Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (209)

Search Parameters:
Keywords = radiochemical purity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3398 KiB  
Article
Synthesis and Evaluation of [18F]AlF-NOTA-iPD-L1 as a Potential Theranostic Pair for [177Lu]Lu-DOTA-iPD-L1
by Guillermina Ferro-Flores, Myrna Luna-Gutiérrez, Blanca Ocampo-García, Nallely Jiménez-Mancilla, Nancy Lara-Almazán, Rigoberto Oros-Pantoja, Clara Santos-Cuevas, Erika Azorín-Vega and Laura Meléndez-Alafort
Pharmaceutics 2025, 17(7), 920; https://doi.org/10.3390/pharmaceutics17070920 - 16 Jul 2025
Viewed by 399
Abstract
Background/Objective: Programmed cell death ligand-1 (PD-L1), which is overexpressed in certain tumors, inhibits the body’s natural immune response by providing an “off” signal that enables cancer cells to evade the immune system. It has been demonstrated that [177Lu]Lu-DOTA-iPD-L1 (PD-L1 inhibitor [...] Read more.
Background/Objective: Programmed cell death ligand-1 (PD-L1), which is overexpressed in certain tumors, inhibits the body’s natural immune response by providing an “off” signal that enables cancer cells to evade the immune system. It has been demonstrated that [177Lu]Lu-DOTA-iPD-L1 (PD-L1 inhibitor cyclic peptide) promotes immune responses. This study aimed to synthesize and evaluate [18F]AlF-NOTA-iPD-L1 as a novel radiotracer for PD-L1 positron emission tomography (PET) imaging and as a potential theranostic pair for [177Lu]Lu-DOTA-iPD-L1. Methods: The NOTA-iPD-L1 peptide conjugate was synthesized and characterized by U.V.-vis, I.R.-FT, and UPLC-mass spectroscopies. Radiolabeling was performed using [18F]AlF as the precursor, and the radiochemical purity (HPLC), partition coefficient, and serum stability were assessed. Cellular uptake and internalization (in 4T1 triple-negative breast cancer cells), binding competition, immunofluorescence, and Western blot assays were applied for the radiotracer in vitro characterization. Biodistribution in mice bearing 4T1 tumors was performed, and molecular imaging (Cerenkov images) of [18F]AlF-NOTA-iPD-L1 and [177Lu]Lu-DOTA-iPD-L1 in the same mouse was obtained. Results: [18F]AlF-NOTA-iPD-L1 was prepared with a radiochemical purity greater than 97%, and it demonstrated high in vitro and in vivo stability, as well as specific recognition by the PD-L1 protein (IC50 = 9.27 ± 2.69 nM). Biodistribution studies indicated a tumor uptake of 6.4% ± 0.9% ID/g at 1-hour post-administration, and Cerenkov images showed a high tumor uptake of both [18F]AlF-NOTA-iPD-L1 and 177Lu-iPD-L1 in the same mouse. Conclusions: These results warrant further studies to evaluate the clinical usefulness of [18F]AlF-NOTA-iPD-L1/[177Lu]Lu-DOTA-iPD-L1 as a radiotheranostic pair in combination with anti-PD-L1/PD1 immunotherapy. Full article
Show Figures

Figure 1

17 pages, 2255 KiB  
Article
Engineering a Radiohybrid PSMA Ligand with an Albumin-Binding Moiety and Pharmacokinetic Modulation via an Albumin-Binding Competitor for Radiotheranostics
by Saki Hirata, Hiroaki Echigo, Masayuki Munekane, Kenji Mishiro, Kohshin Washiyama, Takeshi Fuchigami, Hiroshi Wakabayashi, Kazuhiro Takahashi, Seigo Kinuya and Kazuma Ogawa
Molecules 2025, 30(13), 2804; https://doi.org/10.3390/molecules30132804 - 29 Jun 2025
Viewed by 437
Abstract
The prostate-specific membrane antigen (PSMA) is a well-established target for radiotheranostics in prostate cancer. We previously demonstrated that 4-(p-astatophenyl)butyric acid (APBA), an albumin-binding moiety (ABM) labeled with astatine-211 (211At), enables the modulation of pharmacokinetics and enhancement of therapeutic efficacy [...] Read more.
The prostate-specific membrane antigen (PSMA) is a well-established target for radiotheranostics in prostate cancer. We previously demonstrated that 4-(p-astatophenyl)butyric acid (APBA), an albumin-binding moiety (ABM) labeled with astatine-211 (211At), enables the modulation of pharmacokinetics and enhancement of therapeutic efficacy when combined with the post-administration of an albumin-binding competitor. However, this strategy has not been explored in PSMA-targeting ligands. We designed and synthesized [211At]6, a novel PSMA ligand structurally analogous to PSMA-617 with APBA. The compound was obtained via a tin–halogen exchange reaction from the corresponding tributylstannyl precursor. Comparative cellular uptake and biodistribution studies were conducted with [211At]6, its radioiodinated analog [125I]5, and [67Ga]Ga-PSMA-617. To assess pharmacokinetic modulation, sodium 4-(p-iodophenyl)butanoate (IPBA), an albumin-binding competitor, was administered 1 h postinjection of [125I]5 and [211At]6 at a 10-fold molar excess relative to blood albumin. The synthesis of [211At]6 gave a radiochemical yield of 15.9 ± 7.7% and a radiochemical purity > 97%. The synthesized [211At]6 exhibited time-dependent cellular uptake and internalization, with higher uptake levels than [67Ga]Ga-PSMA-617. Biodistribution studies of [211At]6 in normal mice revealed a prolonged blood retention similar to those of [125I]5. Notably, post-administration of IPBA significantly reduced blood radioactivity and non-target tissue accumulation of [125I]5 and [211At]6. We found that ABM-mediated pharmacokinetic control was applicable to PSMA-targeted radiotherapeutics, broadening its potential for the optimization of radiotheranostics. Full article
(This article belongs to the Special Issue Advance in Radiochemistry, 2nd Edition)
Show Figures

Figure 1

18 pages, 2427 KiB  
Article
Exploring the Therapeutic Potential of 177Lu-PSMA-617 in a Mouse Model of Prostate Cancer Bone Metastases
by Cheng-Liang Peng, Chun-Tang Chen and I-Chung Tang
Int. J. Mol. Sci. 2025, 26(13), 5970; https://doi.org/10.3390/ijms26135970 - 21 Jun 2025
Viewed by 639
Abstract
Prostate cancer is the second leading cause of cancer-related death in men, with metastatic castration-resistant prostate cancer (mCRPC) and bone metastases representing a critical clinical challenge. Although radium-223 (Ra-223) is approved for treating mCRPC with bone metastases, its efficacy remains limited, necessitating the [...] Read more.
Prostate cancer is the second leading cause of cancer-related death in men, with metastatic castration-resistant prostate cancer (mCRPC) and bone metastases representing a critical clinical challenge. Although radium-223 (Ra-223) is approved for treating mCRPC with bone metastases, its efficacy remains limited, necessitating the development of more effective therapies. This study investigates the therapeutic potential of 177Lu-PSMA-617, a PSMA-targeted radiopharmaceutical, in a murine model of prostate cancer bone metastases. To our knowledge, this is the first study to systematically evaluate 177Lu-PSMA-617 in an orthotopic bone metastatic prostate cancer model, providing a clinically relevant preclinical platform to assess both imaging and therapeutic performance. We conducted comprehensive preclinical evaluations, including synthesis, stability analysis, cell binding assays, nuclear imaging, in vivo biodistribution, pharmacokinetics, and antitumor efficacy. The synthesis of 177Lu-PSMA-617 demonstrated high radiochemical yield (99.2%), molar activity (25.5 GBq/μmol), and purity (>98%), indicating high product quality. Stability studies confirmed minimal release of free Lutetium-177, maintaining the compound’s integrity under physiological conditions. In vitro assays showed selective binding and internalization in PSMA-positive LNCaP prostate cancer cells, with negligible uptake in PSMA-negative PC-3 cells. In vivo biodistribution studies demonstrated efficient tumor targeting, with peak uptake in LNCaP tumors (23.31 ± 0.94 %IA/g) at 4 h post-injection. The radiopharmaceutical exhibited favorable pharmacokinetics, with high tumor-to-background ratios (tumor-to-blood, 434.4; tumor-to-muscle, 857.4). Therapeutic efficacy was confirmed by significant survival extension in treated mice (30.7% for 37 MBq and 53.8% for 111 MBq), with median survival times of 34 and 40 days, respectively, compared to 26 days in the control group. Radiation dosimetry analysis indicated a favorable safety profile with a calculated effective dose of 0.127 mSv/MBq. These findings highlight the novelty and translational relevance of using 177Lu-PSMA-617 in a clinically relevant bone metastasis model, reinforcing its potential as a dual-purpose agent for both targeted therapy and molecular imaging in advanced prostate cancer. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

20 pages, 4435 KiB  
Article
89Zr-Radiolabelling of p-NCS-Bz-DFO-Anti-HER2 Affibody Immunoconjugate: Characterization and Assessment of In Vitro Potential in HER2-Positive Breast Cancer Imaging
by Maria-Roxana Tudoroiu-Cornoiu, Radu Marian Șerban, Diana Cocioabă, Dragoș Andrei Niculae, Doina Drăgănescu, Radu Leonte, Alina Catrinel Ion and Dana Niculae
Pharmaceutics 2025, 17(6), 739; https://doi.org/10.3390/pharmaceutics17060739 - 4 Jun 2025
Viewed by 671
Abstract
Background: The 89Zr radioisotope is increasingly vital in positron emission tomography (PET), especially immuno-PET, due to its long half-life of 78.4 h, allowing extended tracking of biological processes. This makes it particularly suitable for researching medicines with slow pharmacokinetics and enhances the [...] Read more.
Background: The 89Zr radioisotope is increasingly vital in positron emission tomography (PET), especially immuno-PET, due to its long half-life of 78.4 h, allowing extended tracking of biological processes. This makes it particularly suitable for researching medicines with slow pharmacokinetics and enhances the precision of molecular imaging, especially in oncology. Despite zirconium’s potential for skeletal accumulation, effective chelation with agents like deferoxamine (DFO) enables high-resolution imaging of antigen-specific tumours, such as HER2-positive breast cancer, offering insights into tumour biology and treatment response. Methods: 89Zr was produced at the ACSI TR-19 cyclotron via 89Y(p,n)89Zr reaction. Natural yttrium foils (250 μm) were irradiated with 12.9 MeV protons on target, with 100 μA·h. An HER2-targeting affibody was synthesized and conjugated with p-NCS-Bz-DFO (1:4 mass ratio) at 37 °C for 60 min (pH 9.2 ± 0.2), then purified on a PD-10 column. Radiolabelling was performed with [89Zr]Zr-oxalate at pH ranging from 7.0 to 9.0, with concentrations from 110 to 460 MBq/mL. Results: Final activity reached 2.95 ± 0.31 GBq/batch (EOB corrected), with ≥ 99.9% radionuclide and ≥95% radiochemical purities. The anti-HER2 affibody was successfully radiolabelled with 89Zr, resulting in a radiochemical purity of over 85% with molar activity of 26.5 ± 4.4 and 11.45 MBq/nmol at pH 7.0–7.5. In vitro tests on BT-474 and MCF-7 cell lines confirmed high uptake in HER2-positive cells, validating specificity and stability. Conclusions: The successful synthesis and labelling of the [89Zr]Zr-p-NCS-Bz-DFO-anti-HER2 affibody are promising achievements for its further application in targeted immuno-PET imaging for HER2-positive malignancies. Further in vivo studies are needed to support its clinical translation. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

14 pages, 1409 KiB  
Article
Production, Validation, and Exposure Dose Measurement of [13N]Ammonia Under Academic Good Manufacturing Practice Environments
by Katsumi Tomiyoshi, Yuta Namiki, David J. Yang and Tomio Inoue
Pharmaceutics 2025, 17(5), 667; https://doi.org/10.3390/pharmaceutics17050667 - 19 May 2025
Viewed by 548
Abstract
Objective: Current good manufacturing practice (cGMP) guidance for positron emission tomography (PET) drugs has been established in Europe and the United States. In Japan, the Pharmaceuticals and Medical Devices Agency (PMDA) approved the use of radiosynthesizers as medical devices for the in-house manufacturing [...] Read more.
Objective: Current good manufacturing practice (cGMP) guidance for positron emission tomography (PET) drugs has been established in Europe and the United States. In Japan, the Pharmaceuticals and Medical Devices Agency (PMDA) approved the use of radiosynthesizers as medical devices for the in-house manufacturing of PET drugs in hospitals and clinics, regardless of the cGMP environment. Without adequate facilities, equipment, and personnel required by cGMP regulations, the quality assurance (QA) and clinical effectiveness of PET drugs largely depend on the radiosynthesizers themselves. To bridge the gap between radiochemistry standardization and site qualification, the Japanese Society of Nuclear Medicine (JSNM) has issued guidance for the in-house manufacturing of small-scale PET drugs under academic GMP (a-GMP) environments. The goals of cGMP and a-GMP are different: cGMP focuses on process optimization, certification, and commercialization, while a-GMP facilitates the small-scale, in-house production of PET drugs for clinical trials and patient-specific standard of care. Among PET isotopes, N-13 has a short half-life (10 min) and must be synthesized on site. [13N]Ammonia ([13N]NH3) is used for myocardial perfusion imaging under the Japan Health Insurance System (JHIS) and was thus selected as a working example for the manufacturing of PET drugs in an a-GMP environment. Methods: A [13N]NH3-radiosynthesizer was installed in a hot cell within an a-GMP-compliant radiopharmacy unit. To comply with a-GMP regulations, the air flow was adjusted through HEPA filters. All cabinets and cells were disinfected to ensure sterility once a month. Standard operating procedures (SOPs) were applied, including analytical methods. Batch records, QA data, and radiation exposure to staff in the synthesis of [13N]NH3 were measured and documented. Results: 2.52 GBq of [13N]NH3 end-of-synthesis (EOS) was obtained in an average of 13.5 min in 15 production runs. The radiochemical purity was more than 99%. Exposure doses were 11 µSv for one production run and 22 µSv for two production runs. The pre-irradiation background dose rate was 0.12 µSv/h. After irradiation, the exposed dosage in the front of the hot cell was 0.15 µSv/h. The leakage dosage measured at the bench was 0.16 µSv/h. The exposure and leakage dosages in the manufacturing of [13N]NH3 were similar to the background level as measured by radiation monitoring systems in an a-GMP environments. All QAs, environmental data, bacteria assays, and particulates met a-GMP compliance standards. Conclusions: In-house a-GMP environments require dedicated radiosynthesizers, documentation for batch records, validation schedules, radiation protection monitoring, air and particulate systems, and accountable personnel. In this study, the in-house manufacturing of [13N]NH3 under a-GMP conditions was successfully demonstrated. These findings support the international harmonization of small-scale PET drug manufacturing in hospitals and clinics for future multi-center clinical trials and the development of a standard of care. Full article
Show Figures

Figure 1

18 pages, 2430 KiB  
Review
68Ga-Trivehexin: Current Status of αvβ6-Integrin Imaging and Perspectives
by Luca Urso, Rebecca Napolitano, Giorgia Speltri, Murat Tuncel, Ilham Badrane, Licia Uccelli, Francesca Porto, Petra Martini, Alessandro Niorettini, Corrado Cittanti, Mirco Bartolomei and Alessandra Boschi
Cancers 2025, 17(9), 1504; https://doi.org/10.3390/cancers17091504 - 29 Apr 2025
Cited by 2 | Viewed by 1352
Abstract
Background/Objectives: Molecular imaging, especially PET, has advanced significantly, shifting from metabolic radiotracers like 2-deoxy-2-[18F]fluoro-D-glucose [18F]FDG to target-specific probes. Among these, αvβ6-integrin has emerged as a promising target in cancer and non-cancer diseases. This review focuses on the radiochemical properties [...] Read more.
Background/Objectives: Molecular imaging, especially PET, has advanced significantly, shifting from metabolic radiotracers like 2-deoxy-2-[18F]fluoro-D-glucose [18F]FDG to target-specific probes. Among these, αvβ6-integrin has emerged as a promising target in cancer and non-cancer diseases. This review focuses on the radiochemical properties and initial clinical applications of the [68Ga]Ga-Trivehexin PET probe. Methods: The literature review on [68Ga]Ga-Trivehexin systematically evaluated both preclinical and clinical studies, with particular emphasis on its radiochemical characteristics and preliminary clinical applications, while highlighting advancements, associated challenges, and the potential for future developments in the field. Results: This study highlights the significant advancements achieved with [68Ga]Ga-Trivehexin in the field of molecular imaging. The optimized multimeric system has substantially enhanced the radiotracer’s pharmacokinetic properties, binding affinity, and selectivity for αvβ6 integrin, demonstrating up to an 18-fold improvement compared to previous monomeric tracers. The synthesis protocol has been refined to achieve high radiochemical purity (>95%), essential for safe clinical use. Preliminary clinical applications, particularly in head and neck cancer (HNC) and pancreatic ductal adenocarcinoma (PDAC), have shown promising results, with high detection rates and improved differential diagnosis compared to [18F]FDG. Furthermore, [68Ga]Ga-Trivehexin PET/CT has shown potential in non-oncological conditions, such as idiopathic pulmonary fibrosis (IPF) and primary hyperthyroidism, suggesting broader clinical applicability. Conclusions: [68Ga]Ga-Trivehexin is a promising PET probe for imaging αvβ6-integrin in cancers and non-oncological diseases like idiopathic pulmonary fibrosis (IPF) and primary hyperparathyroidism (PHP). Full article
(This article belongs to the Special Issue Advances in Imaging Techniques of Molecular Oncology)
Show Figures

Figure 1

12 pages, 3114 KiB  
Article
Fluorine-18-Labeled Positron Emission Tomography Probe Targeting Activated p38α: Design, Synthesis, and In Vivo Evaluation in Rodents
by Mikiya Futatsugi, Anna Miyazaki, Yasukazu Kanai, Naoya Kondo and Takashi Temma
Pharmaceuticals 2025, 18(4), 600; https://doi.org/10.3390/ph18040600 - 20 Apr 2025
Viewed by 811
Abstract
Background/Objectives: The kinase p38α, a member of the mitogen-activated protein kinase (MAPK) family, is activated by external stimuli and plays a crucial role in inflammation, tumor growth, and metabolic disorders. In particular, p38α is involved in thermogenesis and the metabolism of glucose in [...] Read more.
Background/Objectives: The kinase p38α, a member of the mitogen-activated protein kinase (MAPK) family, is activated by external stimuli and plays a crucial role in inflammation, tumor growth, and metabolic disorders. In particular, p38α is involved in thermogenesis and the metabolism of glucose in brown adipose tissue (BAT), and it contributes to the suppression of obesity and diabetes. The noninvasive imaging of activated p38α could help elucidate diverse pathological processes, including metabolic and inflammatory conditions. This study aimed to develop and evaluate a novel fluorine-18-labeled positron emission tomography (PET) probe for imaging activated p38α in vivo. Methods: We designed 6-(4-[18F]fluoro-2-fluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)-pyrido[2,3-d]pyrimidin-7(8H)-one ([18F]R1487) by replacing a fluorine atom in R1487, which is a highly selective p38α inhibitor, with 18F. A tributylstannyl precursor was reacted with [18F]KF in the presence of a copper catalyst to synthesize [18F]R1487. Biodistribution studies and PET/computed tomography (CT) were performed on normal mice to evaluate the in vivo potential of [18F]R1487. Results: [18F]R1487 was obtained with a decay-corrected radiochemical conversion of 30.6 ± 5.6% and a decay-corrected radiochemical yield of 6.9 ± 3.6% with a radiochemical purity of >99% after reversed-phase high-performance liquid chromatography purification. The biodistribution study demonstrated high and rapid radioactivity accumulation in BAT (16.3 ± 2.7 %ID/g at 5 min post-injection), with a consistently high BAT-to-blood ratio (>5 over 2 h post-injection). PET/CT imaging successfully visualized BAT with high contrast. Conclusions: These results suggest that [18F]R1487 is a promising PET probe for imaging activated p38α in vivo, which has potential applications for pathophysiological conditions such as inflammation, cancer, and metabolic disorders. Full article
(This article belongs to the Special Issue Development of Novel Radiopharmaceuticals for SPECT and PET Imaging)
Show Figures

Graphical abstract

18 pages, 4504 KiB  
Article
Is Copper-61 the New Gallium-68? Automation and Preclinical Proof-of-Concept of 61Cu-Based Radiopharmaceuticals for Prostate Cancer Imaging
by Diana Rodrigues, Alexandra I. Fonseca, Sérgio do Carmo, José Sereno, Ivanna Hrynchak, João N. Moreira, Célia Gomes and Antero Abrunhosa
Pharmaceuticals 2025, 18(4), 469; https://doi.org/10.3390/ph18040469 - 26 Mar 2025
Cited by 1 | Viewed by 901
Abstract
Background: While gallium-68 has traditionally dominated PET imaging in oncology, copper radionuclides have sparked interest for their potential applications in nuclear medicine and theranostics. Considering the advantageous physical decay properties of copper-61 compared to those of gallium-68, we describe a fully automated GMP-compliant [...] Read more.
Background: While gallium-68 has traditionally dominated PET imaging in oncology, copper radionuclides have sparked interest for their potential applications in nuclear medicine and theranostics. Considering the advantageous physical decay properties of copper-61 compared to those of gallium-68, we describe a fully automated GMP-compliant synthesis process for 61Cu-based radiopharmaceuticals and demonstrate their in vivo application for targeting the overexpressed PSMA by PET/MR imaging. Methods: Copper-61 was obtained through the irradiation of natural zinc liquid targets in a biomedical cyclotron. [61Cu]Cu-DOTAGA-PSMA-I&T and [61Cu]Cu-NODAGA-PSMA-I&T were produced without manual intervention in two Synthera® Extension modules. Radiochemical purity was analyzed by radio-HPLC and iTLC. Cellular uptake was evaluated in LNCaP and DU145 cells. In vivo PET/MRI was performed in control mice to evaluate the biodistribution of both radiopharmaceuticals, and in tumor-bearing mice to assess the targeting ability towards PSMA. Results: The fully automated process developed proved to be effective for the synthesis of 61Cu-based radiopharmaceuticals, with appropriate molar activities. The final products exhibited high radiochemical purity (>98%) and remained stable for up to 6 h after the EOS. A time-dependent increase in cellular uptake was observed in LNCaP cells, but not in DU145 cells. As opposed to [61Cu]Cu-NODAGA-PSMA-I&T, [61Cu]Cu-DOTAGA-PSMA-I&T exhibited poor kinetic stability in vivo. Subsequent PET/MR imaging with [61Cu]Cu-NODAGA-PSMA-I&T showed tumor uptake lasting up to 4 h post-injection, predominant renal clearance, and no detectable accumulation in non-targeted organs. Conclusions: These results demonstrate the feasibility of the implemented process, which yields adequate amounts of high-quality radiopharmaceuticals and can be adapted to any standard production facility. This streamlined approach enhances reproducibility and scalability, bringing copper-61 closer to widespread clinical use, to the detriment of the conventionally accepted gallium-68. Full article
Show Figures

Figure 1

15 pages, 6194 KiB  
Article
Towards Imaging Tau Hyperphosphorylation: Is DYRK1A a Potential Target for Imaging Hyperphosphorylation of Tau? Molecular Modeling Assessment and Synthesis of [125I]Radioiodinated DYRK1A Inhibitor
by Cayz G. Paclibar, Deanna M. Schafer, Agnes P. Biju, Fariha Karim, Stephanie A. Sison, Christopher Liang, Shamiha T. Ahmed and Jogeshwar Mukherjee
Molecules 2025, 30(5), 990; https://doi.org/10.3390/molecules30050990 - 21 Feb 2025
Cited by 2 | Viewed by 869
Abstract
Dual specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A), a phosphorylation kinase, is localized within the central nervous system and is linked to hyperphosphorylation of Tau. Imaging of DYRK1A may provide an earlier biomarker for Tauopathies, including Alzheimer’s disease (AD). We have used Chimera-Autodock to [...] Read more.
Dual specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A), a phosphorylation kinase, is localized within the central nervous system and is linked to hyperphosphorylation of Tau. Imaging of DYRK1A may provide an earlier biomarker for Tauopathies, including Alzheimer’s disease (AD). We have used Chimera-Autodock to evaluate potential molecules for binding to the binding site of DYRK1A. Five molecules, 10-bromo-2-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acid (4E3), 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acid (KuFal184), harmine, 6-(fluoro-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine (MK-6240), and 6-iodo-3-(1H-pyrrolo[2,3-c]pyridine-1-yl)isoquinoline (IPPI), were found to have binding energies of −10.4, −10.1, −9.0, −9.1, and −9.4 kcal/mole, respectively. Two molecules, 4E3 and KuFal184, were selective for DYRK1A, while harmine also had a monoamine oxidase A affinity, and MK-6240 and IPPI had affinity for Tau. Tau present in the brain slices of AD subject were labeled with [125I]IPPI. KuFal184 had no effect on the binding of [125I]IPPI, suggesting the absence of binding overlap of the two molecules. MK-6240, a known Tau agent was, however, able to compete with [125I]IPPI. The binding energies of harmine, MK-6240, and IPPI for the DYRK1A site suggest affinities of approximately 80–100 nM, which is insufficient to serve as an imaging agent. The higher affinity of KuFal184 (6 nM for DYRK1A) suggested that [125I]KuFal184 may be a potential imaging agent. Electrophilic radioiodination was used to synthesize [125I]KuFal184 in modest yields (25%) and high radiochemical purity (>95%). Preliminary binding studies with [125I]KuFal184 in AD brain slices showed some selectivity for cortical grey matter regions containing Tau. Full article
(This article belongs to the Special Issue Molecular Modeling: Advancements and Applications, 3rd Edition)
Show Figures

Figure 1

17 pages, 3774 KiB  
Article
Design, Synthesis, and Biological Evaluation of a Novel [18F]AlF-H3RESCA-FAPI Radiotracer Targeting Fibroblast Activation Protein
by Qingyu Zhang, Zhoumi Hu, Haitao Zhao, Fuqiang Du, Chun Lv, Tukang Peng, Yukai Zhang, Bowu Zhang, Jianjun Liu and Cheng Wang
Pharmaceuticals 2025, 18(2), 277; https://doi.org/10.3390/ph18020277 - 19 Feb 2025
Cited by 1 | Viewed by 1272
Abstract
Background: Cancer-associated fibroblasts (CAFs) are key contributors to the tumorigenic process, with fibroblast activation protein (FAP) overexpressed on CAFs in numerous epithelial carcinomas. FAP represents a promising target for tumor imaging and therapy. We aimed to develop a novel [18F]AlF-H3 [...] Read more.
Background: Cancer-associated fibroblasts (CAFs) are key contributors to the tumorigenic process, with fibroblast activation protein (FAP) overexpressed on CAFs in numerous epithelial carcinomas. FAP represents a promising target for tumor imaging and therapy. We aimed to develop a novel [18F]AlF-H3RESCA-FAPI radiotracer with a high labeling yield at room temperature for positron emission tomography (PET) imaging of FAP-expressing tumors. Methods: The H3RESCA-FAPI chelator was synthesized and radiolabeled with [18F]AlF. Its radiotracer binding affinity to FAP was assessed using surface plasmon resonance (SPR). Its in vitro stability, plasma clearance, and biodistribution were evaluated. PET imaging was performed in U87MG tumor-bearing mice, with a blocking study to assess tracer specificity. Results: The [18F]AlF-H3RESCA-FAPI radiotracer demonstrated a high binding affinity to FAP (KD < 10.09 pM) and favorable radiochemical yields (92.4 ± 2.4%) with >95% radiochemical purity. In vitro and in vivo studies showed good stability and rapid clearance from non-target tissues. PET imaging revealed specific tumor uptake, which was significantly reduced by co-injection with unlabeled DOTA-FAPI-04. Conclusions: [18F]AlF-H3RESCA-FAPI is a promising radiotracer for PET imaging of FAP-expressing tumors. Further optimization of its pharmacokinetics could make it a potential candidate for clinical translation. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Figure 1

22 pages, 9584 KiB  
Article
Synthesis and Evaluation of 68Ga- and 177Lu-Labeled [diF-Pro14]Bombesin(6−14) Analogs for Detection and Radioligand Therapy of Gastrin-Releasing Peptide Receptor-Expressing Cancer
by Lei Wang, Chao-Cheng Chen, Devon Chapple, Antonio A. W. L. Wong, Sara Kurkowska, Wing Sum Lau, Carlos F. Uribe, François Bénard and Kuo-Shyan Lin
Pharmaceuticals 2025, 18(2), 234; https://doi.org/10.3390/ph18020234 - 8 Feb 2025
Viewed by 1301
Abstract
Background/Objectives: Overexpressed in various solid tumors, the gastrin-releasing peptide receptor (GRPR) is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake of the current clinically evaluated GRPR-targeted radiopharmaceuticals limits their applications. In this study, we replaced the Pro14 [...] Read more.
Background/Objectives: Overexpressed in various solid tumors, the gastrin-releasing peptide receptor (GRPR) is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake of the current clinically evaluated GRPR-targeted radiopharmaceuticals limits their applications. In this study, we replaced the Pro14 residue in our previously reported GRPR-targeted LW02056 and ProBOMB5 with 4,4-difluoroproline (diF-Pro) to obtain an agonist LW02060 (DOTA-Pip-[D-Phe6,Tle10,NMe-His12,diF-Pro14]Bombesin(6–14)) and an antagonist LW02080 (DOTA-Pip-[D-Phe6,NMe-Gly11,Leu13(ψ)diF-Pro14]Bombesin(6–14)), respectively. Methods/Results: The binding affinities (Ki) of Ga-LW02060, Ga-LW02080, Lu-LW02060, and Lu-LW02080 were measured by in vitro competition binding assays using PC-3 cells and were found to be 5.57 ± 2.47, 21.7 ± 6.69, 8.00 ± 2.61, and 32.1 ± 8.14 nM, respectively. The 68Ga- and 177Lu-labeled ligands were obtained in 36–75% decay-corrected radiochemical yields with >95% radiochemical purity. PET imaging, SPECT imaging, and ex vivo biodistribution studies were conducted in PC-3 tumor-bearing mice. Both [68Ga]Ga-LW02060 and [68Ga]Ga-LW02080 enabled clear tumor visualization in PET images at 1 h post-injection (pi). Tumor uptake values of [68Ga]Ga-LW02060 and [68Ga]Ga-LW02080 at 1 h pi were 16.8 ± 2.70 and 7.36 ± 1.33 %ID/g, respectively, while their pancreas uptake values were 3.12 ± 0.89 and 0.38 ± 0.04 %ID/g, respectively. Compared to [177Lu]Lu-LW02080, [177Lu]Lu-LW02060 showed higher tumor uptake at all time points (1, 4, 24, 72, and 120 h pi). However, fast tumor clearance was observed for both [177Lu]Lu-LW02060 and [177Lu]Lu-LW02080. Conclusions: Our data demonstrate that [68Ga]Ga-LW02060 is promising for clinical translation for the detection of GRPR-expressing tumor lesions. However, further optimizations are needed for [177Lu]Lu-LW02060 and [177Lu]Lu-LW02080 to prolong tumor retention for therapeutic applications. Full article
Show Figures

Graphical abstract

9 pages, 3534 KiB  
Article
Radiolabeling and Preliminary In Vivo Evaluation of the Candidate CCR2 Targeting PET Radioligand [11C]AZD2423
by Kenneth Dahl, Peter Johnström, Miklós Tóth, Martin Bolin, Katarina Varnäs, Ryuji Nakao, Akihiro Takano, Yasir Khani Meynaq, Malken Bayrakdarian, Zsolt Cselényi, Christer Halldin, Lars Farde and Magnus Schou
Pharmaceuticals 2025, 18(2), 135; https://doi.org/10.3390/ph18020135 - 21 Jan 2025
Viewed by 1019
Abstract
Background: AZD2423 is a high-affinity and selective negative allosteric modulator of the chemokine receptor type 2 (CCR2). This receptor plays important roles in the extravasation and transmigration of monocytes under inflammatory conditions. The aims of the current positron emission tomography (PET) study were [...] Read more.
Background: AZD2423 is a high-affinity and selective negative allosteric modulator of the chemokine receptor type 2 (CCR2). This receptor plays important roles in the extravasation and transmigration of monocytes under inflammatory conditions. The aims of the current positron emission tomography (PET) study were as follows: (i) to develop an efficient synthetic method for labeling AZD2423 with carbon-11 (11C, t1/2 = 20.4 min) and (ii) to evaluate its potential to visualize CCR2 binding in the non-human primate (NHP) brain. Methods: [11C]AZD2423 was synthesized using a novel two-step, two-pot [11C]carbon monoxide carbonylation procedure. PET imaging studies in NHPs (n = 2) were conducted to assess its brain penetration and in vivo distribution. Results: Radiolabeling of [11C]AZD2423 was accomplished with good yield (7.4 ± 0.6%, n = 4) and high radiochemical purity (>99%) using [11C]carbon monoxide. Preliminary PET imaging in NHPs revealed low [11C]AZD2423 brain exposure under both baseline and pretreatment conditions (SUVpeak = 0.4, n = 2). However, high concentrations of radioactivity were observed in organs outside the brain at baseline, e.g., the thyroid gland (SUVpeak = 3.3, n = 2), parotid gland (SUVpeak = 3.4, n = 2), and submandibular gland (SUVpeak = 4.4, n = 2). This radioactivity was markedly reduced following pretreatment with AZD2423 (3.0 mg/kg), indicating specific binding of [11C]AZD2423 to CCR2 in vivo. The presence of specific CCR2 binding was further validated using two-tissue compartment modeling, which demonstrated a 59–63% reduction in the total volume of distribution values in the analyzed peripheral tissues. Conclusions: Altogether, [11C]AZD2423 shows potential as a PET radioligand for the in vivo visualization of CCR2 expression in tissues outside the brain and may also serve as a lead compound for the further development of a CCR2 PET radioligand suitable for brain imaging. Full article
Show Figures

Graphical abstract

14 pages, 1950 KiB  
Article
Fully Automated Production of (((S)-1-Carboxy-5-(6-([18F]fluoro)-2-methoxynicotinamido)pentyl)carbamoyl)-l-glutamic Acid ([18F]JK-PSMA-7)
by Philipp Krapf, Thomas Wicher, Boris D. Zlatopolskiy, Johannes Ermert and Bernd Neumaier
Pharmaceuticals 2025, 18(1), 119; https://doi.org/10.3390/ph18010119 - 17 Jan 2025
Viewed by 1222
Abstract
Background: The radiotracer [18F]JK-PSMA-7, a prostate cancer imaging agent for positron emission tomography (PET), was previously synthesized by indirect radiofluorination using an 18F-labeled active ester as a prosthetic group, which had to be isolated and purified before it could be [...] Read more.
Background: The radiotracer [18F]JK-PSMA-7, a prostate cancer imaging agent for positron emission tomography (PET), was previously synthesized by indirect radiofluorination using an 18F-labeled active ester as a prosthetic group, which had to be isolated and purified before it could be linked to the pharmacologically active Lys-urea-Glu motif. Although this procedure could be automated on two-reactor modules like the GE TRACERLab FX2N (FXN) to afford the tracer in modest radiochemical yields (RCY) of 18–25%, it is unsuitable for cassette-based systems with a single reactor. Methods: To simplify implementation on an automated synthesis module, the radiosynthesis of [18F]JK-PSMA-7 was devised as a one-pot, two-step reaction. The new method is based on direct (“late-stage”) radiofluorination of an appropriate onium triflate precursor and subsequent deprotection with ortho-phosphoric acid. It was successfully established on the cassette-based Trasis AllInOne (AIO) module. Results: Overall, the new protocol enabled the production of [18F]JK-PSMA-7 in activity yields of 39 ± 4% (RCY = 58%) with an overall synthesis time of about 1 h. In a single production run with an initial activity of 36-43 GBq, 13-19 GBq of [18F]JK-PSMA-7 with a radiochemical purity of >99% was obtained. Conclusions: We have established a highly reliable, GMP-compliant process for the automated radiosynthesis of [18F]JK-PSMA-7 on the Trasis AllinOne (AIO) synthesizer, ensuring consistent and efficient production of this radioligand. Full article
Show Figures

Figure 1

16 pages, 2101 KiB  
Article
Radiocobalt-Labeling of a Polypyridylamine Chelate Conjugated to GE11 for EGFR-Targeted Theranostics
by Lorraine Gaenaelle Gé, Mathias Bogetoft Danielsen, Aaraby Yoheswaran Nielsen, Mathias Lander Skavenborg, Niels Langkjær, Helge Thisgaard and Christine J. McKenzie
Molecules 2025, 30(2), 212; https://doi.org/10.3390/molecules30020212 - 7 Jan 2025
Cited by 1 | Viewed by 1855
Abstract
The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter [...] Read more.
The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (58mCo) and the Positron Emission Tomography-isotope cobalt-55 (55Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN). This chelator is suitable for binding Co2+ and Co3+. With cobalt-57 (57Co) serving as a surrogate radionuclide for 55/58mCo, the novel GE11-TZTPEN construct was successfully radiolabeled with a high radiochemical yield (99%) and purity (>99%). [57Co]Co-TZTPEN-GE11 showed high stability in PBS (pH 5) and specific uptake in EGFR-positive cell lines. Disappointingly, no tumor uptake was observed in EGFR-positive tumor-bearing mice, with most activity being accumulated predominantly in the liver, gall bladder, kidneys, and spleen. Some bone uptake was also observed, suggesting in vivo dissociation of 57Co from the complex. In conclusion, [57Co]Co-TZTPEN-GE11 shows poor pharmacokinetics in a mouse model and is, therefore, not deemed suitable as a targeting radiopharmaceutical for EGFR. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

13 pages, 3057 KiB  
Article
Comparison of ZnS(Ag) Scintillator and Proportional Counter Tube for Alpha Detection in Thin-Layer Chromatography
by Marc Pretze, Jan Wendrich, Holger Hartmann, Robert Freudenberg, Ralph A. Bundschuh, Jörg Kotzerke and Enrico Michler
Pharmaceuticals 2025, 18(1), 26; https://doi.org/10.3390/ph18010026 - 28 Dec 2024
Viewed by 967
Abstract
(1) Background: Targeted alpha therapy is an emerging field in nuclear medicine driven by two advantages: overcoming resistance in cancer-suffering patients to beta therapies and the practical application of lower activities of 212Pb- and 225Ac-labelled peptides to achieve the same [...] Read more.
(1) Background: Targeted alpha therapy is an emerging field in nuclear medicine driven by two advantages: overcoming resistance in cancer-suffering patients to beta therapies and the practical application of lower activities of 212Pb- and 225Ac-labelled peptides to achieve the same doses compared to beta therapy due to the highly cytotoxic nature of alpha particles. However, quality control of the 212Pb/225Ac-radiopharmaceuticals remains a challenge due to the low activity levels used for therapy (100 kBq/kg) and the formation of several free daughter nuclides immediately after the formulation of patient doses; (2) Methods: The routine alpha detection on thin-layer chromatograms (TLC) of 212Pb- and 225Ac-labelled peptides using a MiniScanPRO+ scanner combined with an alpha detector head was compared with detection using an AR-2000 scanner equipped with an open proportional counter tube. Measurement time, resolution and validity were compared for both scanners; (3) Results: For 225Ac, the quality control values of the radiochemical purity (RCP) were within the acceptance criteria 2 h after TLC development, regardless of when the TLC probe was taken. That is, if the TLC probe was taken 24 h after radiosynthesis, the true value of the RCP was not measured until 5 h after TLC development. For 212Pb-labelled peptides, the probe sampling did not have a high impact on the value of the RCP for the MiniScanPRO+ and AR-2000. A difference was observed when measuring TLC with the AR-2000 in different modes; (4) Conclusions: The MiniScanPRO+ is fast, does not require additional equipment and can also measure the gamma spectrum, which may be important for some radiopharmaceutical production sites and regulatory authorities. The AR-2000 has a better signal-to-noise ratio, and this eliminates the need for additional waiting time after TLC development. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Graphical abstract

Back to TopTop