Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = radiation hematopoietic syndrome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 868 KiB  
Review
Hematopoietic Stem Cell Transplant in Adult Patients with Fanconi Anemia: A Review
by Bradley Rockwell, Prakriti Ramamurthy, Jhannine Alyssa Verceles, Amanda Lombardo, Amit Verma and Dennis L. Cooper
Diseases 2025, 13(7), 195; https://doi.org/10.3390/diseases13070195 - 25 Jun 2025
Viewed by 624
Abstract
Fanconi anemia (FA) is characterized by faulty DNA repair and is associated with bone marrow failure, acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS). Because of the more widespread use of next-generation sequencing (NGS) and increased testing for germline mutations in young patients [...] Read more.
Fanconi anemia (FA) is characterized by faulty DNA repair and is associated with bone marrow failure, acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS). Because of the more widespread use of next-generation sequencing (NGS) and increased testing for germline mutations in young patients with MDS and AML, FA is increasingly being first diagnosed in adults, many of whom lack classical physical stigmata. Hematopoietic stem cell transplant is the only cure for the hematologic manifestations of FA but there are several unique considerations in FA patients, including first maintaining a high index of suspicion for the diagnosis in patients with minimal phenotypic abnormalities, second an exaggerated sensitivity to alkylating agents and radiation, precluding the use of standard myeloablative conditioning regimens despite the young age of most of the patients, and lastly a marked propensity for squamous cell cancers of the upper aerodigestive tract and anogenital region, likely further increased by the drugs used in conditioning and by chronic inflammation in patients who develop graft-versus-host disease. Despite a growing number of FA patients surviving into adulthood or first being diagnosed with FA as an adult, there is minimal literature describing transplant methodology and outcomes. In the following case-based review of a patient, we incorporate recent findings from the literature on the care of this challenging patient population. Full article
Show Figures

Figure 1

18 pages, 5983 KiB  
Article
Plasma and Fecal Metabolites Combined with Gut Microbiome Reveal Systemic Metabolic Shifts in 60Co Gamma-Irradiated Rats
by Jie Zong, Haiyang Wu, Xuan Hu, Ami Yao, Wenhua Zhu, Guifang Dou, Shuchen Liu, Xiaoxia Zhu, Ruolan Gu, Yunbo Sun, Zhuona Wu, Shanshan Wang and Hui Gan
Metabolites 2025, 15(6), 363; https://doi.org/10.3390/metabo15060363 - 29 May 2025
Viewed by 590
Abstract
Background: High-dose γ-ray exposure (≥7 Gy) in nuclear emergencies induces life-threatening acute radiation syndrome, characterized by rapid hematopoietic collapse (leukocytes <0.5 × 10⁹/L) and gastrointestinal barrier failure. While clinical biomarkers like leukocyte depletion guide current therapies targeting myelosuppression, the concomitant metabolic disturbances [...] Read more.
Background: High-dose γ-ray exposure (≥7 Gy) in nuclear emergencies induces life-threatening acute radiation syndrome, characterized by rapid hematopoietic collapse (leukocytes <0.5 × 10⁹/L) and gastrointestinal barrier failure. While clinical biomarkers like leukocyte depletion guide current therapies targeting myelosuppression, the concomitant metabolic disturbances and gut microbiota dysbiosis—critical determinants of delayed mortality—remain insufficiently profiled across the 28-day injury-recovery continuum. Methods: This study investigates the effects of 60Co γ-ray irradiation on metabolic characteristics and gut microbiota in Sprague Dawley rats using untargeted metabolomics and 16S rRNA sequencing. Meanwhile, body weight and complete blood counts were measured. Results: Body weight exhibited significant fluctuations, with the most pronounced deviation observed at 14 days. Blood counts revealed a rapid decline in white blood cells, red blood cells, and platelets post-irradiation, reaching nadirs at 7–14 days, followed by gradual recovery to near-normal levels by 28 days. Untargeted metabolomics identified 32 upregulated and 33 downregulated plasma metabolites at 14 days post-irradiation, while fecal metabolites showed 47 upregulated and 18 downregulated species at 3 days. Key metabolic pathways impacted included Glycerophospholipid metabolism, alpha-linolenic acid metabolism, and biosynthesis of unsaturated fatty acids. Gut microbiota analysis demonstrated no significant change in α-diversity but significant β-diversity shifts (p < 0.05), indicating a marked alteration in the compositional structure of the intestinal microbial community following radiation exposure. Principal coordinate analysis confirmed distinct clustering between control and irradiated groups, with increased abundance of Bacteroidota and decreased Firmicutes in irradiated rats. These findings highlight dynamic metabolic and microbial disruptions post-irradiation, with recovery patterns suggesting a 28-day restoration cycle. Spearman’s rank correlation analysis explored associations between the top 20 fecal metabolites and 50 abundant bacterial taxa. Norank_f_Muribaculaceae, Prevotellaceae_UCG-001, and Bacteroides showed significant correlations with various radiation-altered metabolites, highlighting metabolite–microbiota relationships post-radiation. Conclusions: This study provides insights into potential biomarkers for radiation-induced physiological damage and underscores the interplay between systemic metabolism and gut microbiota in radiation response. Full article
(This article belongs to the Section Advances in Metabolomics)
Show Figures

Figure 1

15 pages, 2759 KiB  
Article
Preconditioning with Rapamycin Improves Therapeutic Potential of Placenta-Derived Mesenchymal Stem Cells in Mouse Model of Hematopoietic Acute Radiation Syndrome
by Vasilii Slautin, Vladislav Ivanov, Alexandr Bugakov, Anna Chernysheva, Ilya Gavrilov, Irina Maklakova, Vladimir Bazarnyi, Dmitry Grebnev and Olga Kovtun
Int. J. Mol. Sci. 2025, 26(10), 4804; https://doi.org/10.3390/ijms26104804 - 17 May 2025
Viewed by 691
Abstract
Acute radiation syndrome (ARS) results from high-dose ionizing radiation (IR) exposure, with bone marrow (BM) being highly susceptible due to its proliferative activity. BM injury causes pancytopenia, leading to infections, anemia, and bleeding. Mesenchymal stem cells (MSCs) hold promise for ARS treatment because [...] Read more.
Acute radiation syndrome (ARS) results from high-dose ionizing radiation (IR) exposure, with bone marrow (BM) being highly susceptible due to its proliferative activity. BM injury causes pancytopenia, leading to infections, anemia, and bleeding. Mesenchymal stem cells (MSCs) hold promise for ARS treatment because of their immunomodulatory, anti-inflammatory, and regenerative properties. However, challenges such as replicative senescence, poor survival, and engraftment in irradiated microenvironments limit their efficacy. This study evaluated rapamycin-preconditioned placenta-derived MSCs (rPD-MSCs) in a mouse ARS model. Rapamycin was selected for preconditioning due to its ability to induce autophagy and modulate cytokine secretion. We assessed rapamycin-dependent modulation of autophagy-related genes and proteins, as well as hematopoietic cytokines secretion in PD-MSCs, and evaluated morphological changes in blood and BM at 7 and 21 days post-irradiation in ICR/CD1 mice. Preconditioning with rapamycin alters the secretion of granulocyte colony-stimulating factor (G-CSF), stem cell factor (SCF), and Fms-related tyrosine kinase 3 ligand (Flt3LG) in PD-MSCs without affecting cell viability. rPD-MSCs better enhance hematopoietic recovery, restore bone marrow cellularity, and increase peripheral blood cell counts by elevating the secretion of hematopoietic cytokines compared to non-preconditioned cells. These results highlight rapamycin preconditioning as a promising strategy to enhance MSCs therapeutic potential for ARS, supporting further preclinical and clinical exploration. Full article
Show Figures

Graphical abstract

21 pages, 2926 KiB  
Article
Identification of Potential Prophylactic Medical Countermeasures Against Acute Radiation Syndrome (ARS)
by Kia T. Liermann-Wooldrik, Arpita Chatterjee, Elizabeth A. Kosmacek, Molly S. Myers, Oluwaseun Adebisi, Louise Monga-Wells, Liu Mei, Michelle P. Takacs, Patrick H. Dussault, Daniel R. Draney, Robert Powers, James W. Checco, Chittibabu Guda, Tomáš Helikar, David B. Berkowitz, Kenneth W. Bayles, Alan H. Epstein, Lynnette Cary, Daryl J. Murry and Rebecca E. Oberley-Deegan
Int. J. Mol. Sci. 2025, 26(9), 4055; https://doi.org/10.3390/ijms26094055 - 25 Apr 2025
Viewed by 905
Abstract
Acute radiation syndrome (ARS) occurs when hematopoietic or gastrointestinal cells are damaged by radiation exposure causing DNA damage to the bone marrow and gastrointestinal epithelial stem cell populations. In these highly proliferative cell types, DNA damage inhibits stem cell repopulation. In humans and [...] Read more.
Acute radiation syndrome (ARS) occurs when hematopoietic or gastrointestinal cells are damaged by radiation exposure causing DNA damage to the bone marrow and gastrointestinal epithelial stem cell populations. In these highly proliferative cell types, DNA damage inhibits stem cell repopulation. In humans and animals, this inability to regenerate stem cells is lethal. Within this manuscript, several compounds, Amifostine, Captopril, Ciprofloxacin, PrC-210, 5-AED (5-androstene-3β,17β-diol), and 5-AET (5-androstene-3β,7β,17B-triol), are assessed for their ability to protect against ARS in an in vitro and/or in vivo setting. ARS was accomplished by irradiating mouse bone marrow cells or rat intestinal epithelial (IEC-6) cells in vitro with 4–8 Gy and in vivo by exposing Mus musculus to 7.3 Gy of whole-body irradiation. The primary endpoints of this study include cellular viability, DNA damage via γ-H2AX, colony formation, and overall survival at 30-days post-irradiation. In addition to evaluating the radioprotective performance of each compound, this study establishes a distinct set of in vitro assays to predict the overall efficacy of potential radioprotectors in an in vivo model of ARS. Furthermore, these results highlight the need for FDA-approved medical intervention to protect against ARS. Full article
(This article belongs to the Special Issue New Insight into Radiation Biology and Radiation Exposure)
Show Figures

Figure 1

16 pages, 305 KiB  
Review
The Significance of the Response: Beyond the Mechanics of DNA Damage and Repair—Physiological, Genetic, and Systemic Aspects of Radiosensitivity in Higher Organisms
by Peter V. Ostoich
Int. J. Mol. Sci. 2025, 26(1), 257; https://doi.org/10.3390/ijms26010257 - 30 Dec 2024
Cited by 2 | Viewed by 1211
Abstract
Classical radiation biology as we understand it clearly identifies genomic DNA as the primary target of ionizing radiation. The evidence appears rock-solid: ionizing radiation typically induces DSBs with a yield of ~30 per cell per Gy, and unrepaired DSBs are a very cytotoxic [...] Read more.
Classical radiation biology as we understand it clearly identifies genomic DNA as the primary target of ionizing radiation. The evidence appears rock-solid: ionizing radiation typically induces DSBs with a yield of ~30 per cell per Gy, and unrepaired DSBs are a very cytotoxic lesion. We know very well the kinetics of induction and repair of different types of DNA damage in different organisms and cell lines. And yet, higher organisms differ in their radiation sensitivity—humans can be unpredictably radiosensitive during radiotherapy; this can be due to genetic defects (e.g., ataxia telangiectasia (AT), Fanconi anemia, Nijmegen breakage syndrome (NBS), and the xeroderma pigmentosum spectrum, among others) but most often is unexplained. Among other mammals, goats (Capra hircus) appear to be very radiosensitive (LD50 = 2.4 Gy), while Mongolian gerbils (Meriones unguiculatus) are radioresistant and withstand quadruple that dose (LD50 = 10 Gy). Primary radiation lethality in mammals is due most often to hematopoietic insufficiency, which is, in the words of Dr. Theodor Fliedner, one of the pioneers of radiation hematology, “a disturbance in cellular kinetics”. And yet, what makes one cell type, or one particular organism, more sensitive to ionizing radiation? The origins of radiosensitivity go above and beyond the empirical evidence and models of DNA damage and repair—as scientists, we must consider other phenomena: the radiation-induced bystander effect (RIBE), abscopal effects, and, of course, genomic instability and immunomodulation. It seems that radiosensitivity is not entirely determined by the mathematics of DNA damage and repair, and it is conceivable that radiation biology may benefit from an informed enquiry into physiology and organism-level signaling affecting radiation responses. The current article is a review of several key aspects of radiosensitivity beyond DNA damage induction and repair; it presents evidence supporting new potential venues of research for radiation biologists. Full article
(This article belongs to the Special Issue Radiation-Induced DNA Damage and Toxicity)
13 pages, 246 KiB  
Entry
Ears, Nose, and Throat in Leukemias and Lymphomas
by Pinelopi Samara, Michail Athanasopoulos and Ioannis Athanasopoulos
Encyclopedia 2024, 4(4), 1891-1903; https://doi.org/10.3390/encyclopedia4040123 - 18 Dec 2024
Viewed by 2578
Definition
Leukemias and lymphomas, encompassing a spectrum of hematologic malignancies, often exhibit manifestations in various tissues and organs, including the ears, nose, and throat (ENT) region, extending beyond the typical sites of bone marrow and lymph nodes. This manuscript explores these interactions, considering disease-related [...] Read more.
Leukemias and lymphomas, encompassing a spectrum of hematologic malignancies, often exhibit manifestations in various tissues and organs, including the ears, nose, and throat (ENT) region, extending beyond the typical sites of bone marrow and lymph nodes. This manuscript explores these interactions, considering disease-related symptoms and treatment effects. ENT symptoms, such as otalgia, hearing loss, and nasal obstruction, may arise from direct infiltration or treatment complications, with chemotherapy-induced ototoxicity being particularly characteristic. Furthermore, immunotherapy complications, including cytokine release syndrome and mucosal irritation, can also contribute to ENT symptoms. Additionally, targeted therapy and radiotherapy can lead to mucosal dryness, dysphonia, and radiation-induced otitis media. Patients with hematologic malignancies are especially vulnerable to various ENT infections, including bacterial, viral, and fungal infections, due to compromised immunity resulting from both the disease and its treatments. Conditions such as rhinosinusitis, otitis media, and pharyngitis pose significant management challenges. Moreover, patients undergoing hematopoietic stem cell transplantation (HSCT) face unique ENT considerations, including mucositis, opportunistic infections, and graft-versus-host disease in cases of allogeneic HSCT. These patients require specialized pre-transplant evaluations, meticulous post-transplant surveillance, and tailored assistance to mitigate complications. This manuscript underscores the importance of a multidisciplinary approach that integrates diagnostics, pharmacological interventions, and supportive care to address both disease-related and treatment-induced ENT manifestations. Further research is needed to refine management strategies and improve outcomes in this complex clinical population. Full article
(This article belongs to the Section Medicine & Pharmacology)
Show Figures

Graphical abstract

21 pages, 1385 KiB  
Review
Cell Therapies for Acute Radiation Syndrome
by Barbara A. Christy, Maryanne C. Herzig, Xiaowu Wu, Arezoo Mohammadipoor, Jennifer S. McDaniel and James A. Bynum
Int. J. Mol. Sci. 2024, 25(13), 6973; https://doi.org/10.3390/ijms25136973 - 26 Jun 2024
Cited by 3 | Viewed by 3644
Abstract
The risks of severe ionizing radiation exposure are increasing due to the involvement of nuclear powers in combat operations, the increasing use of nuclear power, and the existence of terrorist threats. Exposure to a whole-body radiation dose above about 0.7 Gy results in [...] Read more.
The risks of severe ionizing radiation exposure are increasing due to the involvement of nuclear powers in combat operations, the increasing use of nuclear power, and the existence of terrorist threats. Exposure to a whole-body radiation dose above about 0.7 Gy results in H-ARS (hematopoietic acute radiation syndrome), which is characterized by damage to the hematopoietic system; higher doses result in further damage to the gastrointestinal and nervous systems. Only a few medical countermeasures for ARS are currently available and approved for use, although others are in development. Cell therapies (cells or products produced by cells) are complex therapeutics that show promise for the treatment of radiation injury and have been shown to reduce mortality and morbidity in animal models. Since clinical trials for ARS cannot be ethically conducted, animal testing is extremely important. Here, we describe cell therapies that have been tested in animal models. Both cells and cell products appear to promote survival and lessen tissue damage after whole-body irradiation, although the mechanisms are not clear. Because radiation exposure often occurs in conjunction with other traumatic injuries, animal models of combined injury involving radiation and future countermeasure testing for these complex medical problems are also discussed. Full article
Show Figures

Figure 1

25 pages, 6065 KiB  
Article
Ferroptosis, Inflammation, and Microbiome Alterations in the Intestine in the Göttingen Minipig Model of Hematopoietic-Acute Radiation Syndrome
by Timothy Horseman, W. Bradley Rittase, John E. Slaven, Dmitry T. Bradfield, Andrew M. Frank, Joseph A. Anderson, Evelyn C. Hays, Andrew C. Ott, Anjali E. Thomas, Alison R. Huppmann, Sang-Ho Lee, David M. Burmeister and Regina M. Day
Int. J. Mol. Sci. 2024, 25(8), 4535; https://doi.org/10.3390/ijms25084535 - 20 Apr 2024
Cited by 2 | Viewed by 3647
Abstract
Hematopoietic acute radiation syndrome (H-ARS) involves injury to multiple organ systems following total body irradiation (TBI). Our laboratory demonstrated that captopril, an angiotensin-converting enzyme inhibitor, mitigates H-ARS in Göttingen minipigs, with improved survival and hematopoietic recovery, as well as the suppression of acute [...] Read more.
Hematopoietic acute radiation syndrome (H-ARS) involves injury to multiple organ systems following total body irradiation (TBI). Our laboratory demonstrated that captopril, an angiotensin-converting enzyme inhibitor, mitigates H-ARS in Göttingen minipigs, with improved survival and hematopoietic recovery, as well as the suppression of acute inflammation. However, the effects of captopril on the gastrointestinal (GI) system after TBI are not well known. We used a Göttingen minipig H-ARS model to investigate captopril’s effects on the GI following TBI (60Co 1.79 or 1.80 Gy, 0.42–0.48 Gy/min), with endpoints at 6 or 35 days. The vehicle or captopril (0.96 mg/kg) was administered orally twice daily for 12 days, starting 4 h post-irradiation. Ilea were harvested for histological, protein, and RNA analyses. TBI increased congestion and mucosa erosion and hemorrhage, which were modulated by captopril. GPX-4 and SLC7A11 were downregulated post-irradiation, consistent with ferroptosis at 6 and 35 days post-irradiation in all groups. Interestingly, p21/waf1 increased at 6 days in vehicle-treated but not captopril-treated animals. An RT-qPCR analysis showed that radiation increased the gene expression of inflammatory cytokines IL1B, TNFA, CCL2, IL18, and CXCL8, and the inflammasome component NLRP3. Captopril suppressed radiation-induced IL1B and TNFA. Rectal microbiome analysis showed that 1 day of captopril treatment with radiation decreased overall diversity, with increased Proteobacteria phyla and Escherichia genera. By 6 days, captopril increased the relative abundance of Enterococcus, previously associated with improved H-ARS survival in mice. Our data suggest that captopril mitigates senescence, some inflammation, and microbiome alterations, but not ferroptosis markers in the intestine following TBI. Full article
(This article belongs to the Special Issue Regulation and Targeting of Ferroptosis in Tumor and Beyond)
Show Figures

Figure 1

17 pages, 383 KiB  
Review
Health Effects of Ionizing Radiation on the Human Body
by Jasminka Talapko, Domagoj Talapko, Darko Katalinić, Ivan Kotris, Ivan Erić, Dino Belić, Mila Vasilj Mihaljević, Ana Vasilj, Suzana Erić, Josipa Flam, Sanja Bekić, Suzana Matić and Ivana Škrlec
Medicina 2024, 60(4), 653; https://doi.org/10.3390/medicina60040653 - 18 Apr 2024
Cited by 33 | Viewed by 11099
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) [...] Read more.
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms—human beings—in the course of evolution have not acquired receptors for the direct “capture” of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively—bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin. Full article
(This article belongs to the Section Epidemiology & Public Health)
21 pages, 6408 KiB  
Article
Effects of Bone Marrow Sparing and TGF-β3 Treatment in Total Body Irradiation of C57BL/6J Mice
by Ingunn Hanson, Jenny T. Vatne and Nina F. J. Edin
Appl. Biosci. 2024, 3(2), 165-185; https://doi.org/10.3390/applbiosci3020011 - 4 Apr 2024
Viewed by 2008
Abstract
Introduction: Mortality from acute radiation syndrome is frequently caused by hematopoietic or gastrointestinal radiotoxicity, the latter of which currently has no effective treatment. Transforming growth factor-beta 3 (TGF-β3) may decrease the severity of radiation-induced gastrointestinal damage in mice. In addition, treatment with TGF-β3 [...] Read more.
Introduction: Mortality from acute radiation syndrome is frequently caused by hematopoietic or gastrointestinal radiotoxicity, the latter of which currently has no effective treatment. Transforming growth factor-beta 3 (TGF-β3) may decrease the severity of radiation-induced gastrointestinal damage in mice. In addition, treatment with TGF-β3 may alleviate radiation-induced fibrosis. Objectives: The current study aimed to investigate the effect of TGF-β3 treatment on acute and late radiotoxicity in whole body irradiated mice. Methods: C57BL/6J mice were total body irradiated with 8.5 Gy X-rays with or without shielding of one hind leg to alleviate hematopoietic radiotoxicity. The effects of intravenous TGF-β3 treatment were investigated. Body weight and pain expression were monitored. Intestine, lung, and liver tissues were preserved and analyzed. Alpha smooth muscle actin (α-SMA) expression in MRC-5 cells after 3.5 Gy X-irradiation combined with TGF-β3 treatment was analyzed using flow cytometry. Results: All total body irradiated animals died within ten days after irradiation. Ninety-three percent of femur-shielded mice survived until sampling or termination. No effect of TGF-β3 treatment was observed in either group. No increase in collagen content was detected in the lungs or liver from irradiated mice regardless of TGF-β3 treatment. In vitro, α-SMA expression increased synergistically after irradiation and TGF-β3 treatment. Conclusions: Shielding of the femur during total body irradiation decreased acute gastrointestinal radiation toxicity and increased survival. TGF-β3 treatment did not impact symptoms or survival. TGF-β3 treatment and irradiation increased α-SMA expression in MRC-5 cells synergistically. Full article
Show Figures

Figure 1

13 pages, 3740 KiB  
Article
Effects of Hemorrhage on Hematopoietic Cell Depletion after a Combined Injury with Radiation: Role of White Blood Cells and Red Blood Cells as Biomarkers
by Juliann G. Kiang, Akeylah K. Woods and Georgetta Cannon
Int. J. Mol. Sci. 2024, 25(5), 2988; https://doi.org/10.3390/ijms25052988 - 4 Mar 2024
Viewed by 1437
Abstract
Combined radiation with hemorrhage (combined injury, CI) exacerbates hematopoietic acute radiation syndrome and mortality compared to radiation alone (RI). We evaluated the effects of RI or CI on blood cell depletion as a biomarker to differentiate the two. Male CD2F1 mice were exposed [...] Read more.
Combined radiation with hemorrhage (combined injury, CI) exacerbates hematopoietic acute radiation syndrome and mortality compared to radiation alone (RI). We evaluated the effects of RI or CI on blood cell depletion as a biomarker to differentiate the two. Male CD2F1 mice were exposed to 8.75 Gy γ-radiation (60Co). Within 2 h of RI, animals were bled under anesthesia 0% (RI) or 20% (CI) of total blood volume. Blood samples were collected at 4–5 h and days 1, 2, 3, 7, and 15 after RI. CI decreased WBC at 4–5 h and continued to decrease it until day 3; counts then stayed at the nadir up to day 15. CI decreased neutrophils, lymphocytes, monocytes, eosinophils, and basophils more than RI on day 1 or day 2. CI decreased RBCs, hemoglobin, and hematocrit on days 7 and 15 more than RI, whereas hemorrhage alone returned to the baseline on days 7 and 15. RBCs depleted after CI faster than post-RI. Hemorrhage alone increased platelet counts on days 2, 3, and 7, which returned to the baseline on day 15. Our data suggest that WBC depletion may be a potential biomarker within 2 days post-RI and post-CI and RBC depletion after 3 days post-RI and post-CI. For hemorrhage alone, neutrophil counts at 4–5 h and platelets for day 2 through day 7 can be used as a tool for confirmation. Full article
Show Figures

Graphical abstract

13 pages, 2889 KiB  
Article
Fluacrypyrim Protects Hematopoietic Stem and Progenitor Cells against Irradiation via Apoptosis Prevention
by Xuewen Zhang, Zizhi Qiao, Bo Guan, Fangming Wang, Xing Shen, Hui Shu, Yajun Shan, Yuwen Cong, Shuang Xing and Zuyin Yu
Molecules 2024, 29(4), 816; https://doi.org/10.3390/molecules29040816 - 9 Feb 2024
Cited by 3 | Viewed by 1814
Abstract
Ionizing radiation (IR)-induced hematopoietic injury has become a global concern in the past decade. The underlying cause of this condition is a compromised hematopoietic reserve, and this kind of hematopoietic injury could result in infection or bleeding, in addition to lethal mishaps. Therefore, [...] Read more.
Ionizing radiation (IR)-induced hematopoietic injury has become a global concern in the past decade. The underlying cause of this condition is a compromised hematopoietic reserve, and this kind of hematopoietic injury could result in infection or bleeding, in addition to lethal mishaps. Therefore, developing an effective treatment for this condition is imperative. Fluacrypyrim (FAPM) is a recognized effective inhibitor of STAT3, which exhibits anti-inflammation and anti-tumor effects in hematopoietic disorders. In this context, the present study aimed to determine whether FAPM could serve as a curative agent in hematopoietic-acute radiation syndrome (H-ARS) after total body irradiation (TBI). The results revealed that the peritoneally injection of FAPM could effectively promote mice survival after lethal dose irradiation. In addition, promising recovery of peripheral blood, bone marrow (BM) cell counts, hematopoietic stem cell (HSC) cellularity, BM colony-forming ability, and HSC reconstituting ability upon FAPM treatment after sublethal dose irradiation was noted. Furthermore, FAPM could reduce IR-induced apoptosis in hematopoietic stem and progenitor cells (HSPCs) both in vitro and in vivo. Specifically, FAPM could downregulate the expressions of p53-PUMA pathway target genes, such as Puma, Bax, and Noxa. These results suggested that FAPM played a protective role in IR-induced hematopoietic damage and that the possible underlying mechanism was the modulation of apoptotic activities in HSCs. Full article
Show Figures

Figure 1

15 pages, 1855 KiB  
Article
Optimization of Radiolabeling of a [90Y]Y-Anti-CD66-Antibody for Radioimmunotherapy before Allogeneic Hematopoietic Cell Transplantation
by Gordon Winter, Carmen Hamp-Goldstein, Gabriel Fischer, Peter Kletting, Gerhard Glatting, Christoph Solbach, Hendrik Herrmann, Elisa Sala, Michaela Feuring, Hartmut Döhner, Ambros J. Beer, Donald Bunjes and Vikas Prasad
Cancers 2023, 15(14), 3660; https://doi.org/10.3390/cancers15143660 - 18 Jul 2023
Cited by 3 | Viewed by 2045
Abstract
For patients with acute myeloid leukemia, myelodysplastic syndrome, or acute lymphoblastic leukemia, allogeneic hematopoietic cell transplantation (HCT) is a potentially curative treatment. In addition to standard conditioning regimens for HCT, high-dose radioimmunotherapy (RIT) offers the unique opportunity to selectively deliver a high dose [...] Read more.
For patients with acute myeloid leukemia, myelodysplastic syndrome, or acute lymphoblastic leukemia, allogeneic hematopoietic cell transplantation (HCT) is a potentially curative treatment. In addition to standard conditioning regimens for HCT, high-dose radioimmunotherapy (RIT) offers the unique opportunity to selectively deliver a high dose of radiation to the bone marrow while limiting side effects. Modification of a CD66b-specific monoclonal antibody (mAb) with a DTPA-based chelating agent should improve the absorbed dose distribution during therapy. The stability and radioimmunoreactive fraction of the radiolabeled mAbs were determined. Before RIT, all patients underwent dosimetry to determine absorbed doses to bone marrow, kidneys, liver, and spleen. Scans were performed twenty-four hours after therapy for quality control. A radiochemical purity of >95% and acceptable radioimmunoreactivity was achieved. Absorbed organ doses for the liver and kidney were consequently improved compared to reported historical data. All patients tolerated RIT well with no treatment-related acute adverse events. Complete remission could be observed in 4/5 of the patients 3 months after RIT. Two patients developed delayed liver failure unrelated to the radioimmunotherapy. The improved conjugation and radiolabeling procedure resulted in excellent stability, radiochemical purity, and CD66-specific radioimmunoreactivity of 90Y-labeled anti-CD66 mAb. RIT followed by conditioning and HCT was well tolerated. Based on these promising initial data, further prospective studies of [90Y]Y-DTPA-Bn-CHX-A″-anti-CD66-mAb-assisted conditioning in HCT are warranted. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Graphical abstract

15 pages, 3329 KiB  
Article
PrC-210 Protects against Radiation-Induced Hematopoietic and Intestinal Injury in Mice and Reduces Oxidative Stress
by Vidya P. Kumar, Shukla Biswas, Gregory P. Holmes-Hampton, Torsten Goesch, William Fahl and Sanchita P. Ghosh
Antioxidants 2023, 12(7), 1417; https://doi.org/10.3390/antiox12071417 - 13 Jul 2023
Cited by 2 | Viewed by 2147
Abstract
The development of safe, orally available, and effective prophylactic countermeasures to protect our warfighters is an unmet need because there is no such FDA-approved countermeasure available for use. Th 1-Propanethiol, 3-(methylamino)-2-((methylamino)methyl) (PrC-210), a synthetic small molecule, is a member of a new family [...] Read more.
The development of safe, orally available, and effective prophylactic countermeasures to protect our warfighters is an unmet need because there is no such FDA-approved countermeasure available for use. Th 1-Propanethiol, 3-(methylamino)-2-((methylamino)methyl) (PrC-210), a synthetic small molecule, is a member of a new family of aminothiols designed to reduce toxicity while scavenging reactive oxygen species (ROS). Our study investigated the protective role of a single oral administration of PrC-210 against radiation-induced hematopoietic and intestinal injury in mice. Pre-treatment with PrC-210 significantly improved the survival of mice exposed to a lethal dose of radiation. Our findings indicated that the radioprotective properties of PrC-210 are achieved by accelerating the recovery of the hematopoietic system, stimulating bone marrow progenitor cells, and ameliorating additional biomarkers of hematopoietic injury. PrC-210 pre-treatment reduced intestinal injury in mice exposed to a lethal dose of radiation by restoring jejunal crypts and villi, reducing translocation of bacteria to the spleen, maintaining citrulline levels, and reducing the sepsis marker serum amyloid A (SAA) in serum. Finally, PrC-210 pre-treatment led to a significant reduction (~10 fold) of Nos2 expression (inducible nitric oxide) in the spleen and decreased oxidative stress by enhancing the antioxidant defense system. These data support the further development of PrC-210 to receive approval from the FDA to protect warfighters and first responders from exposure to the harmful effects of ionizing radiation. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Gut Health)
Show Figures

Figure 1

17 pages, 2863 KiB  
Article
The Acute Radiation Syndrome-Mitigator Romiplostim and Secreted Extracellular Vesicles Improved Survival in Mice Acutely Exposed to Myelosuppressive Doses of Ionizing Radiation
by Masaru Yamaguchi and Ikuo Kashiwakura
Biomolecules 2023, 13(5), 837; https://doi.org/10.3390/biom13050837 - 15 May 2023
Cited by 1 | Viewed by 2172
Abstract
In cases of accidental high-dose total-body irradiation (TBI), acute radiation syndrome (ARS) can cause death. We reported that the thrombopoietin receptor agonist romiplostim (RP) has the potential to completely rescue mice exposed to lethal TBI. Extracellular vesicles (EVs) are involved in cell-to-cell communication, [...] Read more.
In cases of accidental high-dose total-body irradiation (TBI), acute radiation syndrome (ARS) can cause death. We reported that the thrombopoietin receptor agonist romiplostim (RP) has the potential to completely rescue mice exposed to lethal TBI. Extracellular vesicles (EVs) are involved in cell-to-cell communication, and the mechanism of RP action may be related to EVs that reflect the radio-mitigative information. We investigated the radio-mitigative effects of EVs on mice with severe ARS. C57BL/6 mice exposed to lethal TBI were treated with RP, and the EVs were isolated from the serum and intraperitoneally injected into other mice with severe ARS. The 30-day survival rate of lethal TBI mice drastically improved by 50–100% with the administration of EVs in the sera collected weekly from the mice in which radiation damage was alleviated and mortality was avoided by the administration of RP. Four responsive miRNAs, namely, miR-144-5p, miR-3620-5p, miR-6354, and miR-7686-5p showed significant expression changes in an array analysis. In particular, miR-144-5p was expressed only in the EVs of RP-treated TBI mice. Specific EVs may exist in the circulating blood of mice that escaped mortality with an ARS mitigator, and their membrane surface and endogenous molecules may be the key to the survival of mice with severe ARS. Full article
Show Figures

Figure 1

Back to TopTop