Lu, 225Ac) at the chelator while the moiety not used for radiolabeling is occupied with the non-radioactive 19F or metal, which has been called by the authors radiohybrid PSMA (rhPSMA) inhibitors. Wurzer et al. developed a series of these rhPSMA inhibitors, with rh-PSMA-7 being the most promising candidate being radiolabeled with 18F, bearing natGa within the chelator and being clinically evaluated in a number of patients with primary and biochemical recurrence of PCa [191,192,193,194]. Further improvement of rh-PSMA-7 has been achieved by investigation of its four stereoisomers and their influence on pharmacokinetics [83]. The resulting lead candidate [18F]Ga-rh-PSMA-7.3 showed the highest tumor accumulation and low uptake in non-target tissues. This was confirmed in healthy volunteers determining biodistribution and radiation dosimetry data (NCT03995888) and in a larger cohort of patients [84,195,196,197]. The molar activity of [18F]Ga-rh-PSMA-7.3 had a minor influence on the biodistribution [198,199]. Three clinical trials using [18F]Ga-rh-PSMA-7.3 are either ongoing or will commence in the near future (NCT04978675/NCT04186819/NCT04186845). The therapeutic counterpart [177Lu]Lu-rhPSMA-7.3 showed a higher anti-tumor effect and longer median survival in C4-2 xenograft-bearings SCIDS than [177Lu]Lu-PSMA I&T [85] followed by a pre-therapeutic dosimetry study in six mCRPC patients confirming the preclinical results [86].
Another approach of isotopic exchange has been reported for eight PSMA inhibitors by substituting 19F with 18F at a trifluoroborate group [200]. This concept has been extended to the radiohybrid ligand DOTA-AMBF3-PSMA [201]. The PSMA-617 pharmacophore was used as a starting point, then a lysine-trifluoroborate moiety was introduced and linked to a DOTA-chelator allowing radiolabeling with either 18F or a radiometal. DOTA-AMBF3-PSMA radiolabeled with 18F/free, 18F/natCu, natF/64Cu and natF/177Lu was preclinically evaluated in LNCaP xenografts with tumor uptake > 10% ID/g for all radiotracers. [64Cu]Cu-DOTA-AMBF3-PSMA showed increased liver uptake, most likely due to transchelation of 64Cu from the DOTA-chelator which has also been observed for [64Cu]Cu-DOTA and [64Cu]Cu-PSMA-617 [202,203]. An increased liver uptake was seen in patients scanned with [64Cu]Cu-PSMA-617 2 h and 22 h post injection as well as in a biodistribution and radiation dosimetry study using [64Cu]CuCl2 [204,205].

6. Potential Radionuclides for the Future Use of PSMA Inhibitors

While radionuclides like 68Ga, 18F, or 177Lu have become a sort of routine in the use of radiolabeled PSMA inhibitors, other radionuclides are gaining attention due to their specific properties [206,207,208]. For example, 225Ac can play a pivotal role in targeted alpha therapy (TAT) of prostate cancer [48,51,78,209,210,211,212,213,214,215], but additional preclinical studies and prospective clinical trials need to be performed to secure its safety and efficacy [216,217,218,219,220,221]. The importance of 225Ac-labeled radiopharmaceuticals is affirmed by efforts to establish GMP-compliant procedures for production and quality control [222,223,224,225,226]. Regulatory aspects on the supply of radionuclides for routine clinical application represent a hurdle that needs to be considered for the translation of new radiopharmaceuticals [227,228].

6.1. 211Astatine

211At is a radiohalogen with a half-life of 7.2 h suitable for TAT using small molecules. Several PSMA radioligands have been radiolabeled with 211At and indicated improved survival rates in PC-3 PIP PSMA-positive tumor bearing mice [229,230]. Although the inclusion of albumin binding moieties increases blood retention and reduces kidney uptake [149], dehalogenation and nephrotoxicity have been the limiting factors for clinical translation. The latest development 211At-3-Lu [230] showed improved toxicity data for kidney uptake and reduced off-target uptake in organs like the stomach and salivary glands. The infrastructure for the production of 211At-labeled radiopharmaceuticals is complex though, efforts are made to make them more widely available [231,232], such as the NOAR COST action, which has the goal to create a European Network for Optimized Astatine labeled Radiopharmaceuticals.

6.2. 64/67Copper

The Donnelly group investigated the bivalent PSMA inhibitor Sar-bisPSMA with the matched pair 64Cu/67Cu against [68Ga]Ga-PSMA-11 and [177Lu]Lu-PSMA I&T respectively in a LNCaP xenograft model [233,234]. Sar-bisPSMA consists of a sarcophagine based chelator covalently linked to two lysine-ureido-glutamate functional groups, which can be radiolabeled with copper isotopes at room temperature. [64Cu]Cu-Sar-bisPSMA showed higher tumor uptake than [68Ga]Ga-PSMA-11 1 h after injection (9 ± 1% IA/g vs. 5 ± 1% IA/g). The dose-dependent tumor growth inhibition of [67Cu]Cu-Sar-bisPSMA was comparable to [177Lu]Lu-PSMA I&T (5 MBq: 58 vs. 65%, 30 MBq: 109 vs. 107% against vehicle control). The longer half-life of [64Cu]Cu-Sar-bisPSMA allows prospective dosimetry for the use of [67Cu]Cu-Sar-bisPSMA. Two clinical trials using [64Cu]Cu-Sar-bisPSMA and [67Cu]Cu-Sar-bisPSMA have been started in 2021 (NCT04839367/NCT04868604).
Kelly et al. similarly used a sarcophagine chelator (MeCOSar) conjugated to Nε-(2-(4-iodophenyl)acetyl)lysine as albumin binding group and a PSMA binding motif (RPS-085) [235]. Uptake of [64Cu]Cu-RPS-085 in LNCaP tumor bearing mice was constant for the tumor (4 h p.i.: 12.9 ± 1.4% ID/g, 24h p.i.: 8.3 ± 0.8% ID/g, 48 h p.i.: 9.8 ± 1.3% ID/g), while the uptake in the kidneys decreased over time leading to an increased tumor-to-kidney ratio of 6.1 ± 0.8 48 h p.i. The biodistribution was similar when RPS-085 was radiolabeled with 67Cu, with a tumor-to-kidney ratio of 3.0 ± 0.5, 96 h p.i.

6.3. 203/212Lead

203Pb and 212Pb form an ideal theranostic pair for SPECT imaging and TAT with half-lives of 51.9 h and 10.6 h respectively. The production methods for 203/212Pb have been improved making them available for potential clinical application [236]. Dos Santos et al. developed four PSMA inhibitors (CA008, CA009, CA011 and CA012) with p-SCN-Bn-TCMC and DO3AM chelators bearing the PSMA-617 binding motif and linker structure [237]. The best ligand PSMA-CA012 radiolabeled with 203Pb showed similar tumor uptake like [68Ga]Ga-PSMA-617 in PSMA-positive C4-2 tumor-bearing mice (8.4 ± 3.7% ID/g vs. 8.5 ± 4.1% ID/g). Two patients have been studied first-in-human with [203Pb]Pb-PSMA-CA012 and safety dosimetry estimates for [203Pb]Pb-PSMA-CA012 and [212Pb]Pb-PSMA-CA012 were determined. Stenberg et al. reported the synthesis of NG-001, which has the same chemical structure as CA009 [238]. [212Pb]Pb-NG001 was prepared in situ from a 224Ra-solution in equilibrium with progeny [239]. [212Pb]Pb-NG001 was evaluated against [212Pb]Pb-PSMA-617 in mice bearing C4-2 tumors. While the tumor uptake was comparable 2 h p.i. (17.61 ± 6.76% ID/g vs. 17.93 ± 2.90% ID/g), kidney uptake was lower for [212Pb]Pb-NG001 (21.07 ± 10.33% ID/g vs. 52.82 ± 26.62% ID/g) [238,239]. Dose-dependent treatment efficiency of [212Pb]Pb-NG001 was confirmed in multicellular C4-2 spheroids and the corresponding mouse model with no long-term toxicity effects [240]. Apart from DOTA and TCMC, pyridine-based cyclen analogs (DOTA-1Py, DOTA-2Py and DOTA-3Py) [236] may be a better chelator alternative for 212Pb and its daughter isotopes for avoiding recoil effects [241].

6.4. 149/152/155/161Terbium

Terbium, also called the “Swiss Army Knife” of Nuclear Medicine with its quadruplet of radioisotopes [242] with suitable properties for imaging with PET (152Tb/149Tb) and SPECT (155Tb) and endoradiotherapy with alpha (149Tb) and beta/Auger electrons (161Tb), has been investigated by the group at Paul Scherrer Institute (PSI). Terbium radioisotopes have been used in combination with PSMA-617 in PSMA-positive PC-3 PIP tumor cells. [152Tb]Tb-PSMA-617 has been evaluated in vitro and in vivo and successfully applied first-in-human in a patient with metastatic castration-resistant prostate cancer [76]. Suppression of tumor growth has been demonstrated using [149Tb]Tb-PSMA-617 in TAT in mice bearing PC-3 PIP tumor cells [243]. In a preclinical study, [161Tb]Tb-PSMA-617 was compared against [177Lu]Lu-PSMA-617 in a PC-3 PIP xenograft model showing the superiority of 161Tb vs. 177Lu [244,245] opening the way for clinical translation. The additional therapeutic effect of 161Tb due to Auger electrons was confirmed by a computational approach using a microdosimetry model [246]. However, despite these very promising results, the production of terbium radioisotopes for clinical application remains challenging [247,248].

6.5. 89Zirconium

Vázquez et al., modified PSMA-617 by replacing DOTA with DFO as chelator making it suitable for radiolabeling with 89Zr [249]. 89Zr is a positron-emitter with a physical half-life of 3.27 days. The aim of this study was to detect low PSMA-expressing lesions which are negative on PSMA PET scans using short-lived radiotracers, such as [68Ga]Ga-PSMA-11 and [18F]JK-PSMA-7 by increasing the time for internalization of the radioligand. In a LNCaP xenograft model, 24 h after intravenous injection [89Zr]Zr-PSMA-DFO showed a higher tumor-to-background ratio than [68Ga]Ga-PSMA-11 and [18F]JK-PSMA-7 after 2 and 4 h. In a small number of patients (8/14) additional lesions were identified with [89Zr]Zr-PSMA-DFO after initial scans were negative with [68Ga]Ga-PSMA-11 or [18F]JK-PSMA-7 [250]. An additional [89Zr]Zr-PSMA-DFO PET scan at later time points might be beneficial for patients with biochemical recurrence and weak PSMA expression in tumor lesions.
Noor et al. [251] conjugated the Lys-ureido-Glu binding motif to the desferrioxamine B squareamide ester derivative H3DFOSq, leading to two monovalent and two bivalent DFO-Sq-lysine-ureido-glutamate derivatives with different linker structures to be radiolabeled with 89Zr and 68Ga. The bivalent ligands performed superior in LNCaP tumor models compared to the monovalent ligands. The bivalent ligand bearing an aromatic hydrophobic linker (H3DFO-tren-bis(glut-PAMBA-Lys-ureido-Glu)) showed the highest tumor uptake when radiolabeled with 89Zr and 68Ga compared against [68Ga]Ga-PSMA-11 [252] 1 h after injection (9.33 ± 0.33% IA/g vs. 10.8 ± 1.3% IA/g vs. 4.89 ± 1.34% IA/g).

7. Conclusions

The feasibility of theranostics with PSMA-targeting radiopharmaceuticals has been successfully demonstrated in the last decade, upon their radiolabeling using pairs of radionuclides with suitable properties for imaging with PET or SPECT and endoradiotherapy with alpha and beta/Auger electrons. Radioguided and fluorescence-guided surgery should be an additional treatment option for PCa patients, in this direction PSMA ligands for radio-/fluorescence-guided surgery and/or targeted photodynamic therapy are being investigated. In order to further improve the efficiency and efficacy of the existing PSMA radioligands for PCa diagnosis and radionuclide therapy several structural modifications have been suggested for reducing their uptake in off-target tissues or utilizing multitargeting (i.e., albumin, GRPr and integrin αvβ3). Addressing additional targets like GRPr with one radiotracer could reduce the number of false-negative findings. New radionuclides in combination with PSMA-binding structures are also being explored, but care should be taken on their radiobiological effects, availability for mass production and cost.

Author Contributions

Writing—original draft preparation, O.C.N.; writing—review and editing, O.C.N., K.K., C.L., A.A.-O. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

K.K. is coinventor of PSMA-617, PSMA-914 and PSMA-1007 and derivatives thereof. Moreover, K.K. is member of the scientific advisory board of Telix Pharmaceuticals Ltd. All other authors declare that they have no conflict of interest.

References

  1. Hofman, M.S. Prostate-Specific Membrane Antigen: The Target of the Decade, from Biochemical Recurrence to Widespread Adoption. J. Nucl Med. 2020, 61, 246S–247S. [Google Scholar] [CrossRef]
  2. Czernin, J.; Calais, J. (177)Lu-PSMA617 and the VISION Trial: One of the Greatest Success Stories in the History of Nuclear Medicine. J. Nucl Med. 2021, 62, 1025–1026. [Google Scholar] [CrossRef]
  3. Murphy, D.G.; Sathianathen, N.; Hofman, M.S.; Azad, A.; Lawrentschuk, N. Where to Next for Theranostics in Prostate Cancer? Eur. Urol. Oncol. 2019, 2, 163–165. [Google Scholar] [CrossRef]
  4. Herrmann, K.; Schwaiger, M.; Lewis, J.S.; Solomon, S.B.; McNeil, B.J.; Baumann, M.; Gambhir, S.S.; Hricak, H.; Weissleder, R. Radiotheranostics: A roadmap for future development. Lancet Oncol. 2020, 21, e146–e156. [Google Scholar] [CrossRef]
  5. Hofman, M.S. Bringing VISION to Nuclear Medicine: Accelerating evidence and changing paradigms with theranostics. J. Nucl. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
  6. Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Ceci, F.; Cho, S.; Giesel, F.; Haberkorn, U.; Hope, T.A.; Kopka, K.; et al. (68)Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1014–1024. [Google Scholar] [CrossRef] [PubMed]
  7. Fanti, S.; Minozzi, S.; Antoch, G.; Banks, I.; Briganti, A.; Carrio, I.; Chiti, A.; Clarke, N.; Eiber, M.; De Bono, J.; et al. Consensus on molecular imaging and theranostics in prostate cancer. Lancet Oncol. 2018, 19, 696–708. [Google Scholar] [CrossRef]
  8. Kratochwil, C.; Fendler, W.P.; Eiber, M.; Baum, R.; Bozkurt, M.F.; Czernin, J.; Delgado Bolton, R.C.; Ezziddin, S.; Forrer, F.; Hicks, R.J.; et al. EANM procedure guidelines for radionuclide therapy with (177)Lu-labelled PSMA-ligands ((177)Lu-PSMA-RLT). Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2536–2544. [Google Scholar] [CrossRef] [PubMed]
  9. Afshar-Oromieh, A.; Eiber, M.; Fendler, W.; Schmidt, M.; Rahbar, K.; Ahmadzadehfar, H.; Umutlu, L.; Hadaschik, B.; Hakenberg, O.W.; Fornara, P.; et al. PSMA-Liganden-PET/CT in der Diagnostik des Prostatakarzinoms. 2019. Available online: https://www.awmf.org/uploads/tx_szleitlinien/031-055l_S1_PSMA-Liganden-PET-CT-Diagnostik-Prostatakarzinoms_2020-05.pdf (accessed on 26 October 2021).
  10. Vorster, M.; Warwick, J.; Lawal, I.O.; Du Toit, P.; Vangu, M.; Nyakale, N.E.; Steyn, R.; Gutta, A.A.; Hart, G.; Mutambirwa, S.; et al. South African guidelines for receptor radioligand therapy (RLT) with Lu-177-PSMA in prostate cancer. S. Afr. J. Surg. 2019, 57, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  11. Uçmak, G.; Ak Sivrikoz, İ.; Alan Selçuk, N.; Demirci, E.; Elboğa, U.; Türkmen, C.; Kabasakal, L. Procedur Guideline for Prostate Cancer Imaging: Ga68 PSMA PET/CT. Nucl. Med. Semin. 2020, 6, 370–384. [Google Scholar] [CrossRef]
  12. Ak Sivrikoz, İ.; Uçmak, G.; Kaya Çapa, G.; Demirci, E.; Alan Selçuk, N.; Türkmen, C.; Elboğa, U.; Kabasakal, L. Procedure Guidelines for Lu-177 PSMA Radyoligand Treatment. Nucl. Med. Semin. 2020, 6, 385–396. [Google Scholar] [CrossRef]
  13. Fanti, S.; Goffin, K.; Hadaschik, B.A.; Herrmann, K.; Maurer, T.; MacLennan, S.; Oprea-Lager, D.E.; Oyen, W.J.; Rouviere, O.; Mottet, N.; et al. Consensus statements on PSMA PET/CT response assessment criteria in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 469–476. [Google Scholar] [CrossRef] [PubMed]
  14. Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
  15. Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur. Urol. 2021, 79, 263–282. [Google Scholar] [CrossRef] [PubMed]
  16. Ceci, F.; Oprea-Lager, D.E.; Emmett, L.; Adam, J.A.; Bomanji, J.; Czernin, J.; Eiber, M.; Haberkorn, U.; Hofman, M.S.; Hope, T.A.; et al. E-PSMA: The EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1626–1638. [Google Scholar] [CrossRef] [PubMed]
  17. Shaygan, B.; Zukotynski, K.; Benard, F.; Menard, C.; Kuk, J.; Sistani, G.; Bauman, G.; Veit-Haibach, P.; Metser, U. Canadian Urological Association best practice report: Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) and PET/magnetic resonance (MR) in prostate cancer. Can. Urol Assoc. J. 2021, 15, 162–172. [Google Scholar] [CrossRef] [PubMed]
  18. Beyersdorff, D.; Rahbar, K.; Essler, M.; Ganswindt, U.; Grosu, A.L.; Gschwend, J.E.; Miller, K.; Scheidhauer, K.; Schlemmer, H.P.; Wolff, J.M.; et al. Interdisciplinary expert consensus on innovations in imaging diagnostics and radionuclide-based therapies for advanced prostate cancer. Urol. A 2021, 60, 1579–1585. [Google Scholar] [CrossRef]
  19. Jadvar, H.; Calais, J.; Fanti, S.; Feng, F.; Greene, K.L.; Gulley, J.L.; Hofman, M.; Koontz, B.F.; Lin, D.W.; Morris, M.J.; et al. Appropriate Use Criteria for Prostate-Specific Membrane Antigen PET Imaging. J. Nucl. Med. 2021. [Google Scholar] [CrossRef]
  20. Eder, M.; Schafer, M.; Bauder-Wust, U.; Hull, W.E.; Wangler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012, 23, 688–697. [Google Scholar] [CrossRef]
  21. Afshar-Oromieh, A.; da Cunha, M.L.; Wagner, J.; Haberkorn, U.; Debus, N.; Weber, W.; Eiber, M.; Holland-Letz, T.; Rauscher, I. Performance of [(68)Ga]Ga-PSMA-11 PET/CT in patients with recurrent prostate cancer after prostatectomy-a multi-centre evaluation of 2533 patients. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2925–2934. [Google Scholar] [CrossRef] [PubMed]
  22. Abghari-Gerst, M.; Armstrong, W.R.; Nguyen, K.; Calais, J.; Czernin, J.; Lin, D.; Jariwala, N.; Rodnick, M.; Hope, T.A.; Hearn, J.; et al. A comprehensive assessment of (68)Ga-PSMA-11 PET in biochemically recurrent prostate cancer: Results from a prospective multi-center study in 2005 patients. J. Nucl. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
  23. Ferdinandus, J.; Fendler, W.P.; Farolfi, A.; Washington, S.; Mohamad, O.; Pampaloni, M.H.; Scott, P.J.; Rodnick, M.; Viglianti, B.L.; Eiber, M.; et al. PSMA PET validates higher rates of metastatic disease for European Association of Urology Biochemical Recurrence Risk Groups: An international multicenter study. J. Nucl. Med. 2021. [Google Scholar] [CrossRef]
  24. Chen, Y.; Pullambhatla, M.; Foss, C.A.; Byun, Y.; Nimmagadda, S.; Senthamizhchelvan, S.; Sgouros, G.; Mease, R.C.; Pomper, M.G. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pen tanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res. 2011, 17, 7645–7653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Morris, M.J.; Rowe, S.P.; Gorin, M.A.; Saperstein, L.; Pouliot, F.; Josephson, D.; Wong, J.Y.C.; Pantel, A.R.; Cho, S.Y.; Gage, K.L.; et al. Diagnostic Performance of (18)F-DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase III, Multicenter Study. Clin. Cancer Res. 2021, 27, 3674–3682. [Google Scholar] [CrossRef]
  26. Pienta, K.J.; Gorin, M.A.; Rowe, S.P.; Carroll, P.R.; Pouliot, F.; Probst, S.; Saperstein, L.; Preston, M.A.; Alva, A.S.; Patnaik, A.; et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with (18)F-DCFPyL in Prostate Cancer Patients (OSPREY). J. Urol. 2021, 206, 52–61. [Google Scholar] [CrossRef]
  27. Bodar, Y.J.L.; Zwezerijnen, B.; van der Voorn, P.J.; Jansen, B.H.E.; Smit, R.S.; Kol, S.Q.; Meijer, D.; de Bie, K.; Yaqub, M.; Windhorst, B.A.D.; et al. Prospective analysis of clinically significant prostate cancer detection with [(18)F]DCFPyL PET/MRI compared to multiparametric MRI: A comparison with the histopathology in the radical prostatectomy specimen, the ProStaPET study. Eur. J. Nucl. Med. Mol. Imaging 2021. [Google Scholar] [CrossRef] [PubMed]
  28. FDA Approves First PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer. 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-psma-targeted-pet-imaging-drug-men-prostate-cancer (accessed on 26 October 2021).
  29. Carlucci, G.; Ippisch, R.; Slavik, R.; Mishoe, A.; Blecha, J.; Zhu, S. (68)Ga-PSMA-11 NDA Approval: A Novel and Successful Academic Partnership. J. Nucl Med. 2021, 62, 149–155. [Google Scholar] [CrossRef] [PubMed]
  30. Sartor, O.; Hope, T.A.; Calais, J.; Fendler, W.P. Oliver Sartor Talks with Thomas, A. Hope, Jeremie Calais, and Wolfgang, P. Fendler About FDA Approval of PSMA. J. Nucl. Med. 2021, 62, 146–148. [Google Scholar] [CrossRef] [PubMed]
  31. Masters, S.C.; Hofling, A.A.; Gorovets, A.; Marzella, L. FDA Approves Ga 68 PSMA-11 for Prostate Cancer Imaging. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 27–28. [Google Scholar] [CrossRef]
  32. Hennrich, U.; Eder, M. [(68)Ga]Ga-PSMA-11: The First FDA-Approved (68)Ga-Radiopharmaceutical for PET Imaging of Prostate Cancer. Pharmaceuticals 2021, 14, 713. [Google Scholar] [CrossRef]
  33. FDA Approves Second PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer. 2021. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-approves-second-psma-targeted-pet-imaging-drug-men-prostate-cancer (accessed on 26 October 2021).
  34. Song, H.; Iagaru, A.; Rowe, S.P. (18)F DCFPyL PET Acquisition, Interpretation and Reporting: Suggestions Post Food and Drug Administration Approval. J. Nucl. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
  35. Cardinale, J.; Schafer, M.; Benesova, M.; Bauder-Wust, U.; Leotta, K.; Eder, M.; Neels, O.C.; Haberkorn, U.; Giesel, F.L.; Kopka, K. Preclinical Evaluation of (18)F-PSMA-1007, a New Prostate-Specific Membrane Antigen Ligand for Prostate Cancer Imaging. J. Nucl. Med. 2017, 58, 425–431. [Google Scholar] [CrossRef] [Green Version]
  36. Giesel, F.L.; Knorr, K.; Spohn, F.; Will, L.; Maurer, T.; Flechsig, P.; Neels, O.; Schiller, K.; Amaral, H.; Weber, W.A.; et al. Detection Efficacy of (18)F-PSMA-1007 PET/CT in 251 Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. J. Nucl. Med. 2019, 60, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  37. Sprute, K.; Kramer, V.; Koerber, S.A.; Meneses, M.; Fernandez, R.; Soza-Ried, C.; Eiber, M.; Weber, W.A.; Rauscher, I.; Rahbar, K.; et al. Diagnostic Accuracy of (18)F-PSMA-1007 PET/CT Imaging for Lymph Node Staging of Prostate Carcinoma in Primary and Biochemical Recurrence. J. Nucl. Med. 2021, 62, 208–213. [Google Scholar] [CrossRef] [PubMed]
  38. Malaspina, S.; Anttinen, M.; Taimen, P.; Jambor, I.; Sandell, M.; Rinta-Kiikka, I.; Kajander, S.; Schildt, J.; Saukko, E.; Noponen, T.; et al. Prospective comparison of (18)F-PSMA-1007 PET/CT, whole-body MRI and CT in primary nodal staging of unfavourable intermediate- and high-risk prostate cancer. Eur J. Nucl. Med. Mol. Imaging 2021, 48, 2951–2959. [Google Scholar] [CrossRef] [PubMed]
  39. Vallabhajosula, S.; Nikolopoulou, A.; Babich, J.W.; Osborne, J.R.; Tagawa, S.T.; Lipai, I.; Solnes, L.; Maresca, K.P.; Armor, T.; Joyal, J.L.; et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: Pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J. Nucl. Med. 2014, 55, 1791–1798. [Google Scholar] [CrossRef] [Green Version]
  40. Goffin, K.E.; Joniau, S.; Tenke, P.; Slawin, K.; Klein, E.A.; Stambler, N.; Strack, T.; Babich, J.; Armor, T.; Wong, V. Phase 2 Study of (99m)Tc-Trofolastat SPECT/CT to Identify and Localize Prostate Cancer in Intermediate- and High-Risk Patients Undergoing Radical Prostatectomy and Extended Pelvic LN Dissection. J. Nucl. Med. 2017, 58, 1408–1413. [Google Scholar] [CrossRef] [Green Version]
  41. Schmidkonz, C.; Hollweg, C.; Beck, M.; Reinfelder, J.; Goetz, T.I.; Sanders, J.C.; Schmidt, D.; Prante, O.; Bauerle, T.; Cavallaro, A.; et al. (99m) Tc-MIP-1404-SPECT/CT for the detection of PSMA-positive lesions in 225 patients with biochemical recurrence of prostate cancer. Prostate 2018, 78, 54–63. [Google Scholar] [CrossRef]
  42. Schmidkonz, C.; Cordes, M.; Beck, M.; Goetz, T.I.; Schmidt, D.; Prante, O.; Bauerle, T.; Uder, M.; Wullich, B.; Goebell, P.; et al. SPECT/CT With the PSMA Ligand 99mTc-MIP-1404 for Whole-Body Primary Staging of Patients With Prostate Cancer. Clin. Nucl. Med. 2018, 43, 225–231. [Google Scholar] [CrossRef]
  43. EDQM. European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2021. [Google Scholar]
  44. Alberts, I.L.; Seide, S.E.; Mingels, C.; Bohn, K.P.; Shi, K.; Zacho, H.D.; Rominger, A.; Afshar-Oromieh, A. Comparing the diagnostic performance of radiotracers in recurrent prostate cancer: A systematic review and network meta-analysis. Eur J. Nucl. Med. Mol. Imaging 2021, 48, 2978–2989. [Google Scholar] [CrossRef]
  45. Weineisen, M.; Schottelius, M.; Simecek, J.; Baum, R.P.; Yildiz, A.; Beykan, S.; Kulkarni, H.R.; Lassmann, M.; Klette, I.; Eiber, M.; et al. 68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. J. Nucl. Med. 2015, 56, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
  46. Heck, M.M.; Tauber, R.; Schwaiger, S.; Retz, M.; D’Alessandria, C.; Maurer, T.; Gafita, A.; Wester, H.J.; Gschwend, J.E.; Weber, W.A.; et al. Treatment Outcome, Toxicity, and Predictive Factors for Radioligand Therapy with (177)Lu-PSMA-I&T in Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2019, 75, 920–926. [Google Scholar] [CrossRef] [PubMed]
  47. Prive, B.M.; Janssen, M.J.R.; van Oort, I.M.; Muselaers, C.H.J.; Jonker, M.A.; de Groot, M.; Mehra, N.; Verzijlbergen, J.F.; Scheenen, T.W.J.; Zamecnik, P.; et al. Lutetium-177-PSMA-I&T as metastases directed therapy in oligometastatic hormone sensitive prostate cancer, a randomized controlled trial. BMC Cancer 2020, 20, 884. [Google Scholar] [CrossRef]
  48. Zacherl, M.J.; Gildehaus, F.J.; Mittlmeier, L.; Boning, G.; Gosewisch, A.; Wenter, V.; Unterrainer, M.; Schmidt-Hegemann, N.; Belka, C.; Kretschmer, A.; et al. First Clinical Results for PSMA-Targeted alpha-Therapy Using (225)Ac-PSMA-I&T in Advanced-mCRPC Patients. J. Nucl. Med. 2021, 62, 669–674. [Google Scholar] [CrossRef]
  49. Benesova, M.; Schafer, M.; Bauder-Wust, U.; Afshar-Oromieh, A.; Kratochwil, C.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2015, 56, 914–920. [Google Scholar] [CrossRef] [Green Version]
  50. Rahbar, K.; Ahmadzadehfar, H.; Kratochwil, C.; Haberkorn, U.; Schafers, M.; Essler, M.; Baum, R.P.; Kulkarni, H.R.; Schmidt, M.; Drzezga, A.; et al. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. J. Nucl. Med. 2017, 58, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  51. Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Hohenfellner, M.; Giesel, F.L.; Haberkorn, U.; Morgenstern, A. Targeted alpha-Therapy of Metastatic Castration-Resistant Prostate Cancer with (225)Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control. J. Nucl. Med. 2018, 59, 795–802. [Google Scholar] [CrossRef] [Green Version]
  52. Khreish, F.; Ghazal, Z.; Marlowe, R.J.; Rosar, F.; Sabet, A.; Maus, S.; Linxweiler, J.; Bartholoma, M.; Ezziddin, S. 177 Lu-PSMA-617 radioligand therapy of metastatic castration-resistant prostate cancer: Initial 254-patient results from a prospective registry (REALITY Study). Eur J. Nucl. Med. Mol. Imaging 2021. [Google Scholar] [CrossRef]
  53. Morris, M.J.; De Bono, J.S.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Phase III study of lutetium-177-PSMA-617 in patients with metastatic castration-resistant prostate cancer (VISION). J. Clin. Oncol. 2021, 39, LBA4. [Google Scholar] [CrossRef]
  54. Dolgin, E. Drugmakers go nuclear, continuing push into radiopharmaceuticals. Nat. Biotechnol 2021, 39, 647–649. [Google Scholar] [CrossRef] [PubMed]
  55. Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
  56. Zippel, C.; Giesel, F.L.; Kratochwil, C.; Eiber, M.; Rahbar, K.; Albers, P.; Maurer, T.; Krause, B.J.; Bohnet-Joschko, S. PSMA radioligand therapy could pose infrastructural challenges for nuclear medicine: Results of a basic calculation for the capacity planning of nuclear medicine beds in the German hospital sector. Nuklearmedizin 2021, 60, 216–223. [Google Scholar] [CrossRef] [PubMed]
  57. Viljoen, B.; Hofman, M.S.; Chambers, S.K.; Dunn, J.; Dhillon, H.; Davis, I.D.; Ralph, N. Advanced prostate cancer experimental radioactive treatment-clinical trial decision making: Patient experiences. BMJ Support. Palliat Care 2021. [Google Scholar] [CrossRef] [PubMed]
  58. Srinivas, S.; Iagaru, A. To Scan or Not to Scan: An Unnecessary Dilemma for PSMA Radioligand Therapy. J. Nucl. Med. 2021, 62, 1487–1488. [Google Scholar] [CrossRef] [PubMed]
  59. Calais, J.; Czernin, J. PSMA Expression Assessed by PET Imaging Is a Required Biomarker for Selecting Patients for Any PSMA-Targeted Therapy. J. Nucl. Med. 2021, 62, 1489–1491. [Google Scholar] [CrossRef] [PubMed]
  60. Herrmann, K.; Kraus, B.J.; Hadaschik, B.; Kunikowska, J.; van Poppel, H.; N’Dow, J.; Sartor, O.; Oyen, W.J.G. Nuclear medicine theranostics comes of age. Lancet Oncol. 2021, 22, 1497–1498. [Google Scholar] [CrossRef]
  61. Czernin, J. Reply: PSMA-Targeted Therapeutics: A Tale About Law and Economics. J. Nucl. Med. 2021, 62, 1483. [Google Scholar] [CrossRef]
  62. Zippel, C.; Ronski, S.C.; Bohnet-Joschko, S.; Giesel, F.L.; Kopka, K. Current Status of PSMA-Radiotracers for Prostate Cancer: Data Analysis of Prospective Trials Listed on ClinicalTrials.gov. Pharmaceuticals 2020, 13, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Sandhu, S.; Guo, C.; Hofman, M.S. Radionuclide Therapy in Prostate Cancer: From standalone to combination PSMA theranostics. J. Nucl. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
  64. Zhang, H.; Koumna, S.; Pouliot, F.; Beauregard, J.M.; Kolinsky, M. PSMA Theranostics: Current Landscape and Future Outlook. Cancers 2021, 13, 23. [Google Scholar] [CrossRef]
  65. Kopka, K.; Benesova, M.; Barinka, C.; Haberkorn, U.; Babich, J. Glu-Ureido-Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers. J. Nucl. Med. 2017, 58, 17S–26S. [Google Scholar] [CrossRef] [Green Version]
  66. Szabo, Z.; Mena, E.; Rowe, S.P.; Plyku, D.; Nidal, R.; Eisenberger, M.A.; Antonarakis, E.S.; Fan, H.; Dannals, R.F.; Chen, Y.; et al. Initial Evaluation of [(18)F]DCFPyL for Prostate-Specific Membrane Antigen (PSMA)-Targeted PET Imaging of Prostate Cancer. Mol. Imaging Biol. 2015, 17, 565–574. [Google Scholar] [CrossRef]
  67. Afshar-Oromieh, A.; Haberkorn, U.; Eder, M.; Eisenhut, M.; Zechmann, C.M. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: Comparison with 18F-FECH. Eur J. Nucl. Med. Mol. Imaging 2012, 39, 1085–1086. [Google Scholar] [CrossRef] [PubMed]
  68. Malik, N.; Baur, B.; Winter, G.; Reske, S.N.; Beer, A.J.; Solbach, C. Radiofluorination of PSMA-HBED via Al(18)F(2+) Chelation and Biological Evaluations In Vitro. Mol. Imaging Biol. 2015, 17, 777–785. [Google Scholar] [CrossRef] [PubMed]
  69. Piron, S.; De Man, K.; Van Laeken, N.; D’Asseler, Y.; Bacher, K.; Kersemans, K.; Ost, P.; Decaestecker, K.; Deseyne, P.; Fonteyne, V.; et al. Radiation Dosimetry and Biodistribution of (18)F-PSMA-11 for PET Imaging of Prostate Cancer. J. Nucl. Med. 2019, 60, 1736–1742. [Google Scholar] [CrossRef]
  70. Giesel, F.L.; Cardinale, J.; Schafer, M.; Neels, O.; Benesova, M.; Mier, W.; Haberkorn, U.; Kopka, K.; Kratochwil, C. (18)F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. Eur J. Nucl. Med. Mol. Imaging 2016, 43, 1929–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  71. Umbricht, C.A.; Benesova, M.; Schmid, R.M.; Turler, A.; Schibli, R.; van der Meulen, N.P.; Muller, C. (44)Sc-PSMA-617 for radiotheragnostics in tandem with (177)Lu-PSMA-617-preclinical investigations in comparison with (68)Ga-PSMA-11 and (68)Ga-PSMA-617. EJNMMI Res. 2017, 7, 9. [Google Scholar] [CrossRef] [Green Version]
  72. Eppard, E.; de la Fuente, A.; Benesova, M.; Khawar, A.; Bundschuh, R.A.; Gartner, F.C.; Kreppel, B.; Kopka, K.; Essler, M.; Rosch, F. Clinical Translation and First In-Human Use of [(44)Sc]Sc-PSMA-617 for PET Imaging of Metastasized Castrate-Resistant Prostate Cancer. Theranostics 2017, 7, 4359–4369. [Google Scholar] [CrossRef]
  73. Grubmuller, B.; Baum, R.P.; Capasso, E.; Singh, A.; Ahmadi, Y.; Knoll, P.; Floth, A.; Righi, S.; Zandieh, S.; Meleddu, C.; et al. (64)Cu-PSMA-617 PET/CT Imaging of Prostate Adenocarcinoma: First In-Human Studies. Cancer Biother. Radiopharm. 2016, 31, 277–286. [Google Scholar] [CrossRef]
  74. Afshar-Oromieh, A.; Hetzheim, H.; Kratochwil, C.; Benesova, M.; Eder, M.; Neels, O.C.; Eisenhut, M.; Kubler, W.; Holland-Letz, T.; Giesel, F.L.; et al. The Theranostic PSMA Ligand PSMA-617 in the Diagnosis of Prostate Cancer by PET/CT: Biodistribution in Humans, Radiation Dosimetry, and First Evaluation of Tumor Lesions. J. Nucl. Med. 2015, 56, 1697–1705. [Google Scholar] [CrossRef] [Green Version]
  75. Mix, M.; Reichel, K.; Stoykow, C.; Bartholoma, M.; Drendel, V.; Gourni, E.; Wetterauer, U.; Schultze-Seemann, W.; Meyer, P.T.; Jilg, C.A. Performance of (111)In-labelled PSMA ligand in patients with nodal metastatic prostate cancer: Correlation between tracer uptake and histopathology from lymphadenectomy. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2062–2070. [Google Scholar] [CrossRef] [PubMed]
  76. Muller, C.; Singh, A.; Umbricht, C.A.; Kulkarni, H.R.; Johnston, K.; Benesova, M.; Senftleben, S.; Muller, D.; Vermeulen, C.; Schibli, R.; et al. Preclinical investigations and first-in-human application of (152)Tb-PSMA-617 for PET/CT imaging of prostate cancer. EJNMMI Res. 2019, 9, 68. [Google Scholar] [CrossRef]
  77. Kratochwil, C.; Giesel, F.L.; Eder, M.; Afshar-Oromieh, A.; Benesova, M.; Mier, W.; Kopka, K.; Haberkorn, U. [(1)(7)(7)Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 987–988. [Google Scholar] [CrossRef] [PubMed]
  78. Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted alpha-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef] [Green Version]
  79. Schottelius, M.; Wirtz, M.; Eiber, M.; Maurer, T.; Wester, H.J. [(111)In]PSMA-I&T: Expanding the spectrum of PSMA-I&T applications towards SPECT and radioguided surgery. EJNMMI Res. 2015, 5, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  80. Maurer, T.; Weirich, G.; Schottelius, M.; Weineisen, M.; Frisch, B.; Okur, A.; Kubler, H.; Thalgott, M.; Navab, N.; Schwaiger, M.; et al. Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer. Eur. Urol. 2015, 68, 530–534. [Google Scholar] [CrossRef]
  81. Robu, S.; Schottelius, M.; Eiber, M.; Maurer, T.; Gschwend, J.; Schwaiger, M.; Wester, H.J. Preclinical Evaluation and First Patient Application of 99mTc-PSMA-I&S for SPECT Imaging and Radioguided Surgery in Prostate Cancer. J. Nucl. Med. 2017, 58, 235–242. [Google Scholar] [CrossRef] [Green Version]
  82. Reinfelder, J.; Kuwert, T.; Beck, M.; Sanders, J.C.; Ritt, P.; Schmidkonz, C.; Hennig, P.; Prante, O.; Uder, M.; Wullich, B.; et al. First Experience With SPECT/CT Using a 99mTc-Labeled Inhibitor for Prostate-Specific Membrane Antigen in Patients With Biochemical Recurrence of Prostate Cancer. Clin. Nucl. Med. 2017, 42, 26–33. [Google Scholar] [CrossRef] [PubMed]
  83. Wurzer, A.; Parzinger, M.; Konrad, M.; Beck, R.; Gunther, T.; Felber, V.; Farber, S.; Di Carlo, D.; Wester, H.J. Preclinical comparison of four [(18)F, (nat)Ga]rhPSMA-7 isomers: Influence of the stereoconfiguration on pharmacokinetics. EJNMMI Res. 2020, 10, 149. [Google Scholar] [CrossRef]
  84. Tolvanen, T.; Kalliokoski, K.; Malaspina, S.; Kuisma, A.; Lahdenpohja, S.; Postema, E.J.; Miller, M.P.; Scheinin, M. Safety, Biodistribution, and Radiation Dosimetry of (18)F-rhPSMA-7.3 in Healthy Adult Volunteers. J. Nucl. Med. 2021, 62, 679–684. [Google Scholar] [CrossRef]
  85. Yusufi, N.; Wurzer, A.; Herz, M.; D’Alessandria, C.; Feuerecker, B.; Weber, W.; Wester, H.J.; Nekolla, S.; Eiber, M. Comparative Preclinical Biodistribution, Dosimetry, and Endoradiotherapy in Metastatic Castration-Resistant Prostate Cancer Using (19)F/(177)Lu-rhPSMA-7.3 and (177)Lu-PSMA I&T. J. Nucl. Med. 2021, 62, 1106–1111. [Google Scholar] [CrossRef]
  86. Feuerecker, B.; Chantadisai, M.; Allmann, A.; Tauber, R.; Allmann, J.; Steinhelfer, L.; Rauscher, I.; Wurzer, A.; Wester, H.J.; Weber, W.A.; et al. Pre-therapeutic comparative dosimetry of (177)Lu-rhPSMA-7.3 and (177)Lu-PSMAI&T in patients with metastatic castration resistant prostate cancer (mCRPC). J. Nucl. Med. 2021. [Google Scholar] [CrossRef]
  87. Zlatopolskiy, B.D.; Endepols, H.; Krapf, P.; Guliyev, M.; Urusova, E.A.; Richarz, R.; Hohberg, M.; Dietlein, M.; Drzezga, A.; Neumaier, B. Discovery of (18)F-JK-PSMA-7, a PET Probe for the Detection of Small PSMA-Positive Lesions. J. Nucl. Med. 2019, 60, 817–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  88. Hohberg, M.; Kobe, C.; Krapf, P.; Tager, P.; Hammes, J.; Dietlein, F.; Zlatopolskiy, B.D.; Endepols, H.; Wild, M.; Neubauer, S.; et al. Biodistribution and radiation dosimetry of [(18)F]-JK-PSMA-7 as a novel prostate-specific membrane antigen-specific ligand for PET/CT imaging of prostate cancer. EJNMMI Res. 2019, 9, 66. [Google Scholar] [CrossRef] [Green Version]
  89. Young, J.D.; Abbate, V.; Imberti, C.; Meszaros, L.K.; Ma, M.T.; Terry, S.Y.A.; Hider, R.C.; Mullen, G.E.; Blower, P.J. (68)Ga-THP-PSMA: A PET Imaging Agent for Prostate Cancer Offering Rapid, Room-Temperature, 1-Step Kit-Based Radiolabeling. J. Nucl. Med. 2017, 58, 1270–1277. [Google Scholar] [CrossRef] [Green Version]
  90. Hofman, M.S.; Eu, P.; Jackson, P.; Hong, E.; Binns, D.; Iravani, A.; Murphy, D.; Mitchell, C.; Siva, S.; Hicks, R.J.; et al. Cold Kit for Prostate-Specific Membrane Antigen (PSMA) PET Imaging: Phase 1 Study of (68)Ga-Tris(Hydroxypyridinone)-PSMA PET/CT in Patients with Prostate Cancer. Nucl. Med. 2018, 59, 625–631. [Google Scholar] [CrossRef] [Green Version]
  91. Iudicello, A.; Genovese, F.; Di Iorio, V.; Cicoria, G.; Boschi, S. An HPLC and UHPLC-HRMS approach to study PSMA-11 instability in aqueous solution. EJNMMI Radiopharm. Chem. 2021, 6, 14. [Google Scholar] [CrossRef] [PubMed]
  92. Eder, M.; Neels, O.; Muller, M.; Bauder-Wust, U.; Remde, Y.; Schafer, M.; Hennrich, U.; Eisenhut, M.; Afshar-Oromieh, A.; Haberkorn, U.; et al. Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. Pharmaceuticals 2014, 7, 779–796. [Google Scholar] [CrossRef] [PubMed]
  93. Martin, S.; Tonnesmann, R.; Hierlmeier, I.; Maus, S.; Rosar, F.; Ruf, J.; Holland, J.P.; Ezziddin, S.; Bartholoma, M.D. Identification, Characterization, and Suppression of Side Products Formed during the Synthesis of [(177)Lu]Lu-PSMA-617. J. Med. Chem 2021, 64, 4960–4971. [Google Scholar] [CrossRef]
  94. Thiele, N.A.; Brown, V.; Kelly, J.M.; Amor-Coarasa, A.; Jermilova, U.; MacMillan, S.N.; Nikolopoulou, A.; Ponnala, S.; Ramogida, C.F.; Robertson, A.K.H.; et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew. Chem. Int. Ed. Engl. 2017, 56, 14712–14717. [Google Scholar] [CrossRef]
  95. Reissig, F.; Bauer, D.; Zarschler, K.; Novy, Z.; Bendova, K.; Ludik, M.C.; Kopka, K.; Pietzsch, H.J.; Petrik, M.; Mamat, C. Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA-A Proof of Concept Study. Cancers 2021, 13, 974. [Google Scholar] [CrossRef]
  96. Mukherjee, A. An Update on Extemporaneous Preparation of Radiopharmaceuticals Using Freeze-Dried Cold Kits. Mini Rev. Med. Chem. 2021, 21, 1322–1336. [Google Scholar] [CrossRef]
  97. Satpati, D. Recent Breakthrough in (68)Ga-Radiopharmaceuticals Cold Kits for Convenient PET Radiopharmacy. Bioconjug Chem. 2021, 32, 430–447. [Google Scholar] [CrossRef] [PubMed]
  98. Australian TGA Approves Illuccix® for Prostate Cancer Imaging. Available online: https://telixpharma.com/wp-content/uploads/TLX_Australian_TGA_Approves_Illuccix_for_Prostate_Cancer_Imaging.pdf (accessed on 2 November 2021).
  99. Baum, R.P.; Langbein, T.; Singh, A.; Shahinfar, M.; Schuchardt, C.; Volk, G.F.; Kulkarni, H. Injection of Botulinum Toxin for Preventing Salivary Gland Toxicity after PSMA Radioligand Therapy: An Empirical Proof of a Promising Concept. Nucl. Med. Mol. Imaging 2018, 52, 80–81. [Google Scholar] [CrossRef]
  100. Taieb, D.; Foletti, J.M.; Bardies, M.; Rocchi, P.; Hicks, R.J.; Haberkorn, U. PSMA-Targeted Radionuclide Therapy and Salivary Gland Toxicity: Why Does It Matter? J. Nucl. Med. 2018, 59, 747–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  101. Langbein, T.; Chausse, G.; Baum, R.P. Salivary Gland Toxicity of PSMA Radioligand Therapy: Relevance and Preventive Strategies. J. Nucl. Med. 2018, 59, 1172–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  102. Mohan, V.; Bruin, N.M.; van de Kamer, J.B.; Sonke, J.J.; Vogel, W.V. The effect of eating on the uptake of PSMA ligands in the salivary glands. EJNMMI Res. 2021, 11, 95. [Google Scholar] [CrossRef]
  103. Heynickx, N.; Herrmann, K.; Vermeulen, K.; Baatout, S.; Aerts, A. The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far. Nucl. Med. Biol 2021, 98–99, 30–39. [Google Scholar] [CrossRef] [PubMed]
  104. Tonnesmann, R.; Meyer, P.T.; Eder, M.; Baranski, A.C. [(177)Lu]Lu-PSMA-617 Salivary Gland Uptake Characterized by Quantitative In Vitro Autoradiography. Pharmaceuticals 2019, 12, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  105. Felber, V.B.; Valentin, M.A.; Wester, H.J. Design of PSMA ligands with modifications at the inhibitor part: An approach to reduce the salivary gland uptake of radiolabeled PSMA inhibitors? EJNMMI Radiopharm. Chem. 2021, 6, 10. [Google Scholar] [CrossRef]
  106. Kalidindi, T.M.; Lee, S.G.; Jou, K.; Chakraborty, G.; Skafida, M.; Tagawa, S.T.; Bander, N.H.; Schoder, H.; Bodei, L.; Pandit-Taskar, N.; et al. A simple strategy to reduce the salivary gland and kidney uptake of PSMA-targeting small molecule radiopharmaceuticals. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2642–2651. [Google Scholar] [CrossRef] [PubMed]
  107. Roy, J.; Warner, B.M.; Basuli, F.; Zhang, X.; Zheng, C.; Goldsmith, C.; Phelps, T.; Wong, K.; Ton, A.T.; Pieschl, R.; et al. Competitive blocking of salivary gland [(18)F]DCFPyL uptake via localized, retrograde ductal injection of non-radioactive DCFPyL: A preclinical study. EJNMMI Res. 2021, 11, 66. [Google Scholar] [CrossRef] [PubMed]
  108. Van Leeuwen, F.W.B.; Winter, A.; van Der Poel, H.G.; Eiber, M.; Suardi, N.; Graefen, M.; Wawroschek, F.; Maurer, T. Technologies for image-guided surgery for managing lymphatic metastases in prostate cancer. Nat. Rev. Urol. 2019, 16, 159–171. [Google Scholar] [CrossRef] [PubMed]
  109. Rauscher, I.; Duwel, C.; Wirtz, M.; Schottelius, M.; Wester, H.J.; Schwamborn, K.; Haller, B.; Schwaiger, M.; Gschwend, J.E.; Eiber, M.; et al. Value of (111) In-prostate-specific membrane antigen (PSMA)-radioguided surgery for salvage lymphadenectomy in recurrent prostate cancer: Correlation with histopathology and clinical follow-up. BJU Int. 2017, 120, 40–47. [Google Scholar] [CrossRef] [Green Version]
  110. Jilg, C.A.; Reichel, K.; Stoykow, C.; Rischke, H.C.; Bartholoma, M.; Drendel, V.; von Buren, M.; Schultze-Seemann, W.; Meyer, P.T.; Mix, M. Results from extended lymphadenectomies with [(111)In]PSMA-617 for intraoperative detection of PSMA-PET/CT-positive nodal metastatic prostate cancer. EJNMMI Res. 2020, 10, 17. [Google Scholar] [CrossRef] [Green Version]
  111. Rauscher, I.; Maurer, T.; Souvatzoglou, M.; Beer, A.J.; Vag, T.; Wirtz, M.; Weirich, G.; Wester, H.J.; Gschwend, J.E.; Schwaiger, M.; et al. Intrapatient Comparison of 111In-PSMA I&T SPECT/CT and Hybrid 68Ga-HBED-CC PSMA PET in Patients With Early Recurrent Prostate Cancer. Clin. Nucl. Med. 2016, 41, e397–e402. [Google Scholar] [CrossRef]
  112. Maurer, T.; Robu, S.; Schottelius, M.; Schwamborn, K.; Rauscher, I.; van den Berg, N.S.; van Leeuwen, F.W.B.; Haller, B.; Horn, T.; Heck, M.M.; et al. (99m)Technetium-based Prostate-specific Membrane Antigen-radioguided Surgery in Recurrent Prostate Cancer. Eur. Urol. 2019, 75, 659–666. [Google Scholar] [CrossRef]
  113. Horn, T.; Kronke, M.; Rauscher, I.; Haller, B.; Robu, S.; Wester, H.J.; Schottelius, M.; van Leeuwen, F.W.B.; van der Poel, H.G.; Heck, M.; et al. Single Lesion on Prostate-specific Membrane Antigen-ligand Positron Emission Tomography and Low Prostate-specific Antigen Are Prognostic Factors for a Favorable Biochemical Response to Prostate-specific Membrane Antigen-targeted Radioguided Surgery in Recurrent Prostate Cancer. Eur. Urol. 2019, 76, 517–523. [Google Scholar] [CrossRef]
  114. Werner, P.; Neumann, C.; Eiber, M.; Wester, H.J.; Schottelius, M. [(99cm)Tc]Tc-PSMA-I&S-SPECT/CT: Experience in prostate cancer imaging in an outpatient center. EJNMMI Res. 2020, 10, 45. [Google Scholar] [CrossRef]
  115. Urban, S.; Meyer, C.; Dahlbom, M.; Farkas, I.; Sipka, G.; Besenyi, Z.; Czernin, J.; Calais, J.; Pavics, L. Radiation Dosimetry of (99m)Tc-PSMA I&S: A Single-Center Prospective Study. J. Nucl. Med. 2021, 62, 1075–1081. [Google Scholar] [CrossRef]
  116. Afshar-Oromieh, A.; Hetzheim, H.; Kubler, W.; Kratochwil, C.; Giesel, F.L.; Hope, T.A.; Eder, M.; Eisenhut, M.; Kopka, K.; Haberkorn, U. Radiation dosimetry of (68)Ga-PSMA-11 (HBED-CC) and preliminary evaluation of optimal imaging timing. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
  117. Giesel, F.L.; Hadaschik, B.; Cardinale, J.; Radtke, J.; Vinsensia, M.; Lehnert, W.; Kesch, C.; Tolstov, Y.; Singer, S.; Grabe, N.; et al. F-18 labelled PSMA-1007: Biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 678–688. [Google Scholar] [CrossRef] [Green Version]
  118. Aalbersberg, E.A.; Verwoerd, D.; Mylvaganan-Young, C.; de Barros, H.A.; van Leeuwen, P.J.; Sonneborn-Bols, M.; Donswijk, M.L. Occupational Radiation Exposure of Radiopharmacy, Nuclear Medicine, and Surgical Personnel During Use of [(99m)Tc]Tc-PSMA-I&S for Prostate Cancer Surgery. J. Nucl. Med. Technol. 2021, 49, 334–338. [Google Scholar] [CrossRef]
  119. Jeschke, S.; Beri, A.; Grull, M.; Ziegerhofer, J.; Prammer, P.; Leeb, K.; Sega, W.; Janetschek, G. Laparoscopic radioisotope-guided sentinel lymph node dissection in staging of prostate cancer. Eur. Urol. 2008, 53, 126–132. [Google Scholar] [CrossRef]
  120. Meershoek, P.; van Oosterom, M.N.; Simon, H.; Mengus, L.; Maurer, T.; van Leeuwen, P.J.; Wit, E.M.K.; van der Poel, H.G.; van Leeuwen, F.W.B. Robot-assisted laparoscopic surgery using DROP-IN radioguidance: First-in-human translation. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 49–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  121. Van Oosterom, M.N.; Simon, H.; Mengus, L.; Welling, M.; Van der Poel, H.G.; Van den Berg, N.S.; Van Leeuwen, F.W. Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology. Am. J. Nucl. Med. Mol. Imaging 2016, 6, 1–17. [Google Scholar]
  122. Van Leeuwen, F.W.B.; van Oosterom, M.N.; Meershoek, P.; van Leeuwen, P.J.; Berliner, C.; van der Poel, H.G.; Graefen, M.; Maurer, T. Minimal-Invasive Robot-Assisted Image-Guided Resection of Prostate-Specific Membrane Antigen-Positive Lymph Nodes in Recurrent Prostate Cancer. Clin. Nucl Med. 2019, 44, 580–581. [Google Scholar] [CrossRef] [PubMed]
  123. Collamati, F.; van Oosterom, M.N.; De Simoni, M.; Faccini, R.; Fischetti, M.; Mancini Terracciano, C.; Mirabelli, R.; Moretti, R.; Heuvel, J.O.; Solfaroli Camillocci, E.; et al. A DROP-IN beta probe for robot-assisted (68)Ga-PSMA radioguided surgery: First ex vivo technology evaluation using prostate cancer specimens. EJNMMI Res. 2020, 10, 92. [Google Scholar] [CrossRef]
  124. Olde Heuvel, J.; de Wit-van der Veen, B.J.; Vyas, K.N.; Tuch, D.S.; Grootendorst, M.R.; Stokkel, M.P.M.; Slump, C.H. Performance evaluation of Cerenkov luminescence imaging: A comparison of (68)Ga with (18)F. EJNMMI Phys. 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
  125. Darr, C.; Harke, N.N.; Radtke, J.P.; Yirga, L.; Kesch, C.; Grootendorst, M.R.; Fendler, W.P.; Costa, P.F.; Rischpler, C.; Praus, C.; et al. Intraoperative (68)Ga-PSMA Cerenkov Luminescence Imaging for Surgical Margins in Radical Prostatectomy: A Feasibility Study. J. Nucl. Med. 2020, 61, 1500–1506. [Google Scholar] [CrossRef]
  126. Olde Heuvel, J.; de Wit-van der Veen, B.J.; van der Poel, H.G.; Bekers, E.M.; Grootendorst, M.R.; Vyas, K.N.; Slump, C.H.; Stokkel, M.P.M. (68)Ga-PSMA Cerenkov luminescence imaging in primary prostate cancer: First-in-man series. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2624–2632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  127. Darr, C.; Krafft, U.; Fendler, W.P.; Costa, P.F.; Barbato, F.; Praus, C.; Reis, H.; Hager, T.; Tschirdewahn, S.; Radtke, J.P.; et al. First-in-man intraoperative Cerenkov luminescence imaging for oligometastatic prostate cancer using (68)Ga-PSMA-11. Eur J. Nucl. Med. Mol. Imaging 2020, 47, 3194–3195. [Google Scholar] [CrossRef] [PubMed]
  128. Olde Heuvel, J.; de Wit-van der Veen, B.J.; van der Poel, H.G.; van Leeuwen, P.J.; Bekers, E.M.; Grootendorst, M.R.; Vyas, K.N.; Slump, C.H.; Stokkel, M.P.M. Cerenkov Luminescence Imaging in prostate cancer: Not the only light that shines. J. Nucl. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
  129. Darr, C.; Fragoso Costa, P.; Kesch, C.; Krafft, U.; Pullen, L.; Harke, N.N.; Hess, J.; Szarvas, T.; Haubold, J.; Reis, H.; et al. Prostate specific membrane antigen-radio guided surgery using Cerenkov luminescence imaging-utilization of a short-pass filter to reduce technical pitfalls. Transl. Urol. 2021, 10, 3972–3985. [Google Scholar] [CrossRef]
  130. Collamati, F.; van Oosterom, M.N.; Hadaschik, B.A.; Fragoso Costa, P.; Darr, C. Beta radioguided surgery: Towards routine implementation? Q. J. Nucl. Med. Mol. Imaging 2021, 65, 229–243. [Google Scholar] [CrossRef]
  131. Van Leeuwen, F.W.B.; Cornelissen, B.; Caobelli, F.; Evangelista, L.; Rbah-Vidal, L.; Del Vecchio, S.; Xavier, C.; Barbet, J.; de Jong, M. Generation of fluorescently labeled tracers - which features influence the translational potential? EJNMMI Radiopharm. Chem. 2017, 2, 15. [Google Scholar] [CrossRef] [Green Version]
  132. Maurer, T.; van Leeuwen, F.W.B.; Schottelius, M.; Wester, H.J.; Eiber, M. Entering the era of molecular-targeted precision surgery in recurrent prostate cancer. J. Nucl. Med. 2018. [Google Scholar] [CrossRef] [Green Version]
  133. Lutje, S.; Heskamp, S.; Franssen, G.M.; Frielink, C.; Kip, A.; Hekman, M.; Fracasso, G.; Colombatti, M.; Herrmann, K.; Boerman, O.C.; et al. Development and characterization of a theranostic multimodal anti-PSMA targeting agent for imaging, surgical guidance, and targeted photodynamic therapy of PSMA-expressing tumors. Theranostics 2019, 9, 2924–2938. [Google Scholar] [CrossRef] [PubMed]
  134. Derks, Y.H.W.; Lowik, D.; Sedelaar, J.P.M.; Gotthardt, M.; Boerman, O.C.; Rijpkema, M.; Lutje, S.; Heskamp, S. PSMA-targeting agents for radio- and fluorescence-guided prostate cancer surgery. Theranostics 2019, 9, 6824–6839. [Google Scholar] [CrossRef]
  135. Hernandez Vargas, S.; Ghosh, S.C.; Azhdarinia, A. New Developments in Dual-Labeled Molecular Imaging Agents. J. Nucl. Med. 2019, 60, 459–465. [Google Scholar] [CrossRef] [Green Version]
  136. Baranski, A.C.; Schafer, M.; Bauder-Wust, U.; Roscher, M.; Schmidt, J.; Stenau, E.; Simpfendorfer, T.; Teber, D.; Maier-Hein, L.; Hadaschik, B.; et al. PSMA-11-Derived Dual-Labeled PSMA Inhibitors for Preoperative PET Imaging and Precise Fluorescence-Guided Surgery of Prostate Cancer. J. Nucl. Med. 2018, 59, 639–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  137. Baranski, A.C.; Schafer, M.; Bauder-Wust, U.; Wacker, A.; Schmidt, J.; Liolios, C.; Mier, W.; Haberkorn, U.; Eisenhut, M.; Kopka, K.; et al. Improving the Imaging Contrast of (68)Ga-PSMA-11 by Targeted Linker Design: Charged Spacer Moieties Enhance the Pharmacokinetic Properties. Bioconjug. Chem. 2017, 28, 2485–2492. [Google Scholar] [CrossRef]
  138. Liolios, C.; Schafer, M.; Haberkorn, U.; Eder, M.; Kopka, K. Novel Bispecific PSMA/GRPr Targeting Radioligands with Optimized Pharmacokinetics for Improved PET Imaging of Prostate Cancer. Bioconjug. Chem. 2016, 27, 737–751. [Google Scholar] [CrossRef] [PubMed]
  139. Eder, A.C.; Schafer, M.; Schmidt, J.; Bauder-Wust, U.; Roscher, M.; Leotta, K.; Haberkorn, U.; Kopka, K.; Eder, M. Rational Linker Design to Accelerate Excretion and Reduce Background Uptake of Peptidomimetic PSMA-Targeting Hybrid Molecules. J. Nucl. Med. 2021, 62, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
  140. Eder, A.C.; Omrane, M.A.; Stadlbauer, S.; Roscher, M.; Khoder, W.Y.; Gratzke, C.; Kopka, K.; Eder, M.; Meyer, P.T.; Jilg, C.A.; et al. The PSMA-11-derived hybrid molecule PSMA-914 specifically identifies prostate cancer by preoperative PET/CT and intraoperative fluorescence imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2057–2058. [Google Scholar] [CrossRef] [PubMed]
  141. Schottelius, M.; Wurzer, A.; Wissmiller, K.; Beck, R.; Koch, M.; Gorpas, D.; Notni, J.; Buckle, T.; van Oosterom, M.N.; Steiger, K.; et al. Synthesis and Preclinical Characterization of the PSMA-Targeted Hybrid Tracer PSMA-I&F for Nuclear and Fluorescence Imaging of Prostate Cancer. J. Nucl. Med. 2019, 60, 71–78. [Google Scholar] [CrossRef] [Green Version]
  142. van Leeuwen, F.W.; van der Poel, H.G. Surgical Guidance in Prostate Cancer: “From Molecule to Man” Translations. Clin. Cancer Res. 2016, 22, 1304–1306. [Google Scholar] [CrossRef] [Green Version]
  143. Van Leeuwen, F.W.B.; Schottelius, M.; Brouwer, O.R.; Vidal-Sicart, S.; Achilefu, S.; Klode, J.; Wester, H.J.; Buckle, T. Trending: Radioactive and Fluorescent Bimodal/Hybrid Tracers as Multiplexing Solutions for Surgical Guidance. J. Nucl. Med. 2020, 61, 13–19. [Google Scholar] [CrossRef] [PubMed]
  144. Wang, X.; Luo, D.; Basilion, J.P. Photodynamic Therapy: Targeting Cancer Biomarkers for the Treatment of Cancers. Cancers 2021, 13, 992. [Google Scholar] [CrossRef] [PubMed]
  145. Derks, Y.H.W.; Rijpkema, M.; Amatdjais-Groenen, H.I.V.; Kip, A.; Franssen, G.M.; Sedelaar, J.P.M.; Somford, D.M.; Simons, M.; Laverman, P.; Gotthardt, M.; et al. Photosensitizer-based multimodal PSMA-targeting ligands for intraoperative detection of prostate cancer. Theranostics 2021, 11, 1527–1541. [Google Scholar] [CrossRef] [PubMed]
  146. Kurth, J.; Krause, B.J.; Schwarzenbock, S.M.; Stegger, L.; Schafers, M.; Rahbar, K. External radiation exposure, excretion, and effective half-life in (177)Lu-PSMA-targeted therapies. EJNMMI Res. 2018, 8, 32. [Google Scholar] [CrossRef] [Green Version]
  147. Dumelin, C.E.; Trussel, S.; Buller, F.; Trachsel, E.; Bootz, F.; Zhang, Y.; Mannocci, L.; Beck, S.C.; Drumea-Mirancea, M.; Seeliger, M.W.; et al. A portable albumin binder from a DNA-encoded chemical library. Angew. Chem. Int. Ed. Engl. 2008, 47, 3196–3201. [Google Scholar] [CrossRef] [PubMed]
  148. Muller, C.; Struthers, H.; Winiger, C.; Zhernosekov, K.; Schibli, R. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J. Nucl. Med. 2013, 54, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  149. Kelly, J.M.; Amor-Coarasa, A.; Nikolopoulou, A.; Wustemann, T.; Barelli, P.; Kim, D.; Williams, C., Jr.; Zheng, X.; Bi, C.; Hu, B.; et al. Dual-Target Binding Ligands with Modulated Pharmacokinetics for Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2017, 58, 1442–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  150. Kelly, J.; Amor-Coarasa, A.; Ponnala, S.; Nikolopoulou, A.; Williams, C., Jr.; Schlyer, D.; Zhao, Y.; Kim, D.; Babich, J.W. Trifunctional PSMA-targeting constructs for prostate cancer with unprecedented localization to LNCaP tumors. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1841–1851. [Google Scholar] [CrossRef]
  151. Kelly, J.M.; Amor-Coarasa, A.; Ponnala, S.; Nikolopoulou, A.; Williams, C., Jr.; DiMagno, S.G.; Babich, J.W. Albumin-Binding PSMA Ligands: Implications for Expanding the Therapeutic Window. J. Nucl. Med. 2019, 60, 656–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  152. Benesova, M.; Umbricht, C.A.; Schibli, R.; Muller, C. Albumin-Binding PSMA Ligands: Optimization of the Tissue Distribution Profile. Mol. Pharm. 2018, 15, 934–946. [Google Scholar] [CrossRef]
  153. Umbricht, C.A.; Benesova, M.; Schibli, R.; Muller, C. Preclinical Development of Novel PSMA-Targeting Radioligands: Modulation of Albumin-Binding Properties To Improve Prostate Cancer Therapy. Mol. Pharm. 2018, 15, 2297–2306. [Google Scholar] [CrossRef]
  154. Borgna, F.; Deberle, L.M.; Cohrs, S.; Schibli, R.; Muller, C. Combined Application of Albumin-Binding [(177)Lu]Lu-PSMA-ALB-56 and Fast-Cleared PSMA Inhibitors: Optimization of the Pharmacokinetics. Mol. Pharm. 2020, 17, 2044–2053. [Google Scholar] [CrossRef]
  155. Kramer, V.; Fernandez, R.; Lehnert, W.; Jimenez-Franco, L.D.; Soza-Ried, C.; Eppard, E.; Ceballos, M.; Meckel, M.; Benesova, M.; Umbricht, C.A.; et al. Biodistribution and dosimetry of a single dose of albumin-binding ligand [(177)Lu]Lu-PSMA-ALB-56 in patients with mCRPC. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 893–903. [Google Scholar] [CrossRef]
  156. Deberle, L.M.; Benesova, M.; Umbricht, C.A.; Borgna, F.; Buchler, M.; Zhernosekov, K.; Schibli, R.; Muller, C. Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity. Theranostics 2020, 10, 1678–1693. [Google Scholar] [CrossRef]
  157. Deberle, L.M.; Tschan, V.J.; Borgna, F.; Sozzi-Guo, F.; Bernhardt, P.; Schibli, R.; Muller, C. Albumin-Binding PSMA Radioligands: Impact of Minimal Structural Changes on the Tissue Distribution Profile. Molecules 2020, 25, 542. [Google Scholar] [CrossRef] [PubMed]
  158. Tschan, V.J.; Borgna, F.; Schibli, R.; Muller, C. Impact of the mouse model and molar amount of injected ligand on the tissue distribution profile of PSMA radioligands. Eur. J. Nucl. Med. Mol. Imaging 2021. [Google Scholar] [CrossRef] [PubMed]
  159. Sancho, V.; Di Florio, A.; Moody, T.W.; Jensen, R.T. Bombesin receptor-mediated imaging and cytotoxicity: Review and current status. Curr Drug Deliv 2011, 8, 79–134. [Google Scholar] [CrossRef] [Green Version]
  160. Mansi, R.; Nock, B.A.; Dalm, S.U.; Busstra, M.B.; van Weerden, W.M.; Maina, T. Radiolabeled Bombesin Analogs. Cancers 2021, 13, 766. [Google Scholar] [CrossRef]
  161. Rybalov, M.; Ananias, H.J.; Hoving, H.D.; van der Poel, H.G.; Rosati, S.; de Jong, I.J. PSMA, EpCAM, VEGF and GRPR as imaging targets in locally recurrent prostate cancer after radiotherapy. Int J. Mol. Sci 2014, 15, 6046–6061. [Google Scholar] [CrossRef] [Green Version]
  162. Schollhammer, R.; De Clermont Gallerande, H.; Yacoub, M.; Quintyn Ranty, M.L.; Barthe, N.; Vimont, D.; Hindie, E.; Fernandez, P.; Morgat, C. Comparison of the radiolabeled PSMA-inhibitor (111)In-PSMA-617 and the radiolabeled GRP-R antagonist (111)In-RM2 in primary prostate cancer samples. EJNMMI Res. 2019, 9, 52. [Google Scholar] [CrossRef] [PubMed]
  163. Minamimoto, R.; Hancock, S.; Schneider, B.; Chin, F.T.; Jamali, M.; Loening, A.; Vasanawala, S.; Gambhir, S.S.; Iagaru, A. Pilot Comparison of (6)(8)Ga-RM2 PET and (6)(8)Ga-PSMA-11 PET in Patients with Biochemically Recurrent Prostate Cancer. J. Nucl. Med. 2016, 57, 557–562. [Google Scholar] [CrossRef] [Green Version]
  164. Hoberuck, S.; Michler, E.; Wunderlich, G.; Lock, S.; Holscher, T.; Froehner, M.; Braune, A.; Ivan, P.; Seppelt, D.; Zophel, K.; et al. 68Ga-RM2 PET in PSMA- positive and -negative prostate cancer patients. Nuklearmedizin 2019, 58, 352–362. [Google Scholar] [CrossRef]
  165. Fassbender, T.F.; Schiller, F.; Zamboglou, C.; Drendel, V.; Kiefer, S.; Jilg, C.A.; Grosu, A.L.; Mix, M. Voxel-based comparison of [(68)Ga]Ga-RM2-PET/CT and [(68)Ga]Ga-PSMA-11-PET/CT with histopathology for diagnosis of primary prostate cancer. EJNMMI Res. 2020, 10, 62. [Google Scholar] [CrossRef]
  166. Baratto, L.; Song, H.; Duan, H.; Hatami, N.; Bagshaw, H.P.; Buyyounouski, M.; Hancock, S.; Shah, S.; Srinivas, S.; Swift, P.; et al. PSMA- and GRPR-Targeted PET: Results from 50 Patients with Biochemically Recurrent Prostate Cancer. J. Nucl. Med. 2021, 62, 1545–1549. [Google Scholar] [CrossRef]
  167. Mapelli, P.; Ghezzo, S.; Samanes Gajate, A.M.; Preza, E.; Brembilla, G.; Cucchiara, V.; Ahmed, N.; Bezzi, C.; Presotto, L.; Bettinardi, V.; et al. Preliminary Results of an Ongoing Prospective Clinical Trial on the Use of (68)Ga-PSMA and (68)Ga-DOTA-RM2 PET/MRI in Staging of High-Risk Prostate Cancer Patients. Diagnostics 2021, 11, 68. [Google Scholar] [CrossRef]
  168. Iagaru, A. Will GRPR Compete with PSMA as a Target in Prostate Cancer? J. Nucl. Med. 2017, 58, 1883–1884. [Google Scholar] [CrossRef] [Green Version]
  169. Reubi, J.C.; Maecke, H.R. Approaches to Multireceptor Targeting: Hybrid Radioligands, Radioligand Cocktails, and Sequential Radioligand Applications. J. Nucl. Med. 2017, 58, 10S–16S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  170. Yan, Y.; Chen, X. Peptide heterodimers for molecular imaging. Amino Acids 2011, 41, 1081–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  171. Liolios, C.; Sachpekidis, C.; Schafer, M.; Kopka, K. Bispecific radioligands targeting prostate-specific membrane antigen and gastrin-releasing peptide receptors on the surface of prostate cancer cells. J. Label. Comp. Radiopharm. 2019, 62, 510–522. [Google Scholar] [CrossRef] [PubMed]
  172. Eder, M.; Schafer, M.; Bauder-Wust, U.; Haberkorn, U.; Eisenhut, M.; Kopka, K. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate 2014, 74, 659–668. [Google Scholar] [CrossRef] [PubMed]
  173. Cheng, C.; Pan, L.; Dimitrakopoulou-Strauss, A.; Schafer, M.; Wangler, C.; Wangler, B.; Haberkorn, U.; Strauss, L.G. Comparison between 68Ga-bombesin (68Ga-BZH3) and the cRGD tetramer 68Ga-RGD4 studies in an experimental nude rat model with a neuroendocrine pancreatic tumor cell line. EJNMMI Res. 2011, 1, 34. [Google Scholar] [CrossRef] [Green Version]
  174. Strauss, L.G.; Koczan, D.; Seiz, M.; Tuettenberg, J.; Schmieder, K.; Pan, L.; Cheng, C.; Dimitrakopoulou-Strauss, A. Correlation of the Ga-68-bombesin analog Ga-68-BZH3 with receptors expression in gliomas as measured by quantitative dynamic positron emission tomography (dPET) and gene arrays. Mol. Imaging Biol. 2012, 14, 376–383. [Google Scholar] [CrossRef]
  175. Bandari, R.P.; Jiang, Z.; Reynolds, T.S.; Bernskoetter, N.E.; Szczodroski, A.F.; Bassuner, K.J.; Kirkpatrick, D.L.; Rold, T.L.; Sieckman, G.L.; Hoffman, T.J.; et al. Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7–14)NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer. Nucl. Med. Biol. 2014, 41, 355–363. [Google Scholar] [CrossRef] [Green Version]
  176. Bandari, R.P.; Lewis, M.R.; Smith, C.J. Synthesis and Evaluation of [DUPA-6-Ahx-Lys (DOTA)-6-Ahx-RM2], a Novel, Bivalent Targeting Ligand for GRPr/PSMA Biomarkers of Prostate Cancer. Chem. Biol. Lett. 2018, 5, 14. [Google Scholar]
  177. Bandari, R.P.; Carmack, T.L.; Malhotra, A.; Watkinson, L.; Fergason Cantrell, E.A.; Lewis, M.R.; Smith, C.J. Development of Heterobivalent Theranostic Probes Having High Affinity/Selectivity for the GRPR/PSMA. J. Med. Chem. 2021, 64, 2151–2166. [Google Scholar] [CrossRef] [PubMed]
  178. Mendoza-Figueroa, M.J.; Escudero-Castellanos, A.; Ramirez-Nava, G.J.; Ocampo-García, B.E.; Santos-Cuevas, C.L.; Ferro-Flores, G.; Pedraza-Lopez, M.; Avila-Rodriguez, M.A. Preparation and preclinical evaluation of 68Ga-iPSMA-BN as a potential heterodimeric radiotracer for PET-imaging of prostate cancer. J. Radioanal. Nucl. Chem. 2018, 318, 2097–2105. [Google Scholar] [CrossRef]
  179. Escudero-Castellanos, A.; Ocampo-Garcia, B.; Ferro-Flores, G.; Santos-Cuevas, C.; Morales-Avila, E.; Luna-Gutierrez, M.; Isaac-Olive, K. Synthesis and preclinical evaluation of the 177Lu-DOTA-PSMA(inhibitor)-Lys3-bombesin heterodimer designed as a radiotheranostic probe for prostate cancer. Nucl. Med. Commun. 2019, 40, 278–286. [Google Scholar] [CrossRef]
  180. Rivera-Bravo, B.; Ramirez-Nava, G.; Mendoza-Figueroa, M.J.; Ocampo-Garcia, B.; Ferro-Flores, G.; Avila-Rodriguez, M.A.; Santos-Cuevas, C. [(68)Ga]Ga-iPSMA-Lys(3)-Bombesin: Biokinetics, dosimetry and first patient PET/CT imaging. Nucl. Med. Biol. 2021, 96–97, 54–60. [Google Scholar] [CrossRef] [PubMed]
  181. Mitran, B.; Varasteh, Z.; Abouzayed, A.; Rinne, S.S.; Puuvuori, E.; De Rosa, M.; Larhed, M.; Tolmachev, V.; Orlova, A.; Rosenstrom, U. Bispecific GRPR-Antagonistic Anti-PSMA/GRPR Heterodimer for PET and SPECT Diagnostic Imaging of Prostate Cancer. Cancers 2019, 11, 371. [Google Scholar] [CrossRef] [Green Version]
  182. Lundmark, F.; Abouzayed, A.; Mitran, B.; Rinne, S.S.; Varasteh, Z.; Larhed, M.; Tolmachev, V.; Rosenstrom, U.; Orlova, A. Heterodimeric Radiotracer Targeting PSMA and GRPR for Imaging of Prostate Cancer-Optimization of the Affinity towards PSMA by Linker Modification in Murine Model. Pharmaceutics 2020, 12. [Google Scholar] [CrossRef] [PubMed]
  183. Abouzayed, A.; Yim, C.B.; Mitran, B.; Rinne, S.S.; Tolmachev, V.; Larhed, M.; Rosenstrom, U.; Orlova, A. Synthesis and Preclinical Evaluation of Radio-Iodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer. Pharmaceutics 2019, 11, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  184. Shallal, H.M.; Minn, I.; Banerjee, S.R.; Lisok, A.; Mease, R.C.; Pomper, M.G. Heterobivalent agents targeting PSMA and integrin-alphavbeta3. Bioconjug Chem. 2014, 25, 393–405. [Google Scholar] [CrossRef]
  185. Liolios, C.; Sachpekidis, C.; Kolocouris, A.; Dimitrakopoulou-Strauss, A.; Bouziotis, P. PET Diagnostic Molecules Utilizing Multimeric Cyclic RGD Peptide Analogs for Imaging Integrin alphavbeta3 Receptors. Molecules 2021, 26, 792. [Google Scholar] [CrossRef] [PubMed]
  186. Maschauer, S.; Einsiedel, J.; Haubner, R.; Hocke, C.; Ocker, M.; Hubner, H.; Kuwert, T.; Gmeiner, P.; Prante, O. Labeling and glycosylation of peptides using click chemistry: A general approach to (18)F-glycopeptides as effective imaging probes for positron emission tomography. Angew. Chem. Int. Ed. Engl. 2010, 49, 976–979. [Google Scholar] [CrossRef] [PubMed]
  187. Potemkin, R.; Strauch, B.; Kuwert, T.; Prante, O.; Maschauer, S. Development of (18)F-Fluoroglycosylated PSMA-Ligands with Improved Renal Clearance Behavior. Mol. Pharm. 2020, 17, 933–943. [Google Scholar] [CrossRef]
  188. Greifenstein, L.; Engelbogen, N.; Lahnif, H.; Sinnes, J.P.; Bergmann, R.; Bachmann, M.; Rosch, F. Synthesis, Labeling and Preclinical Evaluation of a Squaric Acid Containing PSMA Inhibitor Labeled with (68) Ga: A Comparison with PSMA-11 and PSMA-617. ChemMedChem 2020, 15, 695–704. [Google Scholar] [CrossRef]
  189. Grus, T.; Lahnif, H.; Klasen, B.; Moon, E.S.; Greifenstein, L.; Roesch, F. Squaric Acid-Based Radiopharmaceuticals for Tumor Imaging and Therapy. Bioconjug. Chem. 2021, 32, 1223–1231. [Google Scholar] [CrossRef]
  190. Schirrmacher, R.; Bradtmoller, G.; Schirrmacher, E.; Thews, O.; Tillmanns, J.; Siessmeier, T.; Buchholz, H.G.; Bartenstein, P.; Wangler, B.; Niemeyer, C.M.; et al. 18F-labeling of peptides by means of an organosilicon-based fluoride acceptor. Angew Chem. Int. Ed. Engl. 2006, 45, 6047–6050. [Google Scholar] [CrossRef] [PubMed]
  191. Wurzer, A.; Di Carlo, D.; Schmidt, A.; Beck, R.; Eiber, M.; Schwaiger, M.; Wester, H.J. Radiohybrid Ligands: A Novel Tracer Concept Exemplified by (18)F- or (68)Ga-Labeled rhPSMA Inhibitors. J. Nucl. Med. 2020, 61, 735–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  192. Eiber, M.; Kroenke, M.; Wurzer, A.; Ulbrich, L.; Jooss, L.; Maurer, T.; Horn, T.; Schiller, K.; Langbein, T.; Buschner, G.; et al. (18)F-rhPSMA-7 PET for the Detection of Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. J. Nucl. Med. 2020, 61, 696–701. [Google Scholar] [CrossRef] [PubMed]
  193. Oh, S.W.; Wurzer, A.; Teoh, E.J.; Oh, S.; Langbein, T.; Kronke, M.; Herz, M.; Kropf, S.; Wester, H.J.; Weber, W.A.; et al. Quantitative and Qualitative Analyses of Biodistribution and PET Image Quality of a Novel Radiohybrid PSMA, (18)F-rhPSMA-7, in Patients with Prostate Cancer. J. Nucl. Med. 2020, 61, 702–709. [Google Scholar] [CrossRef]
  194. Kroenke, M.; Mirzoyan, L.; Horn, T.; Peeken, J.C.; Wurzer, A.; Wester, H.J.; Makowski, M.; Weber, W.A.; Eiber, M.; Rauscher, I. Matched-Pair Comparison of (68)Ga-PSMA-11 and (18)F-rhPSMA-7 PET/CT in Patients with Primary and Biochemical Recurrence of Prostate Cancer: Frequency of Non-Tumor-Related Uptake and Tumor Positivity. J. Nucl. Med. 2021, 62, 1082–1088. [Google Scholar] [CrossRef]
  195. Wurzer, A.; Di Carlo, D.; Herz, M.; Richter, A.; Robu, S.; Schirrmacher, R.; Mascarin, A.; Weber, W.; Eiber, M.; Schwaiger, M.; et al. Automated synthesis of [(18)F]Ga-rhPSMA-7/-7.3: Results, quality control and experience from more than 200 routine productions. EJNMMI Radiopharm. Chem. 2021, 6, 4. [Google Scholar] [CrossRef] [PubMed]
  196. Rauscher, I.; Karimzadeh, A.; Schiller, K.; Horn, T.; D’Alessandria, C.; Franz, C.; Worther, H.; Nguyen, N.; Combs, S.E.; Weber, W.A.; et al. Detection efficacy of (18)F-rhPSMA-7.3 PET/CT and impact on patient management in patients with biochemical recurrence of prostate cancer after radical prostatectomy and prior to potential salvage treatment. J. Nucl. Med. 2021. [Google Scholar] [CrossRef]
  197. Malaspina, S.; Oikonen, V.; Kuisma, A.; Ettala, O.; Mattila, K.; Bostrom, P.J.; Minn, H.; Kalliokoski, K.; Postema, E.J.; Miller, M.P.; et al. Kinetic analysis and optimisation of (18)F-rhPSMA-7.3 PET imaging of prostate cancer. Eur J. Nucl. Med. Mol. Imaging 2021, 48, 3723–3731. [Google Scholar] [CrossRef]
  198. Luurtsema, G.; Pichler, V.; Bongarzone, S.; Seimbille, Y.; Elsinga, P.; Gee, A.; Vercouillie, J. EANM guideline for harmonisation on molar activity or specific activity of radiopharmaceuticals: Impact on safety and imaging quality. EJNMMI Radiopharm. Chem. 2021, 6, 34. [Google Scholar] [CrossRef]
  199. Langbein, T.; Wurzer, A.; Gafita, A.; Robertson, A.; Wang, H.; Arcay, A.; Herz, M.; Wester, H.J.; Weber, W.A.; Eiber, M. The Influence of Specific Activity on the Biodistribution of (18)F-rhPSMA-7.3: A Retrospective Analysis of Clinical Positron Emission Tomography Data. J. Nucl. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
  200. Kuo, H.T.; Lepage, M.L.; Lin, K.S.; Pan, J.; Zhang, Z.; Liu, Z.; Pryyma, A.; Zhang, C.; Merkens, H.; Roxin, A.; et al. One-Step (18)F-Labeling and Preclinical Evaluation of Prostate-Specific Membrane Antigen Trifluoroborate Probes for Cancer Imaging. J. Nucl. Med. 2019, 60, 1160–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  201. Lepage, M.L.; Kuo, H.T.; Roxin, A.; Huh, S.; Zhang, Z.; Kandasamy, R.; Merkens, H.; Kumlin, J.O.; Limoges, A.; Zeisler, S.K.; et al. Toward (18) F-Labeled Theranostics: A Single Agent that Can Be Labeled with (18) F, (64) Cu, or (177) Lu. Chembiochem 2020, 21, 943–947. [Google Scholar] [CrossRef] [PubMed]
  202. Boswell, C.A.; Sun, X.; Niu, W.; Weisman, G.R.; Wong, E.H.; Rheingold, A.L.; Anderson, C.J. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J. Med. Chem. 2004, 47, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
  203. Han, X.D.; Liu, C.; Liu, F.; Xie, Q.H.; Liu, T.L.; Guo, X.Y.; Xu, X.X.; Yang, X.; Zhu, H.; Yang, Z. (64)Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model. Oncotarget 2017, 8, 74159–74169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  204. Avila-Rodriguez, M.A.; Rios, C.; Carrasco-Hernandez, J.; Manrique-Arias, J.C.; Martinez-Hernandez, R.; Garcia-Perez, F.O.; Jalilian, A.R.; Martinez-Rodriguez, E.; Romero-Pina, M.E.; Diaz-Ruiz, A. Biodistribution and radiation dosimetry of [(64)Cu]copper dichloride: First-in-human study in healthy volunteers. EJNMMI Res. 2017, 7, 98. [Google Scholar] [CrossRef] [PubMed]
  205. Hoberuck, S.; Wunderlich, G.; Michler, E.; Holscher, T.; Walther, M.; Seppelt, D.; Platzek, I.; Zophel, K.; Kotzerke, J. Dual-time-point (64) Cu-PSMA-617-PET/CT in patients suffering from prostate cancer. J. Label. Comp. Radiopharm 2019, 62, 523–532. [Google Scholar] [CrossRef] [PubMed]
  206. Eychenne, R.; Cherel, M.; Haddad, F.; Guerard, F.; Gestin, J.F. Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The “Hopeful Eight”. Pharmaceutics 2021, 13, 906. [Google Scholar] [CrossRef]
  207. Duchemin, C.; Ramos, J.P.; Stora, T.; Ahmed, E.; Aubert, E.; Audouin, N.; Barbero, E.; Barozier, V.; Bernardes, A.P.; Bertreix, P.; et al. CERN-MEDICIS: A Review Since Commissioning in 2017. Front. Med. 2021, 8, 693682. [Google Scholar] [CrossRef]
  208. Radchenko, V.; Morgenstern, A.; Jalilian, A.R.; Ramogida, C.F.; Cutler, C.; Duchemin, C.; Hoehr, C.; Haddad, F.; Bruchertseifer, F.; Gausemel, H.; et al. Production and Supply of alpha-Particle-Emitting Radionuclides for Targeted alpha-Therapy. J. Nucl. Med. 2021, 62, 1495–1503. [Google Scholar] [CrossRef]
  209. Sathekge, M.; Bruchertseifer, F.; Knoesen, O.; Reyneke, F.; Lawal, I.; Lengana, T.; Davis, C.; Mahapane, J.; Corbett, C.; Vorster, M.; et al. (225)Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: A pilot study. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 129–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  210. Sathekge, M.; Bruchertseifer, F.; Vorster, M.; Lawal, I.O.; Knoesen, O.; Mahapane, J.; Davis, C.; Reyneke, F.; Maes, A.; Kratochwil, C.; et al. Predictors of Overall and Disease-Free Survival in Metastatic Castration-Resistant Prostate Cancer Patients Receiving (225)Ac-PSMA-617 Radioligand Therapy. J. Nucl. Med. 2020, 61, 62–69. [Google Scholar] [CrossRef] [PubMed]
  211. Sathekge, M.M.; Bruchertseifer, F.; Lawal, I.O.; Vorster, M.; Knoesen, O.; Lengana, T.; Boshomane, T.G.; Mokoala, K.K.; Morgenstern, A. Treatment of brain metastases of castration-resistant prostate cancer with (225)Ac-PSMA-617. Eur J. Nucl. Med. Mol. Imaging 2019, 46, 1756–1757. [Google Scholar] [CrossRef] [PubMed]
  212. Khreish, F.; Ebert, N.; Ries, M.; Maus, S.; Rosar, F.; Bohnenberger, H.; Stemler, T.; Saar, M.; Bartholoma, M.; Ezziddin, S. (225)Ac-PSMA-617/(177)Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: Pilot experience. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 721–728. [Google Scholar] [CrossRef]
  213. Ilhan, H.; Gosewisch, A.; Boning, G.; Volter, F.; Zacherl, M.; Unterrainer, M.; Bartenstein, P.; Todica, A.; Gildehaus, F.J. Response to (225)Ac-PSMA-I&T after failure of long-term (177)Lu-PSMA RLT in mCRPC. Eur J. Nucl. Med. Mol. Imaging 2021, 48, 1262–1263. [Google Scholar] [CrossRef]
  214. Rosar, F.; Hau, F.; Bartholoma, M.; Maus, S.; Stemler, T.; Linxweiler, J.; Ezziddin, S.; Khreish, F. Molecular imaging and biochemical response assessment after a single cycle of [(225)Ac]Ac-PSMA-617/[(177)Lu]Lu-PSMA-617 tandem therapy in mCRPC patients who have progressed on [(177)Lu]Lu-PSMA-617 monotherapy. Theranostics 2021, 11, 4050–4060. [Google Scholar] [CrossRef]
  215. Sathekge, M.M.; Bruchertseifer, F.; Vorster, M.; Morgenstern, A.; Lawal, I.O. Global experience with PSMA-based alpha therapy in prostate cancer. Eur J. Nucl. Med. Mol. Imaging 2021. [Google Scholar] [CrossRef]
  216. Roscher, M.; Bakos, G.; Benesova, M. Atomic Nanogenerators in Targeted Alpha Therapies: Curie’s Legacy in Modern Cancer Management. Pharmaceuticals 2020, 13, 76. [Google Scholar] [CrossRef] [PubMed]
  217. Feuerecker, B.; Tauber, R.; Knorr, K.; Heck, M.; Beheshti, A.; Seidl, C.; Bruchertseifer, F.; Pickhard, A.; Gafita, A.; Kratochwil, C.; et al. Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. Eur. Urol. 2021, 79, 343–350. [Google Scholar] [CrossRef] [PubMed]
  218. Verburg, F.A.; Nonnekens, J.; Konijnenberg, M.W.; de Jong, M. To go where no one has gone before: The necessity of radiobiology studies for exploration beyond the limits of the “Holy Gray” in radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2680–2682. [Google Scholar] [CrossRef] [PubMed]
  219. Dhiantravan, N.; Hofman, M.S.; Ravi Kumar, A.S. Actinium-225 Prostate-specific Membrane Antigen Theranostics: Will alpha Beat beta? Eur. Urol. 2021, 79, 351–352. [Google Scholar] [CrossRef]
  220. Aerts, A.; Eberlein, U.; Holm, S.; Hustinx, R.; Konijnenberg, M.; Strigari, L.; van Leeuwen, F.W.B.; Glatting, G.; Lassmann, M. EANM position paper on the role of radiobiology in nuclear medicine. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3365–3377. [Google Scholar] [CrossRef]
  221. Pouget, J.P.; Constanzo, J. Revisiting the Radiobiology of Targeted Alpha Therapy. Front. Med. 2021, 8, 692436. [Google Scholar] [CrossRef]
  222. Kelly, J.M.; Amor-Coarasa, A.; Sweeney, E.; Wilson, J.J.; Causey, P.W.; Babich, J. A Consensus Time for Performing Quality Control of 225Ac-Labeled Radiopharmaceuticals. Res. Sq. 2020. [Google Scholar] [CrossRef]
  223. Hooijman, E.L.; Chalashkan, Y.; Ling, S.W.; Kahyargil, F.F.; Segbers, M.; Bruchertseifer, F.; Morgenstern, A.; Seimbille, Y.; Koolen, S.L.W.; Brabander, T.; et al. Development of [(225)Ac]Ac-PSMA-I&T for Targeted Alpha Therapy According to GMP Guidelines for Treatment of mCRPC. Pharmaceutics 2021, 13, 715. [Google Scholar] [CrossRef]
  224. Dumond, A.R.S.; Rodnick, M.E.; Piert, M.R.; Scott, P.J.H. Synthesis of 225Ac-PSMA-617 for preclinical use. Curr. Radiopharm 2021. [Google Scholar] [CrossRef] [PubMed]
  225. Pretze, M.; Kunkel, F.; Runge, R.; Freudenberg, R.; Braune, A.; Hartmann, H.; Schwarz, U.; Brogsitter, C.; Kotzerke, J. Ac-EAZY! Towards GMP-Compliant Module Syntheses of (225)Ac-Labeled Peptides for Clinical Application. Pharmaceuticals 2021, 14, 652. [Google Scholar] [CrossRef]
  226. Thakral, P.; Simecek, J.; Marx, S.; Kumari, J.; Pant, V.; Sen, I.B. In-House Preparation and Quality Control of Ac-225 Prostate-Specific Membrane Antigen-617 for the Targeted Alpha Therapy of Castration-Resistant Prostate Carcinoma. Indian J. Nucl. Med. 2021, 36, 114–119. [Google Scholar] [CrossRef] [PubMed]
  227. Neels, O.; Patt, M.; Decristoforo, C. Radionuclides: Medicinal products or rather starting materials? EJNMMI Radiopharm Chem. 2019, 4, 22. [Google Scholar] [CrossRef]
  228. Decristoforo, C.; Neels, O.; Patt, M. Emerging Radionuclides in a Regulatory Framework for Medicinal Products - How Do They Fit? Front. Med. 2021, 8, 678452. [Google Scholar] [CrossRef] [PubMed]
  229. Kiess, A.P.; Minn, I.; Vaidyanathan, G.; Hobbs, R.F.; Josefsson, A.; Shen, C.; Brummet, M.; Chen, Y.; Choi, J.; Koumarianou, E.; et al. (2S)-2-(3-(1-Carboxy-5-(4-211At-Astatobenzamido)Pentyl)Ureido)-Pentanedioic Acid for PSMA-Targeted alpha-Particle Radiopharmaceutical Therapy. J. Nucl. Med. 2016, 57, 1569–1575. [Google Scholar] [CrossRef] [Green Version]
  230. Mease, R.C.; Kang, C.; Kumar, V.; Ray, S.; Minn, I.L.; Brummet, M.; Gabrielson, K.; Feng, Y.; Park, A.; Kiess, A.; et al. An improved (211)At-labeled agent for PSMA-targeted alpha therapy. J. Nucl. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
  231. Lindegren, S.; Albertsson, P.; Back, T.; Jensen, H.; Palm, S.; Aneheim, E. Realizing Clinical Trials with Astatine-211: The Chemistry Infrastructure. Cancer Biother. Radiopharm. 2020, 35, 425–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  232. Feng, Y.; Zalutsky, M.R. Production, purification and availability of (211)At: Near term steps towards global access. Nucl. Med. Biol. 2021, 100–101, 12–23. [Google Scholar] [CrossRef]
  233. Zia, N.A.; Cullinane, C.; Van Zuylekom, J.K.; Waldeck, K.; McInnes, L.E.; Buncic, G.; Haskali, M.B.; Roselt, P.D.; Hicks, R.J.; Donnelly, P.S. A Bivalent Inhibitor of Prostate Specific Membrane Antigen Radiolabeled with Copper-64 with High Tumor Uptake and Retention. Angew. Chem. Int. Ed. Engl. 2019, 58, 14991–14994. [Google Scholar] [CrossRef]
  234. McInnes, L.E.; Cullinane, C.; Roselt, P.D.; Jackson, S.; Blyth, B.J.; van Dam, E.M.; Zia, N.A.; Harris, M.J.; Hicks, R.J.; Donnelly, P.S. Therapeutic Efficacy of a Bivalent Inhibitor of Prostate-Specific Membrane Antigen Labeled with (67)Cu. J. Nucl. Med. 2021, 62, 829–832. [Google Scholar] [CrossRef]
  235. Kelly, J.M.; Ponnala, S.; Amor-Coarasa, A.; Zia, N.A.; Nikolopoulou, A.; Williams, C., Jr.; Schlyer, D.J.; DiMagno, S.G.; Donnelly, P.S.; Babich, J.W. Preclinical Evaluation of a High-Affinity Sarcophagine-Containing PSMA Ligand for (64)Cu/(67)Cu-Based Theranostics in Prostate Cancer. Mol. Pharm. 2020, 17, 1954–1962. [Google Scholar] [CrossRef]
  236. McNeil, B.L.; Robertson, A.K.H.; Fu, W.; Yang, H.; Hoehr, C.; Ramogida, C.F.; Schaffer, P. Production, purification, and radiolabeling of the (203)Pb/(212)Pb theranostic pair. EJNMMI Radiopharm. Chem. 2021, 6, 6. [Google Scholar] [CrossRef] [PubMed]
  237. Dos Santos, J.C.; Schafer, M.; Bauder-Wust, U.; Lehnert, W.; Leotta, K.; Morgenstern, A.; Kopka, K.; Haberkorn, U.; Mier, W.; Kratochwil, C. Development and dosimetry of (203)Pb/(212)Pb-labelled PSMA ligands: Bringing “the lead” into PSMA-targeted alpha therapy? Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1081–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  238. Stenberg, V.Y.; Juzeniene, A.; Chen, Q.; Yang, X.; Bruland, O.S.; Larsen, R.H. Preparation of the alpha-emitting prostate-specific membrane antigen targeted radioligand [(212) Pb]Pb-NG001 for prostate cancer. J. Label. Comp. Radiopharm. 2020, 63, 129–143. [Google Scholar] [CrossRef] [Green Version]
  239. Stenberg, V.Y.; Juzeniene, A.; Bruland, O.S.; Larsen, R.H. In situ Generated 212Pb-PSMA Ligand in a 224Ra-Solution for Dual Targeting of Prostate Cancer Sclerotic Stroma and PSMA-positive Cells. Curr. Radiopharm. 2020, 13, 130–141. [Google Scholar] [CrossRef] [PubMed]
  240. Stenberg, V.Y.; Larsen, R.H.; Ma, L.W.; Peng, Q.; Juzenas, P.; Bruland, O.S.; Juzeniene, A. Evaluation of the PSMA-Binding Ligand (212)Pb-NG001 in Multicellular Tumour Spheroid and Mouse Models of Prostate Cancer. Int. J. Mol. Sci. 2021, 22, 815. [Google Scholar] [CrossRef]
  241. De Kruijff, R.M.; Wolterbeek, H.T.; Denkova, A.G. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters? Pharmaceuticals 2015, 8, 321–336. [Google Scholar] [CrossRef]
  242. Muller, C.; Zhernosekov, K.; Koster, U.; Johnston, K.; Dorrer, H.; Hohn, A.; van der Walt, N.T.; Turler, A.; Schibli, R. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for alpha- and beta- radionuclide therapy: An in vivo proof-of-concept study with a new receptor-targeted folate derivative. J. Nucl. Med. 2012, 53, 1951–1959. [Google Scholar] [CrossRef] [Green Version]
  243. Umbricht, C.A.; Koster, U.; Bernhardt, P.; Gracheva, N.; Johnston, K.; Schibli, R.; van der Meulen, N.P.; Muller, C. Alpha-PET for Prostate Cancer: Preclinical investigation using (149)Tb-PSMA-617. Sci. Rep. 2019, 9, 17800. [Google Scholar] [CrossRef] [Green Version]
  244. Muller, C.; Umbricht, C.A.; Gracheva, N.; Tschan, V.J.; Pellegrini, G.; Bernhardt, P.; Zeevaart, J.R.; Koster, U.; Schibli, R.; van der Meulen, N.P. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur J. Nucl. Med. Mol. Imaging 2019, 46, 1919–1930. [Google Scholar] [CrossRef] [Green Version]
  245. Bernhardt, P.; Svensson, J.; Hemmingsson, J.; van der Meulen, N.P.; Zeevaart, J.R.; Konijnenberg, M.W.; Muller, C.; Kindblom, J. Dosimetric Analysis of the Short-Ranged Particle Emitter (161)Tb for Radionuclide Therapy of Metastatic Prostate Cancer. Cancers 2021, 13, 11. [Google Scholar] [CrossRef]
  246. Palmer, T.L.; Tkacz-Stachowska, K.; Skartlien, R.; Omar, N.; Hassfjell, S.; Mjos, A.; Bergvoll, J.; Brevik, E.M.; Hjelstuen, O. Microdosimetry modeling with auger emitters in generalized cell geometry. Phys. Med. Biol. 2021, 66. [Google Scholar] [CrossRef]
  247. Muller, C.; Domnanich, K.A.; Umbricht, C.A.; van der Meulen, N.P. Scandium and terbium radionuclides for radiotheranostics: Current state of development towards clinical application. Br. J. Radiol. 2018, 91, 20180074. [Google Scholar] [CrossRef] [PubMed]
  248. Naskar, N.; Lahiri, S. Theranostic Terbium Radioisotopes: Challenges in Production for Clinical Application. Front. Med. 2021, 8, 675014. [Google Scholar] [CrossRef] [PubMed]
  249. Vazquez, S.M.; Endepols, H.; Fischer, T.; Tawadros, S.G.; Hohberg, M.; Zimmermanns, B.; Dietlein, F.; Neumaier, B.; Drzezga, A.; Dietlein, M.; et al. Translational Development of a Zr-89-Labeled Inhibitor of Prostate-specific Membrane Antigen for PET Imaging in Prostate Cancer. Mol. Imaging Biol. 2021. [Google Scholar] [CrossRef] [PubMed]
  250. Dietlein, F.; Kobe, C.; Munoz Vazquez, S.; Fischer, T.; Endepols, H.; Hohberg, M.; Reifegerst, M.; Neumaier, B.; Schomaecker, K.; Drzezga, A.E.; et al. An (89)Zr-labeled PSMA tracer for PET/CT imaging of prostate cancer patients. J. Nucl. Med. 2021. [Google Scholar] [CrossRef]
  251. Noor, A.; Van Zuylekom, J.K.; Rudd, S.E.; Waldeck, K.; Roselt, P.D.; Haskali, M.B.; Wheatcroft, M.P.; Yan, E.; Hicks, R.J.; Cullinane, C.; et al. Bivalent Inhibitors of Prostate-Specific Membrane Antigen Conjugated to Desferrioxamine B Squaramide Labeled with Zirconium-89 or Gallium-68 for Diagnostic Imaging of Prostate Cancer. J. Med. Chem. 2020, 63, 9258–9270. [Google Scholar] [CrossRef]
  252. Schafer, M.; Bauder-Wust, U.; Leotta, K.; Zoller, F.; Mier, W.; Haberkorn, U.; Eisenhut, M.; Eder, M. A dimerized urea-based inhibitor of the prostate-specific membrane antigen for 68Ga-PET imaging of prostate cancer. EJNMMI Res. 2012, 2, 23. [Google Scholar] [CrossRef] [Green Version]
Table 1. PSMA-targeting radiopharmaceuticals marketed, under clinical investigation or in a clinical setting.
Table 1. PSMA-targeting radiopharmaceuticals marketed, under clinical investigation or in a clinical setting.
RadiopharmaceuticalBrand NameRadionuclideReferenceNumber of Clinical Trials 1
(Completed/Ongoing)
DCFPyLPYLARIFY18F[24,66] 214/51
PSMA-11Illuccix 3/isoPROtrace-1168Ga[20,67] 2,424/89
-18F[68,69]2/-
PSMA-1007-18F[35,70] 42/13
PSMA-617-44Sc[71,72]-/-
64Cu[73]-/-
68Ga[49,74]1/3
111In[75]-/-
152Tb[76]-/-
177Lu[49,77]1/17
225Ac[78]-/2
PSMA I&T-68Ga[45]-/-
111In[79,80]-/1
177Lu[45]-/5
225Ac[48]-/-
PSMA I&S-99mTc[81]-/3
MIP-1404-99mTc[39,82]6/-
rhPSMA-7.3-18F[83,84]1/3
177Lu[85,86]-/-
JK-PSMA-7-18F[87,88]-/-
THP-PSMAGalliProst68Ga[89,90]1/1
PSMA-R2-68Ga-1/1
177Lu-0/1
1 According to clinicaltrials.gov accessed on 26 October 2021. 2 FDA-approved. 3 TGA-approved. 4 Ph. Eur. monograph applicable.
Table 2. Biodistribution data of [177Lu]Lu-PSMA-617 (5 pmoles) with co-injected non-radioactive PSMA-11 for tumor and selected non-target organs one hour after injection in athymic mice bearing PC-3 PIP tumors [106].
Table 2. Biodistribution data of [177Lu]Lu-PSMA-617 (5 pmoles) with co-injected non-radioactive PSMA-11 for tumor and selected non-target organs one hour after injection in athymic mice bearing PC-3 PIP tumors [106].
Added Amount of “Cold” PSMA-11 (Pmoles)Tumor Uptake (% ID/g)Kidney Uptake (% ID/g)Salivary Gland Uptake (% ID/g)
021.71 ± 6.13123.14 ± 52.520.48 ± 0.11
518.70 ± 2.03132.31 ± 47.400.45 ± 0.15
10026.44 ± 2.9484.29 ± 78.250.38 ± 0.30
50016.21 ± 3.502.12 ± 1.880.08 ± 0.03
100013.52 ± 3.681.16 ± 0.360.09 ± 0.07
200012.03 ± 1.960.64 ± 0.230.05 ± 0.02
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Neels, O.C.; Kopka, K.; Liolios, C.; Afshar-Oromieh, A. Radiolabeled PSMA Inhibitors. Cancers 2021, 13, 6255. https://doi.org/10.3390/cancers13246255

AMA Style

Neels OC, Kopka K, Liolios C, Afshar-Oromieh A. Radiolabeled PSMA Inhibitors. Cancers. 2021; 13(24):6255. https://doi.org/10.3390/cancers13246255

Chicago/Turabian Style

Neels, Oliver C., Klaus Kopka, Christos Liolios, and Ali Afshar-Oromieh. 2021. "Radiolabeled PSMA Inhibitors" Cancers 13, no. 24: 6255. https://doi.org/10.3390/cancers13246255

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop