Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (442)

Search Parameters:
Keywords = radiation hazards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1870 KiB  
Article
Study on the Spatiotemporal Distribution Characteristics and Constitutive Relationship of Foggy Airspace in Mountainous Expressways
by Xiaolei Li, Yinxia Zhan, Tingsong Cheng and Qianghui Song
Appl. Sci. 2025, 15(15), 8615; https://doi.org/10.3390/app15158615 (registering DOI) - 4 Aug 2025
Viewed by 56
Abstract
To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spatial and temporal [...] Read more.
To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spatial and temporal distribution characteristics of agglomerate fog, the airspace constitutive model of agglomerate fog in mountainous expressways was constructed based on Newton constitutive theory. Firstly, the properties of the Newtonian fluid and cluster fog were compared and analyzed, and the influence mechanism of environmental factors such as the altitude difference, topography, water system, valley effect, and vegetation on the generation and dissipation of agglomerate fog in mountainous expressways was analyzed. Based on Newton’s constitutive theory, the constitutive model of temperature, humidity, wind speed, and agglomerate fog points in the foggy airspace of the mountainous expressway was established. Then, the time and spatial distribution of fog in Chongqing and Guizhou from 2021 to 2023 were analyzed. Finally, the model was verified by using the meteorological data and fog warning data of Liupanshui City, Guizhou Province in 2023. The results show that the foggy airspace of mountainous expressways can be defined as “the space occupied by the agglomerate fog that occurs above the mountain expressway”; The temporal and spatial distribution of foggy airspace on expressways in mountainous areas is closely related to the topography, water system, vegetation distribution, and local microclimate formed by thermal radiation. The horizontal and vertical movements of the atmosphere have little influence on the foggy airspace on expressways in mountainous areas. The specific manifestation of time distribution is that the occurrence of agglomerate fog is concentrated from November to April of the following year, and the daily occurrence time is mainly concentrated between 4:00–8:00 and 18:00–22:00. The calculation results of the foggy airspace constitutive model of the expressway in the mountainous area show that when there is low surface radiation or no surface radiation, the fogging value range is [90, 100], and the fogging value range is [50, 70] when there is high surface radiation (>200), and there is generally no fog in other intervals. The research results can provide a theoretical basis for traffic safety management and control of mountainous expressway fog sections. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

42 pages, 5770 KiB  
Review
Echoes from Below: A Systematic Review of Cement Bond Log Innovations Through Global Patent Analysis
by Lim Shing Wang, Muhammad Haarith Firdaous and Pg Emeroylariffion Abas
Inventions 2025, 10(4), 67; https://doi.org/10.3390/inventions10040067 - 2 Aug 2025
Viewed by 227
Abstract
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of [...] Read more.
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of CBL technologies, based on 3473 patent documents from the Lens.org database. After eliminating duplicates and irrelevant entries, 167 granted patents were selected for in-depth analysis. These were categorized by technology type (wave, electrical, radiation, neutron, and other tools) and by material focus (formation, casing, cement, and borehole fluid). The findings reveal a dominant focus on formation evaluation (59.9%) and a growing reliance on wave-based (22.2%) and other advanced tools (25.1%), indicating a shift toward high-precision diagnostics. Geographically, 75% of granted patents were filed through the U.S. Patent and Trademark Office, and 97.6% were held by companies, underscoring the dominance of corporate innovation and the minimal presence of academia and individuals. The review also identifies notable patents that reflect significant technical innovations and discusses their role in advancing diagnostic capabilities. These insights emphasize the need for broader collaboration and targeted research to advance well integrity technologies in line with industry goals for operational performance and safety. Full article
Show Figures

Figure 1

12 pages, 643 KiB  
Article
Minimally Invasive Total Versus Partial Thymectomy for Early-Stage Thymoma
by Alexander Pohlman, Bilal Odeh, Irene Helenowski, Julia M. Coughlin, Wissam Raad, James Lubawski and Zaid M. Abdelsattar
Cancers 2025, 17(15), 2518; https://doi.org/10.3390/cancers17152518 - 30 Jul 2025
Viewed by 256
Abstract
Background/Objectives: Total thymectomy is currently the gold standard operation for treating thymoma. However, recent studies have suggested the potential health consequences of thymus removal in adults, including possible increased autoimmune disease and all-cause mortality. In this context, we assess oncologic outcomes following [...] Read more.
Background/Objectives: Total thymectomy is currently the gold standard operation for treating thymoma. However, recent studies have suggested the potential health consequences of thymus removal in adults, including possible increased autoimmune disease and all-cause mortality. In this context, we assess oncologic outcomes following total vs. partial thymectomy for early-stage thymoma. Methods: We identified patients diagnosed with WHO types A–B3 thymoma between 2010–2021 from a national hospital-based dataset. We excluded patients with stage II or higher disease, open resections and perioperative chemo-/radiation therapy. We stratified patients into total and partial thymectomy cohorts. We used propensity score matching to minimize confounding, Kaplan–Meier analysis to estimate survival, and Cox proportional hazards to identify associations. Results: Of 1598 patients with early-stage thymoma, 495 (31.0%) underwent partial and 1103 (69.0%) total thymectomy. Patients undergoing partial thymectomy were similar in sex (female 53.7% vs. 53.4%; p = 0.914), race (white 74.5% vs. 74.0%; p = 0.921), comorbidities (0 in 77.0% vs. 75.5%; p = 0.742), and tumor size (48.7 mm vs. 50.4 mm; p = 0.455) compared to total thymectomy. There were no differences in 30-day (0.8% vs. 0.6%, p = 0.747) or 90-day mortality (0.8% vs. 0.8%, p > 0.999), which persisted after matching. Moreover, 10-year survival was similar in both unmatched (p = 0.471) and matched cohorts (p = 0.828). Partial thymectomy was not independently associated with survival (aHR = 1.00, p = 0.976). Conclusions: In patients with early-stage thymoma, partial and total thymectomy were associated with similar short- and long-term outcomes. In light of recent attention to the role of the thymus gland, the results add important insights to shared decision-making discussions. Full article
(This article belongs to the Special Issue Advancements in Lung Cancer Surgical Treatment and Prognosis)
Show Figures

Figure 1

16 pages, 1238 KiB  
Article
Mortality Risk of Colistin vs. Non-Colistin Use in Cancer Patients with Multidrug-Resistant Gram-Negative Bacterial Infections: Stratified by Resistance Profile and Concomitant Medications
by Soo Hyeon Lee, Yongwon Choi, Chang-Young Choi, Yeo Jin Choi and Sooyoung Shin
Medicina 2025, 61(8), 1361; https://doi.org/10.3390/medicina61081361 - 28 Jul 2025
Viewed by 350
Abstract
Background and Objectives: Cancer patients are particularly susceptible to infections caused by multidrug-resistant Gram-negative bacteria (MDR GNB) due to chemotherapy- or radiation therapy-induced immunosuppression. Colistin is often prescribed as a last-resort agent for MDR GNB infection, but its clinical benefit in oncology patients [...] Read more.
Background and Objectives: Cancer patients are particularly susceptible to infections caused by multidrug-resistant Gram-negative bacteria (MDR GNB) due to chemotherapy- or radiation therapy-induced immunosuppression. Colistin is often prescribed as a last-resort agent for MDR GNB infection, but its clinical benefit in oncology patients remains unclear. This study aims to evaluate the mortality risk associated with colistin versus non-colistin regimens in cancer patient with MDR GNB infections, stratified by resistance profiles, infection sites, and concomitant medication use. Materials and Methods: A retrospective cohort study was conducted in adult cancer patients with MDR GNB infections that are resistant to at least three antibiotic classes and identified from at least two anatomical sites at a tertiary care hospital in Korea. Propensity score-matched in a 1:3 ratio either to the colistin group or non-colistin group and multivariate Cox hazard regression analyses were used to evaluate mortality in cancer patients with MDR GNB infections, primarily Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Results: A total of 85 patients (29 patients in the colistin and 56 patients in the non-colistin group) were included in the analysis. Overall, colistin use did not show a statistically significant mortality benefit compared to non-colistin regimens (hazard ratio (HR) 0.93, 95% CI 0.47–1.87). However, the subgroup analysis revealed that colistin had a potential association with significantly lower mortality in pneumonia patients with aminoglycoside-resistant infections (HR 0.04, 95% CI 0.002–0.69). Concomitant use of antipsychotics and benzodiazepines in selected resistance profiles also correlated with improved outcomes. In contrast, a potential association was found between concomitant macrolide use and increased mortality in patients with fluoroquinolone- or penicillin-resistant profiles. Conclusions: Colistin may offer survival benefits in selected high-risk cancer patients with MDR GNB pneumonia. Treatment outcomes are influenced by resistance profiles, infection sites, and concomitant medications, indicating the significant importance of individualized antimicrobial therapy and antimicrobial stewardship in oncology patients. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

16 pages, 747 KiB  
Article
Development and Application of the Agricultural Product Safety Index in Major Countries and Imported Food Safety Index for Korea
by Da-Eun Jung and Sung-Bum Yang
Foods 2025, 14(14), 2461; https://doi.org/10.3390/foods14142461 - 14 Jul 2025
Viewed by 392
Abstract
With the growth of international trade, concerns over the safety of imported agricultural products in South Korea have intensified due to factors such as the COVID-19 pandemic, radiation contamination risks, and the prevalence of GMOs. In response, this study develops two composite indices—the [...] Read more.
With the growth of international trade, concerns over the safety of imported agricultural products in South Korea have intensified due to factors such as the COVID-19 pandemic, radiation contamination risks, and the prevalence of GMOs. In response, this study develops two composite indices—the Agricultural Product Safety Index (APSI) and the Imported Food Safety Index (IFSI)—to quantitatively assess food safety risks across major exporting countries and apply them to Korea’s import structure. The indices integrate production and distribution risk indicators based on publicly available data and adhere to five key principles, including applicability, reliability, boundedness, independence, and representativeness. Empirical results from 2014 to 2021 indicate that Australia consistently demonstrates the highest food safety level, followed by the United States, Argentina, Ukraine, and Brazil. While the indices provide a structured and transparent framework for monitoring import-related safety, their scope is limited to selected countries and excludes biological hazards due to data limitations. Future research should expand the geographical coverage and incorporate empirical validation techniques. These findings contribute to the development of evidence-based policy instruments aimed at enhancing food safety governance in global supply chains. Full article
(This article belongs to the Section Food Systems)
Show Figures

Figure 1

19 pages, 4258 KiB  
Article
Detection and Geolocation of Peat Fires Using Thermal Infrared Cameras on Drones
by Temitope Sam-Odusina, Petrisly Perkasa, Carl Chalmers, Paul Fergus, Steven N. Longmore and Serge A. Wich
Drones 2025, 9(7), 459; https://doi.org/10.3390/drones9070459 - 25 Jun 2025
Viewed by 814
Abstract
Peat fires are a major hazard to human and animal health and can negatively impact livelihoods. Once peat fires start to burn, they are difficult to extinguish and can continue to burn for months, destroying biomass and contributing to carbon emissions globally. In [...] Read more.
Peat fires are a major hazard to human and animal health and can negatively impact livelihoods. Once peat fires start to burn, they are difficult to extinguish and can continue to burn for months, destroying biomass and contributing to carbon emissions globally. In areas with limited accessibility and periods of thick haze and fog, these fires are difficult to detect, localize, and tackle. To address this problem, thermal infrared cameras mounted on drones can provide a potential solution since they allow large areas to be surveyed relatively quickly and can detect thermal radiation from fires above and below the peat surface. This paper describes a deep learning pipeline that detects and segments peat fires in thermal images. Controlled peat fires were constructed under varying environmental conditions and thermal images were taken to form a dataset for our pipeline. A semi-automated approach was adopted to label images using Otsu’s adaptive thresholding technique, which significantly reduces the required effort often needed to tag objects in images. The proposed method uses a pre-trained ResNet-50 model as a backbone (encoder) for feature extraction and is augmented with a set of up-sampling layers and skip connections, like the UNet architecture. The experimental results show that the model can achieve an IOU score of 87.6% on an unseen test set of thermal images containing peat fires. In comparison, a MobileNetV2 model trained under the same experimental conditions achieved an IOU score of 57.9%. In addition, the model is robust to false positives, which is indicated by a precision equal to 94.2%. To demonstrate its practical utility, the model was also tested on real peat wildfires, and the results are promising, as indicated by a high IOU score of 90%. Finally, a geolocation algorithm is presented to identify the GNSS location of these fires once they are detected in an image to aid fire-fighting responses. The proposed scheme was built using a web-based platform that performs offline detection and allows peat fires to be geolocated. Full article
Show Figures

Figure 1

14 pages, 1884 KiB  
Article
Study of Radon Radiation in the Area of the Akchatau Polymetallic Mine, Republic of Kazakhstan
by Yuriy Pak, Dmitriy Pak, Vladimir Matonin, Diana Ibragimova, Pavel Timoshenko, Yuriy Barkov, Anar Tebayeva and Pavel Medvedev
Atmosphere 2025, 16(7), 769; https://doi.org/10.3390/atmos16070769 - 23 Jun 2025
Viewed by 317
Abstract
The data on the volumetric radon activity of the Akchatau territory were systematized in the context of radioecological safety. Radon (Rn222 and Rn220) and indoor radon (isotopes Po, Pb, and Bi) make a significant contribution to radon radiation in residential [...] Read more.
The data on the volumetric radon activity of the Akchatau territory were systematized in the context of radioecological safety. Radon (Rn222 and Rn220) and indoor radon (isotopes Po, Pb, and Bi) make a significant contribution to radon radiation in residential and industrial premises. Increased radon concentration in a number of areas is associated with the Akchatau tungsten–molybdenum mine. The source of radon in geological terms is acid leucocratic granites in the northwestern and southeastern parts of the studied territory. Seasonal assessment of radon radiation was carried out using modern devices “Alfarad Plus” and “Ramon-Radon”. Frequency analysis of the average annual equivalent equilibrium concentration (EEC) in 181 premises showed that only in 47.5% of the premises does the volumetric radon activity not exceed the current standards (200 Bq/m3). Differentiated values of radon concentration were obtained in cases where daily and seasonal observations were carried out. In 43.1% of premises, the effective dose varies from 6.6 mSv/year to 33 mSv/year, and for 9.4% of premises, from 33 mSv/year to 680 mSv/year. The increased radon concentration is caused by high exhalation from the soil surface, the radioactivity of building materials, and low air exchange in the surveyed premises. In the northwestern part of Akchatau, anomalous zones were found where the exposure dose rate of gamma radiation exceeds 0.6 mkSv/hour. An objective assessment of radon largely depends on a number of factors that take into account the geological, technical, atmospheric, and climatic conditions of the region. Therefore, when planning an optimal radon rehabilitation strategy, it is necessary to take the following factors into account: the design features of residential premises and socio-economic conditions. Practical recommendations are given for radiation-ecological and hygienic monitoring of radon safety levels in the environment to reduce effective doses on the population. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

15 pages, 1769 KiB  
Article
Exposure Time Dependence of Operators’ Head Entrance Air Kerma in Interventional Radiology Measured by TLD-100H Chips
by Rocco Mottareale, Francesco Manna, Patrizio Antonio Carmosino, Francesco Fiore, Marco Correra, Salvatore Stilo, Luca Tarotto and Mariagabriella Pugliese
Sensors 2025, 25(12), 3666; https://doi.org/10.3390/s25123666 - 11 Jun 2025
Viewed by 540
Abstract
Interventional radiology offers minimally invasive procedures guided by real-time imaging, reducing surgical risks and enhancing patient recovery. While beneficial to patients, these advancements increase occupational hazards for physicians due to chronic exposure to ionizing radiation. This exposure raises health risks like radiation-induced cataracts, [...] Read more.
Interventional radiology offers minimally invasive procedures guided by real-time imaging, reducing surgical risks and enhancing patient recovery. While beneficial to patients, these advancements increase occupational hazards for physicians due to chronic exposure to ionizing radiation. This exposure raises health risks like radiation-induced cataracts, cardiovascular disease, and cancer. Despite regulations like the European Council Directive 2013/59/EURATOM, which sets limits on whole-body and eye lens doses, no dose limits exist for the brain and meninges, since the brain has traditionally been considered a radioresistant organ. Recent studies, however, have highlighted radiation-induced brain damage, suggesting that meningeal exposure in interventional radiology may be underestimated. This study evaluates the entrance air Cumulative mean annual entrance air kerma to the skullull during interventional radiology procedures, using thermoluminescent dosimeters and controlled exposure simulations. Data were collected by varying the exposure time and analyzing the contribution to the entrance air kerma on each side of the head. The results indicate that, considering the attenuation of the cranial bone, the absorbed dose to the brain, obtained by averaging the head entrance air kerma for the right, front, and left sides of the operator’s head, could represent 0.81% to 2.18% of the annual regulatory limit in Italy of 20 mSv for the average annual effective dose of exposed workers (LD 101/2020). These results provide an assessment of brain exposure, highlighting the relatively low but non-negligible contribution of brain irradiation to the overall occupational dose constraint. Additionally, a correlation between entrance air kerma and the Kerma-Area Product was observed, providing a potential method for improved dose estimation and enhanced radiation safety for interventional radiologists. Full article
Show Figures

Figure 1

23 pages, 4810 KiB  
Article
Construction of Microclimatic Zone Based on Convection–Radiation System for Local Cooling in Deep Mines
by Xiangru Chen, Xiaodong Wang and Hui Wang
Energies 2025, 18(12), 3029; https://doi.org/10.3390/en18123029 - 7 Jun 2025
Viewed by 556
Abstract
As global mineral resources at shallow depths continue to deplete, thermal hazards have emerged as a critical challenge in deep mining operations. Conventional localized cooling systems suffer from a fundamental inefficiency where their cooling capacity is rapidly dissipated by the main ventilation airstream. [...] Read more.
As global mineral resources at shallow depths continue to deplete, thermal hazards have emerged as a critical challenge in deep mining operations. Conventional localized cooling systems suffer from a fundamental inefficiency where their cooling capacity is rapidly dissipated by the main ventilation airstream. This study introduces the innovative concept of a “microclimatic circulation zone” implemented through a convection–radiation cooling system. The design incorporates a synergistic arrangement of dual fans and flow-guiding baffles that creates a semi-enclosed air circulation field surrounding the modular convection–radiation cooling apparatus, effectively preventing cooling capacity loss to the primary ventilation flow. The research develops comprehensive theoretical models characterizing both internal and external heat transfer mechanisms of the modular convection–radiation cooling system. Using Fluent computational fluid dynamics software, we constructed an integrated heat–moisture–flow coupled numerical model that identified optimal operating parameters: refrigerant velocity of 0.2 m/s, inlet airflow velocity of 0.45 m/s, and outlet aperture height of 70 mm. Performance evaluation conducted at a mining operation in Yunnan Province utilized the Wet Bulb Globe Temperature (WBGT) index as the assessment criterion. Results demonstrate that the enhanced microclimatic circulation system exhibits superior cooling retention capabilities, with a 19.83% increase in refrigeration power and merely 3% cooling capacity dissipation at a 7 m distance, compared to 19.23% in the conventional system. Thermal field analysis confirms that the improved configuration successfully establishes a stable microclimatic circulation zone with significantly more concentrated low-temperature regions. This effectively addresses the principal limitation of conventional systems where conditioned air is readily dispersed by the main ventilation current. The approach presented offers a novel technological pathway for localized thermal environment management in deep mining operations affected by heat stress conditions. Full article
Show Figures

Figure 1

14 pages, 3205 KiB  
Article
Research on Gas Detection Algorithm Based on Reconstruction of Background Infrared Radiation
by Li Chen and Zhen Yang
Photonics 2025, 12(6), 570; https://doi.org/10.3390/photonics12060570 - 5 Jun 2025
Viewed by 457
Abstract
In response to the pressing need for long-range, non-contact detection in hazardous gas leakage monitoring within chemical industrial parks, this study proposes a gas detection algorithm based on an infrared radiation physical model that utilizes dual-band infrared radiation background reconstruction. The proposed method [...] Read more.
In response to the pressing need for long-range, non-contact detection in hazardous gas leakage monitoring within chemical industrial parks, this study proposes a gas detection algorithm based on an infrared radiation physical model that utilizes dual-band infrared radiation background reconstruction. The proposed method addresses the issues of the existing detection methods’ lack of physical model support. First, appropriate filter wavelength ranges are selected based on the absorption spectral characteristics of the target gas. Subsequently, a physical model incorporating atmospheric attenuation, background radiation, and gas absorption properties is established based on gas radiative transfer theory. The non-absorption band data are then employed to reconstruct the theoretical background radiation of the absorption band. Furthermore, leveraging the synergistic observation advantages of a dual-band infrared imaging system, gas morphology identification is achieved by inverting the difference between the theoretical background and the actual measured values in the absorption band. Experimental results demonstrate that this method enables gas morphology detection through background reconstruction without requiring pre-collected gas-free background images. By implementing dual-band infrared radiation background reconstruction, this study achieves effective gas detection, providing a reliable technical approach for real-time monitoring and early warning of industrial gas leaks. The proposed algorithm enhances detection capabilities, offering significant potential for applications in industrial safety and environmental monitoring. Full article
(This article belongs to the Special Issue Adaptive Optics Imaging: Science and Applications)
Show Figures

Figure 1

17 pages, 807 KiB  
Article
Overall Survival and Prognostic Factors in De Novo Metastatic Human Epidermal Growth Factor Receptor (HER)-2-Positive Breast Cancer: A National Cancer Database Analysis
by Meghana Kesireddy, Durva Masih, Valerie K. Shostrom, Amulya Yellala, Samia Asif and Jairam Krishnamurthy
Cancers 2025, 17(11), 1823; https://doi.org/10.3390/cancers17111823 - 30 May 2025
Viewed by 869
Abstract
Background: About 15–20% of breast cancers are HER2 positive. Approximately 15–24% of individuals with localized HER2-positive cancer develop metastatic disease after curative treatment, while 3–10% present with de novo metastasis. Survival has significantly improved with various anti-HER2 agents, but there is considerable heterogeneity [...] Read more.
Background: About 15–20% of breast cancers are HER2 positive. Approximately 15–24% of individuals with localized HER2-positive cancer develop metastatic disease after curative treatment, while 3–10% present with de novo metastasis. Survival has significantly improved with various anti-HER2 agents, but there is considerable heterogeneity at the individual level. Our study aims to identify factors influencing survival in de novo metastatic HER2-positive breast cancer using a large sample from the National Cancer Database (NCDB). Methods: Women with metastatic HER2-positive breast cancer diagnosed from 2010 to 2020 in the NCDB were included. Demographic, clinicopathological, treatment data, and overall survival (OS) were collected. Kaplan–Meier curves estimated OS. The log-rank test identified OS differences between groups in univariate analysis. The Cox proportional hazard model with backward elimination identified factors affecting OS in multivariate analysis. The 12-month, 36-month, and 60-month survival estimates, 95% confidence intervals (CIs), and adjusted hazard ratios were reported. Results: Among 5376 women with metastatic HER2-positive breast cancer from 2010 to 2020, the median OS was 55.95 months (95% CI 53.55-NE). Multivariate analysis identified age, Charlson–Deyo comorbidity score, histology, HER2 IHC expression, hormone receptor status, the number of metastatic sites, metastasis location, first-line chemotherapy, anti-HER2 therapy, hormone-blocking therapy, surgery at primary/non-primary sites, and palliative treatment as significant factors affecting OS. Race and radiation receipt were not significant. Conclusions: This is the largest analysis of overall survival estimates in de novo metastatic HER2-positive breast cancer to date in the real-world setting. We identified several independent prognostic factors influencing OS in this population. These findings will help individualize prognostication at diagnosis, optimize treatment strategies, and facilitate patient stratification in future trials. Full article
Show Figures

Figure 1

14 pages, 1380 KiB  
Article
Impact of Tumor Location on Survival Outcomes in Pancreatic Head Versus Body/Tail Cancer: Institutional Experience
by Abdullah Esmail, Vikram Dhillon, Ebtesam Al-Najjar, Bayan Khasawneh, Mohammed Alghamdi, Fahad Ibnshamsah and Maen Abdelrahim
Cancers 2025, 17(11), 1777; https://doi.org/10.3390/cancers17111777 - 26 May 2025
Viewed by 628
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits variable survival outcomes based on tumor location, with pancreatic head cancer (PHC) and pancreatic body/tail cancer (PBTC) differing in prognosis and treatment response. This study investigates the correlation between tumor location and survival outcomes in PDAC patients [...] Read more.
Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits variable survival outcomes based on tumor location, with pancreatic head cancer (PHC) and pancreatic body/tail cancer (PBTC) differing in prognosis and treatment response. This study investigates the correlation between tumor location and survival outcomes in PDAC patients treated with standard chemotherapy regimens. Methods: A retrospective analysis of 604 PDAC patients (400 PHC, 204 PBTC) diagnosed between January 2015 and May 2024 at Houston Methodist Neal Cancer Center was conducted. Patients received either mFOLFIRINOX or gemcitabine/nab-paclitaxel as first-line therapy. Clinical data, including demographics, tumor stage, treatment modalities, and molecular profiles, were extracted from electronic records. Overall survival (OS) and progression-free survival (PFS) were assessed using Kaplan–Meier analyses and Cox proportional hazards models. Latent class analysis (LCA) identified patient subgroups based on shared clinical, demographic, and survival characteristics. Results: PHC patients demonstrated superior median OS (12 months) compared to PBTC (9 months, p = 0.012) and PFS (8 months vs. 5 months, p = 0.0008). Across both subtypes, mFOLFIRINOX was associated with significantly longer OS than gem/nab-paclitaxel (PHC: 18.8 vs. 12.7 months, p < 0.0001; PBTC: 14 vs. 6 months, p = 0.011). LCA revealed distinct clusters: in PHC, a curative-intent class (median OS > 24 months) contrasted with a palliative class (<6 months); in PBTC, an aggressive treatment class (median OS > 18 months) differed from a limited treatment class (<6 months). Cluster differences were linked to treatment intensity, stage, and radiation use. Conclusions: PHC is associated with better survival outcomes than PBTC, with mFOLFIRINOX outperforming gem/nab-paclitaxel in both subtypes. LCA highlights heterogeneous patient subgroups, suggesting opportunities for personalized treatment strategies in PDAC management. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

20 pages, 1268 KiB  
Article
Association of Health Disparities with Glioblastoma Treatment and Outcomes: Insights from a 15-Year National Cohort (2005–2020)
by Zouina Sarfraz, Diya Jayram, Ahmad Ozair, Lydia Hodgson, Shreyas Bellur, Arun Maharaj, Alireza Mansouri and Manmeet S. Ahluwalia
Brain Sci. 2025, 15(6), 556; https://doi.org/10.3390/brainsci15060556 - 23 May 2025
Viewed by 669
Abstract
Background: Despite advances in glioblastoma (GBM) management, median overall survival (mOS) remains poor, and multi-modal disparities persist. We sought to evaluate trends in GBM treatment and survival outcomes from 2005–2020, with a focus on sociodemographic and geographic disparities. Methods: We conducted a retrospective [...] Read more.
Background: Despite advances in glioblastoma (GBM) management, median overall survival (mOS) remains poor, and multi-modal disparities persist. We sought to evaluate trends in GBM treatment and survival outcomes from 2005–2020, with a focus on sociodemographic and geographic disparities. Methods: We conducted a retrospective US-based cohort study using the National Cancer Database (NCDB), stratifying study period into four intervals (2005–2008, 2009–2012, 2013–2016, and 2017–2020). Logistic regression was used to identified predictors of receipt of combination surgery, radiation, and chemotherapy (Sx+RT+Chemo). Kaplan–Meier and multivariable Cox proportional hazards approaches were used to assess mOS. Results: A total of 111,955 adults with GBM were included. From 2005–2008 to 2017–2020, mOS increased from 7.8 to 9.5 months, with geographically unequal gains in survival across the US. In multivariable logistic regression model adjusting for known confounders, combined Sx+RT+Chemo was less likely to be received by female patients (OR 0.90, 95% CI 0.88–0.92) vs. male, non-White patients (OR 0.90, 95% CI 0.86–0.94) vs. White, patients treated at community hospitals (OR: 0.78, 95% CI 0.76–0.80) vs. academic centers, publicly-insured patients (OR 0.74, 95% CI 0.71–0.76) or uninsured patients (OR 0.54, 95% CI 0.50–0.58) vs. privately-insured, and patients living in the South (OR 0.88, 95% CI 0.85–0.91), Midwest (OR 0.83, 95% CI 0.80–0.86), and West (OR 0.85, 95% CI 0.81–0.88) compared to the Northeast. In multivariable Cox regression, significantly poorer survival was seen amongst non-metropolitan patients, community-based hospital patients, and publicly-insured and uninsured patients (vs. privately-insured), despite adjusting for prognostic factors. Conclusions: Only modest improvement in mOS of GBM patients has occurred across 2005–2020, with persistent disparities linked to sociodemographic and structural factors, whose redressal warrants multi-pronged efforts. Full article
(This article belongs to the Special Issue Editorial Board Collection Series: Advances in Neuro-Oncology)
Show Figures

Figure 1

42 pages, 15664 KiB  
Article
Multimethodological Approach for the Evaluation of Tropospheric Ozone’s Regional Photochemical Pollution at the WMO/GAW Station of Lamezia Terme, Italy
by Francesco D’Amico, Giorgia De Benedetto, Luana Malacaria, Salvatore Sinopoli, Arijit Dutta, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato, Mariafrancesca De Pino and Claudia Roberta Calidonna
AppliedChem 2025, 5(2), 10; https://doi.org/10.3390/appliedchem5020010 - 20 May 2025
Viewed by 2202
Abstract
The photochemical production of tropospheric ozone (O3) is very closely linked to seasonal cycles and peaks in solar radiation occurring during warm seasons. In the Mediterranean Basin, which is a hotspot for climate and air mass transport mechanisms, boreal warm seasons [...] Read more.
The photochemical production of tropospheric ozone (O3) is very closely linked to seasonal cycles and peaks in solar radiation occurring during warm seasons. In the Mediterranean Basin, which is a hotspot for climate and air mass transport mechanisms, boreal warm seasons cause a notable increase in tropospheric O3, which unlike stratospheric O3 is not beneficial for the environment. At the Lamezia Terme (code: LMT) World Meteorological Organization—Global Atmosphere Watch (WMO/GAW) station located in Calabria, Southern Italy, peaks of tropospheric O3 were observed during boreal summer and spring seasons, and were consequently linked to specific wind patterns compatible with increased photochemical activity in the Tyrrhenian Sea. The finding resulted in the introduction of a correction factor for O3 in the O3/NOx (ozone to nitrogen oxides) ratio “Proximity” methodology for the assessment of air mass aging. However, some of the mechanisms driving O3 patterns and their correlation with other parameters at the LMT site remain unknown, despite the environmental and health hazards posed by tropospheric O3 in the area. In general, the issue of ozone photochemical pollution in the region of Calabria, Italy, is understudied. In this study, the behavior of O3 at the site is assessed with remarkable detail using nine years (2015–2023) of data and correlations with surface temperature and solar radiation. The evaluations demonstrate non-negligible correlations between environmental factors, such as temperature and solar radiation, and O3 concentrations, driven by peculiar patterns in local wind circulation. The northeastern sector of LMT, partly neglected in previous works, yielded higher statistical correlations with O3 than expected. The findings of this study also indicate, for central Calabria, the possibility of heterogeneities in O3 exposure due to local geomorphology and wind patterns. A case study of very high O3 concentrations reported during the 2015 summer season is also reported by analyzing the tendencies observed during the period with additional methodologies and highlighting drivers of photochemical pollution on larger scales, also demonstrating that near-surface concentrations result from specific combinations of multiple factors. Full article
Show Figures

Figure 1

21 pages, 5212 KiB  
Article
Simulation Study on Stability of Air-Supported Membrane Coal Storage Bin Under Fire Scenario
by Yiwen Xia, Yuanda Cheng and Na Li
Buildings 2025, 15(10), 1734; https://doi.org/10.3390/buildings15101734 - 20 May 2025
Viewed by 330
Abstract
Air-supported membrane structures (ASMS) are widely applied in warehouses and large-span venues due to their lightweight and cost-effective nature. However, as a storage building with a lot of combustible material and significant fire hazards, it imposes stringent demands on structural stability and safety. [...] Read more.
Air-supported membrane structures (ASMS) are widely applied in warehouses and large-span venues due to their lightweight and cost-effective nature. However, as a storage building with a lot of combustible material and significant fire hazards, it imposes stringent demands on structural stability and safety. This paper investigates the impact of fire-induced effects on stability using Fire Dynamics Simulator (FDS) software, with a case study focusing on an ASMS coal storage bin. The study comprises two key components: (1) internal pressure stability and (2) thermal stability. Results show that ambient temperature, leakage area and air supply govern non-fire pressure stability, with a 10 K increase reducing pressure by 9.4 Pa. During fires, HRR, location and growth type effect the stability of ASMS buildings. Thermal stability analysis reveals 6 m horizontal spacing can prevent coal ignition (<12.5 kW/m2, <100 °C), while 10 m vertical spacing can avoid PVC membrane pyrolysis. These findings provide critical design guidelines for ASMS fire protection, highlighting the necessity of asymmetric safety margins due to vertical–horizontal radiation anisotropy. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop