Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = radiative recombination rates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3821 KiB  
Article
Sulfur-Doped ZnO as Cathode Interlayer for Efficient Inverted Organic Solar Cells
by Ermioni Polydorou, Georgios Manginas, Georgios Chatzigiannakis, Zoi Georgiopoulou, Apostolis Verykios, Elias Sakellis, Maria Eleni Rizou, Vassilis Psycharis, Leonidas Palilis, Dimitris Davazoglou, Anastasia Soultati and Maria Vasilopoulou
Materials 2025, 18(8), 1767; https://doi.org/10.3390/ma18081767 - 12 Apr 2025
Viewed by 693
Abstract
Bulk heterojunction (BHJ) organic solar cells (OSCs) represent a promising technology due to their cost-effectiveness, lightweight design and potential for flexible manufacturing. However, achieving a high power conversion efficiency (PCE) and long-term stability necessitates optimizing the interfacial layers. Zinc oxide (ZnO), commonly used [...] Read more.
Bulk heterojunction (BHJ) organic solar cells (OSCs) represent a promising technology due to their cost-effectiveness, lightweight design and potential for flexible manufacturing. However, achieving a high power conversion efficiency (PCE) and long-term stability necessitates optimizing the interfacial layers. Zinc oxide (ZnO), commonly used as an electron extraction layer (EEL) in inverted OSCs, suffers from surface defects that hinder device performance. Furthermore, the active control of its optoelectronic properties is highly desirable as the interfacial electron transport and extraction, exciton dissociation and non-radiative recombination are crucial for optimum solar cell operation. In this regard, this study investigates the sulfur doping of ZnO as a facile method to effectively increase ZnO conductivity, improve the interfacial electron transfer and, overall, enhance solar cell performance. ZnO films were sulfur-treated under various annealing temperatures, with the optimal condition found at 250 °C. Devices incorporating sulfur-doped ZnO (S-ZnO) exhibited a significant PCE improvement from 2.11% for the device with the pristine ZnO to 3.14% for the OSC based on the S-ZnO annealed at 250 °C, attributed to an enhanced short-circuit current density (Jsc) and fill factor (FF). Optical and structural analyses revealed that the sulfur treatment led to a small enhancement of the ZnO film crystallite size and an increased n-type transport capability. Additionally, the sulfurization of ZnO enhanced its electron extraction efficiency, exciton dissociation at the ZnO/photoactive layer interface and exciton/charge generation rate without altering the film morphology. These findings highlight the potential of sulfur doping as an easily implemented, straightforward approach to improving the performance of inverted OSCs. Full article
(This article belongs to the Special Issue Recent Advances in Semiconductors for Solar Cell Devices)
Show Figures

Figure 1

12 pages, 5302 KiB  
Article
Enhancing Carriers’ Confinement by Introducing BAlGaN Quantum Barriers for the Better Optoelectronic Performance of Deep UV LEDs
by Jamshad Bashir, Muhammad Usman, Dmitri Sergeevich Arteev, Zoya Noor and Ahmed Ali
Photonics 2025, 12(1), 49; https://doi.org/10.3390/photonics12010049 - 8 Jan 2025
Viewed by 888
Abstract
Ultraviolet light-emitting diodes (LEDs) based on Aluminum Gallium Nitride (AlGaN) suffer from poor carriers’ confinement effect, one possible solution to this problem is to increase the barrier heights for carriers by increasing Aluminum content in quantum barriers (QBs), which results in a higher [...] Read more.
Ultraviolet light-emitting diodes (LEDs) based on Aluminum Gallium Nitride (AlGaN) suffer from poor carriers’ confinement effect, one possible solution to this problem is to increase the barrier heights for carriers by increasing Aluminum content in quantum barriers (QBs), which results in a higher turn-on voltage. Keeping this in mind, we have improved the carriers’ confinement by introducing a small amount of Boron nitride (BN) (2%) in ternary QBs and an electron injecting layer, which results in higher barriers that restrict the out-of-active region movement of electrons and holes. With quaternary BxAlyGazN QBs, significantly enhanced electrons and hole concentrations can be observed in the active region of quantum wells (QWs), which leads to a 4.3 times increased radiative recombination rate with a 68% better internal quantum efficiency (IQE) than the referenced conventional LEDs. Relying on the fairly improved IQE and radiative recombinations, other optoelectronic characteristics such as luminous power, emission intensity, etc., are also enhanced. Our whole analysis is based on numerical techniques but we believe that fabricating the proposed type of LEDs will result in desirable light extraction and external quantum efficiencies. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

11 pages, 1735 KiB  
Article
Coulomb Contribution to Shockley–Read–Hall Recombination
by Konrad Sakowski, Pawel Strak, Pawel Kempisty, Jacek Piechota, Izabella Grzegory, Piotr Perlin, Eva Monroy, Agata Kaminska and Stanislaw Krukowski
Materials 2024, 17(18), 4581; https://doi.org/10.3390/ma17184581 - 18 Sep 2024
Cited by 2 | Viewed by 1084
Abstract
A nonradiative recombination channel is proposed, which does not vanish at low temperatures. Defect-mediated nonradiative recombination, known as Shockley–Read–Hall (SRH) recombination, is reformulated to accommodate Coulomb attraction between the charged deep defect and the approaching free carrier. It is demonstrated that this effect [...] Read more.
A nonradiative recombination channel is proposed, which does not vanish at low temperatures. Defect-mediated nonradiative recombination, known as Shockley–Read–Hall (SRH) recombination, is reformulated to accommodate Coulomb attraction between the charged deep defect and the approaching free carrier. It is demonstrated that this effect may cause a considerable increase in the carrier velocity approaching the recombination center. The effect considerably increases the carrier capture rates. It is demonstrated that, in a typical semiconductor device or semiconductor medium, the SRH recombination rate at low temperatures is much higher and cannot be neglected. This effect renders invalid the standard procedure of estimating the radiative recombination rate by measuring the light output in cryogenic temperatures, as a significant nonradiative recombination channel is still present. We also show that SRH is more effective in the case of low-doped semiconductors, as effective screening by mobile carrier density could reduce the effect. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

18 pages, 5745 KiB  
Article
Impact of Crystal Orientation on Modulation Bandwidth: Towards GaN LED-Based High-Speed Visible Light Communication
by Md Jahid Faruki, Krishnendu Bera and Nemai Karmakar
Photonics 2024, 11(6), 542; https://doi.org/10.3390/photonics11060542 - 5 Jun 2024
Cited by 2 | Viewed by 1667
Abstract
Light-emitting diodes (LEDs) with high modulation bandwidth are required for high-speed visible light communication applications. Crystal orientation in the GaN LED structure plays a key factor in its modulation bandwidth as the recombination lifetime is highly dependent on crystal orientation owing to the [...] Read more.
Light-emitting diodes (LEDs) with high modulation bandwidth are required for high-speed visible light communication applications. Crystal orientation in the GaN LED structure plays a key factor in its modulation bandwidth as the recombination lifetime is highly dependent on crystal orientation owing to the Quantum-Confined Stark Effect (QCSE). In this study, six different crystal orientation multi-quantum well (MQW) GaN LEDs are simulated to understand the impact of heterostructure orientation on modulation bandwidth, radiative recombination rates, and emission intensity. The results of this study demonstrate that semi-polar 101¯3¯ MQW LEDs provide the highest bandwidth in the current density range of 9–20 kA/cm2 compared to the other five orientations. For instance, the semi-polar 101¯3¯-based LED offers a modulation bandwidth of 912.7 MHz at 20 kA/cm2 current density. These results suggest that the semi-polar 101¯3¯ orientation-based LED has the potential to support a high-speed visible light communication system. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

17 pages, 746 KiB  
Article
Enhancement of the NORAD-Atomic-Data Database in Plasma
by Sultana N. Nahar and Guillermo Hinojosa-Aguirre
Atoms 2024, 12(4), 22; https://doi.org/10.3390/atoms12040022 - 9 Apr 2024
Cited by 2 | Viewed by 1888
Abstract
We report recent enhancements to the online atomic database at the Ohio State University, NORAD-Atomic-Data, that provide various parameters for radiative and collisional atomic processes dominant in astrophysical plasma. NORAD stands for Nahar Osu RADiative. The database belongs to the data sources, especially [...] Read more.
We report recent enhancements to the online atomic database at the Ohio State University, NORAD-Atomic-Data, that provide various parameters for radiative and collisional atomic processes dominant in astrophysical plasma. NORAD stands for Nahar Osu RADiative. The database belongs to the data sources, especially for the latest works, of the international collaborations of the Opacity Project and the Iron Project. The contents of the database are calculated values for energies, oscillator strengths, radiative decay rates, lifetimes, cross-sections for photoionization, electron-ion recombination cross-sections, and recombination rate coefficients. We have recently expanded NORAD-Atomic-Data with several enhancements over those reported earlier. They are as follows: (i) We continue to add energy levels, transition parameters, cross-sections, and recombination rates for atoms and ions with their publications. (ii) Recently added radiative atomic data contain a significant amount of transition data for photo-absorption spectral features corresponding to the X-ray resonance fluorescence effect, showing prominent wavelength regions of bio-signature elements, such as phosphorus ions, and emission bumps of heavy elements, such as of lanthanides, which may be created in a kilonova event. We are including (iii) collisional data for electron-impact-excitation, (iv) experimental data for energies and oscillator strengths for line formation, (v) experimental cross-sections for photoionization that can be applied for benchmarking and other applications, and (vi) the introduction of a web-based interactive feature to calculate spectral line ratios at various plasma temperature and density diagnostics, starting with our recently published data for P II. We presented a summary description of theoretical backgrounds for the computed data in the earlier paper. With the introduction of experimental results in the new version of NORAD, we present a summary description of measurement of high-resolution photoionization cross-sections at an Advanced Light Source of LBNL synchrotron set-up and briefly discuss other set-ups. These additions should make NORAD-Atomic-Data more versatile for various applications. For brevity, we provide information on the extensions and avoid repetition of data description of the original paper. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

18 pages, 3870 KiB  
Article
Optical Absorption, Photocarrier Recombination Dynamics and Terahertz Dielectric Properties of Electron-Irradiated GaSe Crystals
by Svetlana A. Bereznaya, Ruslan A. Redkin, Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su and Sergey Yu. Sarkisov
Crystals 2023, 13(11), 1562; https://doi.org/10.3390/cryst13111562 - 1 Nov 2023
Cited by 2 | Viewed by 2028
Abstract
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals were studied. Two absorption bands with the low-photon-energy threshold at 1.35 and 1.73 eV (T = 300 K) appeared in the transparency region of GaSe after the high-energy-electron irradiation. The observed absorption bands [...] Read more.
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals were studied. Two absorption bands with the low-photon-energy threshold at 1.35 and 1.73 eV (T = 300 K) appeared in the transparency region of GaSe after the high-energy-electron irradiation. The observed absorption bands were attributed to the defect states induced by Ga vacancies in two charge states, having the energy positions at 0.23 and 0.61 eV above the valence band maximum at T = 300 K. The optical pump-terahertz probe technique (OPTP) was employed to study the dark and photoexcited terahertz conductivity and charge carrier recombination dynamics at two-photon excitation of as-grown and 9 MeV electron-irradiated GaSe crystals. The measured values of the differential terahertz transmission at a specified photoexcitation condition were used to extract the terahertz charge carrier mobilities. The determined terahertz charge carrier mobility values were ~46 cm2/V·s and ~14 cm2/V·s for as-grown and heavily electron-irradiated GaSe crystals, respectively. These are quite close to the values determined from the Lorentz–Drude–Smith fitting of the measured dielectric constant spectra. The photo-injection-level-dependent charge carrier lifetimes were determined from the measured OPTP data, bearing in mind the model injection-level dependencies of the recombination rates governed by interband and trap-assisted Auger recombination, bulk and surface Shockley–Read–Hall (SRH) recombination and interband radiative transitions in the limit of a high injection level. It was found that GaSe possesses a long charge carrier lifetime (a~1.9 × 10−6 ps−1, b~2.7 × 10−21 cm3ps−1 and c~1.3 × 10−37 cm6ps−1), i.e., τ~0.53 μs in the limit of a relatively low injection, when the contribution from SRH recombination is dominant. The electron irradiation of as-grown GaSe crystals reduced the charge carrier lifetime at a high injection level due to Auger recombination through radiation-induced defects. It was found that the terahertz spectra of the dielectric constants of as-grown and electron-irradiated GaSe crystals can be fitted with acceptable accuracy using the Lorentz model with the Drude–Smith term accounting for the free-carrier conductivity. Full article
(This article belongs to the Special Issue Advances of Nonlinear Optical Materials)
Show Figures

Figure 1

23 pages, 8869 KiB  
Article
Performance Signature of the Best Candidate-Graded Bandgap Materials for Solar Cells with Steady-State Conversion Efficiency
by Hazem M. El-Hageen, Ahmed Nabih Zaki Rashed, Hani Albalawi, Mohammed A. Alhartomi, Yousef H. Alfaifi, Madhi Tarikham Alsubaie and Mohamed A. Mead
Energies 2023, 16(19), 7001; https://doi.org/10.3390/en16197001 - 9 Oct 2023
Cited by 6 | Viewed by 1756
Abstract
This is a comprehensive research endeavor focused on enhancing the efficiency of the proposed solar cell design. The integration of the simulation techniques, judicious material selection, and meticulous performance metrics showcase a methodical approach toward creating a solar cell capable of achieving high [...] Read more.
This is a comprehensive research endeavor focused on enhancing the efficiency of the proposed solar cell design. The integration of the simulation techniques, judicious material selection, and meticulous performance metrics showcase a methodical approach toward creating a solar cell capable of achieving high efficiency across a wide spectrum of light in the AM 1.5 G1 sun solar cell illumination spectrum. Having said this, many researchers are still working on the efficiency potential—based on external radiative efficiency (ERE), open-circuit voltage loss, and fill factor loss—of high-efficiency solar cells. The solar cell is built on aluminum-doped zinc oxide (ZnO) as a transparent conductive oxide layer; aluminum nitride (AlN) as the window layer (emitter); an SWCNT layer as the absorber layer; gallium phosphide (GaP) as the contact layer; and silicon as the substrate. The proposed solar cell transmission, reflection, and absorption relative to the variations in wavelength band spectrum are studied. The conduction and valence band energy diagrams of the solar cell design structure are simulated against the layer thickness variations for the suggested solar cell structure. Short-circuit current density and maximum power variations are clarified versus the bias voltage. Light current density is simulated versus the bias voltage (J/V characteristics curve) of the suggested solar cell design structure. The carrier generation–recombination rate is also simulated by the COMSOL simulation program versus the layer thickness of the suggested solar cell structure. The solar cell circuit design has a fill factor (FF) value of 74.31% and a power conversion efficiency value of 29.91%. Full article
(This article belongs to the Special Issue Renewable Energy Systems (Solar, Wind) and Grid Integration)
Show Figures

Figure 1

8 pages, 2812 KiB  
Communication
Mitigating the Trade-Off between Non-Radiative Recombination and Charge Transport to Enable Efficient Ternary Organic Solar Cells
by Yexin Zhang, Shuai Yuan, Congyang Zhang, Chenfeng Ding, Congcong Zhang and Hai Xu
Materials 2023, 16(16), 5620; https://doi.org/10.3390/ma16165620 - 14 Aug 2023
Cited by 2 | Viewed by 1536
Abstract
Ternary organic solar cells (OSCs) have attracted intensive studies due to their promising potential for attaining high-performing photovoltaics, whereas there has been an opening challenge in minimizing the open circuit voltage (Voc) loss while retaining the optimal carrier extraction in [...] Read more.
Ternary organic solar cells (OSCs) have attracted intensive studies due to their promising potential for attaining high-performing photovoltaics, whereas there has been an opening challenge in minimizing the open circuit voltage (Voc) loss while retaining the optimal carrier extraction in the multiple mixture absorbers. Here, we systemically investigate a ternary absorber comprised of two acceptors and a donor, in which the resultant Voc and fill factor are varied and determined by the ratios of acceptor components as a result of the unbalance of non-radiative recombination rates and charge transport. The transient absorption spectroscopy and electroluminescence techniques verify two distinguishable charge-transfer (CT) states in the ternary absorber, and the mismatch of non-radiative recombination rates of those two CT states is demonstrated to be associated with the Voc deficit, whilst the high-emissive acceptor molecule delivers inferior electron mobility, resulting in poor charge transport and a subpar fill factor. These findings enable us to optimize the mixture configuration for attaining the maximal-performing devices. Our results not only provide insight into maximizing the photovoltage of organic solar cells but can also motivate researchers to further unravel the photophysical mechanisms underlying the intermolecular electronic states of organic semiconductors. Full article
Show Figures

Figure 1

18 pages, 5081 KiB  
Article
Improvement of Luminescence and Photocatalytic Performance of ZnO:Eu3+ Nanocrystals Activated by Na+ Ions
by Wiem Bouslama, Ramzi Nasser, Bernard Gelloz, Amira Ben Gouider Trabelsi, Fatemah Homoud Alkallas, Ji-Ming Song, Ezzeddine Srasra and Habib Elhouichet
Appl. Sci. 2023, 13(14), 8448; https://doi.org/10.3390/app13148448 - 21 Jul 2023
Cited by 2 | Viewed by 1615
Abstract
Undoped and codoped (Eu/Na) ZnO nanocrystals (NCs) were successfully manufactured through an economical sol-gel method. X-ray diffraction (XRD) analysis demonstrated pure hexagonal wurtzite structure without secondary phases for all the samples. The size of the NCs was found to decrease with codoping by [...] Read more.
Undoped and codoped (Eu/Na) ZnO nanocrystals (NCs) were successfully manufactured through an economical sol-gel method. X-ray diffraction (XRD) analysis demonstrated pure hexagonal wurtzite structure without secondary phases for all the samples. The size of the NCs was found to decrease with codoping by Eu3+/Na+ which is related to the existence of strain and stress in the lattice. The dominance of the E2(high) mode in Raman spectra indicates the good crystallinity of the samples. The study from the X-ray photoelectron spectroscopy (XPS) shows the successful insertion of both Eu3+ and Na+ ions into the ZnO lattice and the generation of the zinc and oxygen vacancies (Vo) defects. The band gap energy was reduced and the Urbach energy increased with Na+ content, proving the distortion of the lattice. From the photoluminescence (PL) study, the activation of the Eu3+ ions by Na+ ones was evidenced. Longer PL lifetimes were obtained from Eu3+ ions when they were sensitized by Na+, which may be beneficial to several applications. A process of excitation transfer from both the ZnO host and Na+ sensitizers to the Eu3+ ions was evidenced and discussed. As an application, we tested the performances of the prepared NCs as photocatalysts for Rhodamine B photodegradation under sunlight irradiation. The ZnO NCs codoped with 1% Eu/4% Na displayed the best photodegradation rate with a good stability and a high kinetic rate constant k of 0.021 min−1. The photocatalytic mechanism is discussed in terms of longer radiative recombination from Eu3+ and the generated oxygen vacancies. Full article
(This article belongs to the Special Issue Recent Developments in the Application of Nanomaterials in Photonics)
Show Figures

Figure 1

17 pages, 570 KiB  
Article
Modelling of Energy-Dependent Electron Interactions in the Earth’s Mesosphere
by Laurence Campbell and Michael J. Brunger
Atmosphere 2023, 14(4), 611; https://doi.org/10.3390/atmos14040611 - 23 Mar 2023
Viewed by 1756
Abstract
Electrons are produced in the Earth’s quiet nighttime mesosphere by ionization by cosmic rays and ionization of NO by Lyman-α radiation. They are removed by attachment or recombination processes that are usually assumed in modelling to occur at the ambient temperature. However, [...] Read more.
Electrons are produced in the Earth’s quiet nighttime mesosphere by ionization by cosmic rays and ionization of NO by Lyman-α radiation. They are removed by attachment or recombination processes that are usually assumed in modelling to occur at the ambient temperature. However, the electrons have initial energies that are much higher than at thermal equilibrium, and so must have a range of energies as they progress towards equilibrium via interactions with atoms and molecules. As attachment and recombination rates are dependent on the electron energy, it is possible that modelling that considers the actual energy of the electrons will give different results to those based on assuming that the electrons are at the ambient temperature. In this work, starting with electrons at a higher initial energy, the detailed electron interactions (including elastic scattering and vibrational excitation of molecules) are tracked in a time-step simulation. This simulation is implemented by treating electrons in subranges of the electron energy spectrum as chemical species. This allows an investigation of two phenomena in the nighttime mesosphere: the origin of the D-region ledge and the production of radiative emissions from vibrationally excited molecules. It is found that there is negligible difference in the electron densities calculated using the ambient temperature or detailed interaction models, so this study does not provide an explanation for the D-region ledge. However, in the latter model, emissions at various wavelengths are predicted due to reactions involving vibrationally excited molecules. It is also found, using the time-step calculation, that it would take several hours for the predicted electron density to approach equilibrium. Full article
(This article belongs to the Special Issue Structure and Dynamics of Mesosphere and Lower Thermosphere)
Show Figures

Graphical abstract

15 pages, 1524 KiB  
Article
Radiative Recombination Plasma Rate Coefficients for Multiply Charged Ions
by Stephan Fritzsche, Anna V. Maiorova and Zhongwen Wu
Atoms 2023, 11(3), 50; https://doi.org/10.3390/atoms11030050 - 4 Mar 2023
Cited by 6 | Viewed by 2497
Abstract
Radiative recombination (RR) plasma rate coefficients are often applied to estimate electron densities and temperatures under quite different plasma conditions. Despite their frequent use, however, these rate coefficients are available only for selected (few-electron) ions and isoelectronic sequences, mainly because of the computational [...] Read more.
Radiative recombination (RR) plasma rate coefficients are often applied to estimate electron densities and temperatures under quite different plasma conditions. Despite their frequent use, however, these rate coefficients are available only for selected (few-electron) ions and isoelectronic sequences, mainly because of the computational efforts required. To overcome this limitation, we report here a (relativistic) cascade model which helps compute fine-structure and shell-resolved as well as total RR plasma rate coefficients for many, if not most, elements of the periodic table. This model is based on Jac, the Jena Atomic Calculator, and supports studies on how the electron is captured in selected levels of the recombined ion, a relativistic (Maxwellian) electron distribution, or how the multipoles beyond the electric-dipole field in the electron-photon interaction affect the RR rate coefficients and, hence, the ionization and recombination dynamics of hot plasma. As a demonstration of this model, we compute, compare, and discuss different RR plasma rate coefficients for initially helium-like ions, with an emphasis especially on Fe24+ ions. Full article
Show Figures

Figure 1

15 pages, 3484 KiB  
Article
Modeling on Monolithic Integration Structure of AlGaN/InGaN/GaN High Electron Mobility Transistors and LEDs: 2DEG Density and Radiative Recombination
by Yuan An, Kailin Ren, Luqiao Yin and Jianhua Zhang
Electronics 2023, 12(5), 1087; https://doi.org/10.3390/electronics12051087 - 22 Feb 2023
Cited by 2 | Viewed by 3562
Abstract
The monolithic integration structure of the AlGaN/InGaN/GaN−based high electron mobility transistor (HEMT) and light−emitting diode (LED) is attractive in LED lighting and visible light communication (VLC) systems owing to the reduction in parasitic elements by removing metal interconnections. Due to the band−offset and [...] Read more.
The monolithic integration structure of the AlGaN/InGaN/GaN−based high electron mobility transistor (HEMT) and light−emitting diode (LED) is attractive in LED lighting and visible light communication (VLC) systems owing to the reduction in parasitic elements by removing metal interconnections. Due to the band−offset and polarization effect, inserting a certain thickness in the InGaN layer into the traditional AlGaN/GaN single heterostructure increases the density of 2DEG to nearly twice the original. At the same time, inserting the InGaN quantum well layer can also improve the luminous efficiency of LED. In this paper, the physical models of two−dimensional electron gas (2DEG) densities and the threshold voltage of AlGaN/InGaN/GaN HEMTs are established and verified with experimental results from the literature. According to the calculation results, the two−dimensional electron gas (2DEG) density in the AlGaN/InGaN/GaN HEMT is 1.47 × 1013 cm−2, and the two−dimensional hole gas (2DHG) density is 0.55 × 1013 cm−2, when Al% = 0.2, In% = 0.1, dAlGaN = 20 nm. In addition, a physical model for the radiative recombination rate in the monolithic integration structure of HEMT−LED is proposed. This work provides a design guideline for AlGaN/InGaN/GaN HEMT and its application in visible light communication systems. Full article
Show Figures

Figure 1

12 pages, 3337 KiB  
Article
Low Light Facilitates Cyclic Electron Flows around PSI to Assist PSII against High Temperature Stress
by Yongjiang Sun, Qi Wang, Huijie Xiao and Jin Cheng
Plants 2022, 11(24), 3537; https://doi.org/10.3390/plants11243537 - 15 Dec 2022
Cited by 5 | Viewed by 2260
Abstract
Photosystem II (PSII) of grapevine leaves is easily damaged under heat stress, but no such injury is observed when the leaves are heated in low light. To elucidate the mechanisms, we compared the photosynthetic characteristics of grapevine seedlings under heat treatments (42 °C) [...] Read more.
Photosystem II (PSII) of grapevine leaves is easily damaged under heat stress, but no such injury is observed when the leaves are heated in low light. To elucidate the mechanisms, we compared the photosynthetic characteristics of grapevine seedlings under heat treatments (42 °C) for 4 h in the dark or low light (200 μmol m−2 s−1). At 42 °C in the dark, the PSII maximum quantum yield (Fv/Fm) decreased significantly with the increase in time but did not change much in low light. The JIP (chlorophyll a fluorescence rise kinetics) test results showed that low light significantly alleviated the damage to the oxygen evolving complexes (OECs; the K-step was less visible) by heat stress. Further, in the presence of de novo D1 protein synthesis inhibitor chloramphenicol, Fv/Fm did not differ significantly between dark and light treatments under heat stress. The 50% re-reduction (RR50) of P700+ on cessation of far-red illumination was faster after light treatment than that in the dark. After exposure to 25 °C in a low light for 15 min, Y(NO) (the constitutive non-regulatory non-photochemical quenching) treated by heat stress and darkness was higher than that by heat stress and light. Overall, our results suggested that enhanced CEFs around PSI in low light could assist PSII against heat damage by maintaining the rate of PSII repair and inhibiting the non-radiative charge recombination in PSII reaction centers. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 3782 KiB  
Article
Dislocation Filter Based on LT-GaAs Layers for Monolithic GaAs/Si Integration
by Mikhail O. Petrushkov, Demid S. Abramkin, Eugeny A. Emelyanov, Mikhail A. Putyato, Oleg S. Komkov, Dmitrii D. Firsov, Andrey V. Vasev, Mikhail Yu. Yesin, Askhat K. Bakarov, Ivan D. Loshkarev, Anton K. Gutakovskii, Victor V. Atuchin and Valery V. Preobrazhenskii
Nanomaterials 2022, 12(24), 4449; https://doi.org/10.3390/nano12244449 - 14 Dec 2022
Cited by 16 | Viewed by 2621
Abstract
The use of low-temperature (LT) GaAs layers as dislocation filters in GaAs/Si heterostructures (HSs) was investigated in this study. The effects of intermediate LT-GaAs layers and of the post-growth and cyclic in situ annealing on the structural properties of GaAs/LT-GaAs/GaAs/Si(001) HSs were studied. [...] Read more.
The use of low-temperature (LT) GaAs layers as dislocation filters in GaAs/Si heterostructures (HSs) was investigated in this study. The effects of intermediate LT-GaAs layers and of the post-growth and cyclic in situ annealing on the structural properties of GaAs/LT-GaAs/GaAs/Si(001) HSs were studied. It was found that the introduction of LT-GaAs layers, in combination with post-growth cyclic annealing, reduced the threading dislocation density down to 5 × 106 cm−2, the root-mean-square roughness of the GaAs surface down to 1.1 nm, and the concentration of non-radiative recombination centers in the near-surface GaAs/Si regions down to the homoepitaxial GaAs level. Possible reasons for the improvement in the quality of near-surface GaAs layers are discussed. On the one hand, the presence of elastic deformations in the GaAs/LT-GaAs system led to dislocation line bending. On the other hand, gallium vacancies, formed in the LT-GaAs layers, diffused into the overlying GaAs layers and led to an increase in the dislocation glide rate. It was demonstrated that the GaAs/Si HSs obtained with these techniques are suitable for growing high-quality light-emitting HSs with self-assembled quantum dots. Full article
(This article belongs to the Special Issue Advances in Semiconductor Nano-Structures)
Show Figures

Graphical abstract

9 pages, 2007 KiB  
Article
In-Composition Graded Quantum Barriers for Polarization Manipulation in InGaN-Based Yellow Light-Emitting Diodes
by Siyuan Cui, Guoyi Tao, Liyan Gong, Xiaoyu Zhao and Shengjun Zhou
Materials 2022, 15(23), 8649; https://doi.org/10.3390/ma15238649 - 4 Dec 2022
Cited by 2 | Viewed by 2066
Abstract
Highly efficient indium gallium nitride (InGaN)-based yellow light-emitting diodes (LEDs) with low efficiency droop have always been pursued for next-generation displays and lighting products. In this work, we report an InGaN quantum barrier (QB) with linear-increase In-composition along [0001] direction for InGaN-based yellow [...] Read more.
Highly efficient indium gallium nitride (InGaN)-based yellow light-emitting diodes (LEDs) with low efficiency droop have always been pursued for next-generation displays and lighting products. In this work, we report an InGaN quantum barrier (QB) with linear-increase In-composition along [0001] direction for InGaN-based yellow LEDs. With the In-composition in QBs systematically engineered, three QB structures including linear-increase QB (LIQB), linear-decrease QB (LDQB) and commonly used flat QB (FQB) were investigated by simulation. The results show that the LIQB not only yields enhanced electron confinement, but also contributes to suppressed polarization field. Consequently, the yellow LED incorporated with LIQBs demonstrates improved radiative recombination rates and the efficiency droop is alleviated. Under a current density of 100 A/cm2, the efficiency droop ratios of LEDs with FQBs, LDQBs and LIQBs are 58.7%, 62.2% and 51.5%, respectively. When current density varies from 1 A/cm2 to 60 A/cm2, the blueshift values of peak emission wavelength for LEDs with FQBs, LDQBs and LIQBs are 14.4 nm, 16.5 nm and 13.0 nm, respectively. This work is believed to provide a feasible solution for high-performance InGaN-based LEDs in long-wavelength spectral region. Full article
(This article belongs to the Special Issue Nanowires: Growth and Applications)
Show Figures

Figure 1

Back to TopTop