Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = radiation endurance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6182 KiB  
Article
The Spatiotemporal Pattern Evolution Characteristics and Affecting Factors for Collaborative Agglomeration of the Yellow River Basin’s Tourism and Cultural Industries
by Yihan Chi and Yongheng Fang
Sustainability 2025, 17(16), 7193; https://doi.org/10.3390/su17167193 - 8 Aug 2025
Viewed by 300
Abstract
Seeking to advance mutual clustering of the tourism economy and cultural industries while safeguarding cultural sustainability in tourism, this paper delves into the patterns of co-development and the contributing forces across spatial and temporal dimensions in the Yellow River Basin. Using a combined [...] Read more.
Seeking to advance mutual clustering of the tourism economy and cultural industries while safeguarding cultural sustainability in tourism, this paper delves into the patterns of co-development and the contributing forces across spatial and temporal dimensions in the Yellow River Basin. Using a combined spatial and temporal analytical lens, along with spatial autocorrelation testing and a spatial Durbin model embedded in a synergetic systems approach, the present study analyzes the evolutionary characteristics of the spatiotemporal pattern of the collaborative agglomeration of the Yellow River Basin’s tourism and cultural industries in 2011 and 2021 and the internal mechanism of its influencing factors. We then propose countermeasures and suggestions to boost the quality–efficiency synergy agglomeration of the basin’s tourism and cultural industries. The results showed the following: ① From 2011 to 2021, a positive overall spatial autocorrelation was noted in the basin’s tourism and cultural industries. Temporally, it presented a variation trend of “rise–fall–rise”, and spatially, it presented a distribution characteristic of “higher in the central and eastern regions versus in its western parts”. ② From 2011 to 2021, the local spatial autocorrelation (LSA) of the basin’s tourism and cultural industries remained at a low level. Moreover, significant differences were noted in the LSA among different regions. In spatial terms, the clustering intensity of tourism and cultural industries was stronger in the central and eastern parts of the basin versus in its western parts. ③ Influencing variables for tourism–culture collaborative agglomeration across the basin involve both temporal superposition effects and spatial radiation driving effects. The industrial economy, policies, and innovation exert enduring effects on the development and cross-regional spillover outcomes of the two collaborative agglomerations. Serving as a theoretical reference and policy resource, this study addresses how to promote the quality–efficiency synergy in the Yellow River Basin’s tourism and cultural industries while enhancing cultural sustainability in the tourism industry. Moreover, it can also provide experiences and references for other similar regions. Full article
Show Figures

Figure 1

15 pages, 2038 KiB  
Article
Mechanical Tensile Response of Ni–Graphene Nanocomposites in Hydrogen-Irradiation-Coupled Environments Using Molecular Dynamics Simulations
by Tonghe Liu, Xiaoting Yuan and Hai Huang
Nanomaterials 2025, 15(13), 970; https://doi.org/10.3390/nano15130970 - 22 Jun 2025
Viewed by 351
Abstract
In Gen-IV nuclear reactors, structural materials must endure unprecedented levels of neutron irradiation and hydrogen exposure, posing significant challenges for traditional Ni-based alloys. This study evaluates Ni–graphene nanocomposites (NGNCs) as a promising solution, leveraging their inherent radiation tolerance and hydrogen diffusion suppression. Using [...] Read more.
In Gen-IV nuclear reactors, structural materials must endure unprecedented levels of neutron irradiation and hydrogen exposure, posing significant challenges for traditional Ni-based alloys. This study evaluates Ni–graphene nanocomposites (NGNCs) as a promising solution, leveraging their inherent radiation tolerance and hydrogen diffusion suppression. Using molecular dynamics simulations, we investigate how Ni/graphene interfaces influence mechanical properties under combined hydrogen permeation and displacement damage. Key parameters, such as hydrogen concentration, displacement damage level, strain rate, and temperature, are systematically varied to assess their impact on stress–strain behavior (including Young’s modulus and tensile strength), with comparisons to single-crystal nickel. Our findings reveal that NGNCs exhibit distinct mechanical responses characterized by serrated stress–strain curves due to interfacial slip. Hydrogen and irradiation effects are complex: low hydrogen levels can increase Young’s modulus, while higher concentrations and irradiation generally degrade strength, with NGNCs being more affected than single-crystal nickel. Additionally, NGNCs show enhanced thermal stability but increased strain rate sensitivity. These results provide critical insights for designing materials that balance reinforcement with environmental resilience in nuclear applications. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

21 pages, 1429 KiB  
Review
Molecular Mechanisms of Nostoc flagelliforme Environmental Adaptation: A Comprehensive Review
by Jin-Long Shang, Yong-Xue Xie, Lu-Yao Shi, Shuo-Ren Diao and Jin-Yan Guan
Plants 2025, 14(11), 1582; https://doi.org/10.3390/plants14111582 - 22 May 2025
Viewed by 640
Abstract
Nostoc flagelliforme, a filamentous cyanobacterium inhabiting desert biological soil crusts (BSCs), has developed exceptional strategies to endure extreme environmental stresses, including severe desiccation, intense ultraviolet (UV) radiation, and drastic temperature fluctuations. These organisms must effectively sense and predict environmental changes, particularly the [...] Read more.
Nostoc flagelliforme, a filamentous cyanobacterium inhabiting desert biological soil crusts (BSCs), has developed exceptional strategies to endure extreme environmental stresses, including severe desiccation, intense ultraviolet (UV) radiation, and drastic temperature fluctuations. These organisms must effectively sense and predict environmental changes, particularly the onset of desiccation. This review explores recent advancements in the molecular mechanisms that enable N. flagelliforme to survive under such harsh conditions, with a focus on stress signal sensing, transduction pathways, and photosynthetic adjustments. Key molecular adaptations include the production of extracellular polysaccharide (EPS) sheaths for water retention, the accumulation of compatible solutes like trehalose, and the synthesis of UV-absorbing compounds such as scytonemin and mycosporine-like amino acids (MAAs). Furthermore, N. flagelliforme utilizes a complex signal transduction network, including light-sensing pathways, to regulate responses to rehydration and desiccation cycles. This review emphasizes the integrative nature of N. flagelliforme’s adaptive mechanisms and highlights their potential for biotechnological applications, such as enhancing drought tolerance in crops and advancing ecological restoration in arid regions. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Graphical abstract

31 pages, 3933 KiB  
Article
The Genetic Determinants of Extreme UV Radiation and Desiccation Tolerance in a Bacterium Recovered from the Stratosphere
by Adam J. Ellington, Tyler J. Schult, Christopher R. Reisch and Brent C. Christner
Microorganisms 2025, 13(4), 756; https://doi.org/10.3390/microorganisms13040756 - 27 Mar 2025
Cited by 1 | Viewed by 2178
Abstract
Microbes that survive transport to and in the stratosphere endure extremes of low temperature, atmospheric pressure, and relative humidity, as well as high fluxes in ultraviolet radiation (UVR). The high atmosphere thus provides an ideal environment to explore the genetic and physiological determinants [...] Read more.
Microbes that survive transport to and in the stratosphere endure extremes of low temperature, atmospheric pressure, and relative humidity, as well as high fluxes in ultraviolet radiation (UVR). The high atmosphere thus provides an ideal environment to explore the genetic and physiological determinants conveying high tolerance to desiccation and UVR. In this study, we examined Curtobacterium aetherium L6-1, an actinobacterium obtained from stratospheric aerosol sampling that displays high resistance to desiccation and UVR. We found that its phylogenetic relatives are resistant to desiccation, but only C. aetherium displayed a high tolerance to UVR. Comparative genome analysis and directed evolution experiments implicated genes encoding photolyase, DNA nucleases and helicases, and catalases as responsible for UVR resistance in C. aetherium. Differential gene expression analysis revealed the upregulation of DNA repair and stress response mechanisms when cells were exposed to UVR, while genes encoding sugar transporters, sugar metabolism enzymes, and antioxidants were induced upon desiccation. Based on changes in gene expression as a function of water content, C. aetherium can modulate its metabolism through transcriptional regulation at very low moisture levels (Xw < 0.25 g H2O per gram dry weight). Uncovering the genetic underpinnings of desiccation and UVR resistance in C. aetherium provides new insights into how bacterial DNA repair and antioxidant mechanisms function to exhibit traits at the extreme ends of phenotypic distributions. Full article
(This article belongs to the Special Issue Microbial Life and Ecology in Extreme Environments)
Show Figures

Figure 1

14 pages, 3692 KiB  
Article
Flight Capability Analysis Among Different Latitudes for Solar Unmanned Aerial Vehicles
by Mateusz Kucharski, Maciej Milewski, Bartłomiej Dziewoński, Krzysztof Kaliszuk, Tomasz Kisiel and Artur Kierzkowski
Energies 2025, 18(6), 1331; https://doi.org/10.3390/en18061331 - 8 Mar 2025
Viewed by 945
Abstract
This paper presents an analysis of the flight endurance of solar-powered unmanned aerial vehicles (UAVs). Flight endurance is usually only analyzed under the operating conditions for the location where the UAV was constructed. The fact that these conditions change in a different environment [...] Read more.
This paper presents an analysis of the flight endurance of solar-powered unmanned aerial vehicles (UAVs). Flight endurance is usually only analyzed under the operating conditions for the location where the UAV was constructed. The fact that these conditions change in a different environment of its operation has been missed. This can be disastrous for those looking to operate such a system under different geographical conditions. This work provides critical insights into the design and operation of solar-powered UAVs for various latitudes, highlighting strategies to maximize their performance and energy efficiency. This work analyzes the endurance of small UAVs designed for practical applications such as shoreline monitoring, agricultural pest detection, and search and rescue operations. The study uses TRNSYS 18 software to employ solar radiation in the power system performance at different latitudes. The results show that flight endurance is highly dependent on solar irradiance. This study confirms that the differences between low latitudes in summer and high latitudes in winter are significant, and this parameter cannot be ignored in terms of planning the use of such vehicles. The findings emphasize the importance of optimizing the balance between UAV mass, solar energy harvesting, and endurance. While the addition of battery mass can enhance endurance, the structural reinforcements required for increased weight may impose practical limitations. The scientific contribution of this work may be useful for both future designers and stakeholders in the operation of such unmanned systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

19 pages, 3211 KiB  
Review
Adaptation of High-Altitude Plants to Plateau Abiotic Stresses: A Case Study of the Qinghai-Tibet Plateau
by Pengcheng Sun, Ruirui Hao, Fangjing Fan, Yan Wang and Fuyuan Zhu
Int. J. Mol. Sci. 2025, 26(5), 2292; https://doi.org/10.3390/ijms26052292 - 4 Mar 2025
Cited by 4 | Viewed by 1372
Abstract
High-altitude regions offer outstanding opportunities for investigating the impacts of combined abiotic stresses on plant physiological processes given their significant differences in terms of the ecological environment in high-elevation areas, low anthropogenic disturbance, and obvious distribution characteristics of plants along altitudinal gradients. Therefore, [...] Read more.
High-altitude regions offer outstanding opportunities for investigating the impacts of combined abiotic stresses on plant physiological processes given their significant differences in terms of the ecological environment in high-elevation areas, low anthropogenic disturbance, and obvious distribution characteristics of plants along altitudinal gradients. Therefore, plants in high-altitude areas can be used as good targets for exploring plant adaptations to abiotic stress under extreme conditions. Plants that thrive in high-altitude environments such as the Qinghai-Tibet Plateau endure extreme abiotic stresses, including low temperatures, high UV radiation, and nutrient-poor soils. This study explores their adaptation mechanisms via phenotypic variation analyses and multiomics approaches. Key findings highlight traits such as increased photosynthetic efficiency, robust antioxidant systems, and morphological modifications tailored to high-altitude conditions. These insights advance our understanding of plant evolution in harsh environments and inform strategies to increase stress resistance in crops. Full article
(This article belongs to the Special Issue Genetic Engineering of Plants for Stress Tolerance, Second Edition)
Show Figures

Figure 1

16 pages, 4096 KiB  
Article
Enhancing Radiation Therapy Response in Prostate Cancer Through Metabolic Modulation by Mito-Lonidamine: A 1H and 31P Magnetic Resonance Spectroscopy Study
by Stepan Orlovskiy, Pradeep Kumar Gupta, Fernando Arias-Mendoza, Dinesh Kumar Singh, Skyler Nova, David S. Nelson, Vivek Narayan, Cameron J. Koch, Micael Hardy, Ming You, Balaraman Kalyanaraman and Kavindra Nath
Int. J. Mol. Sci. 2025, 26(2), 509; https://doi.org/10.3390/ijms26020509 - 9 Jan 2025
Viewed by 1442
Abstract
Radiation therapy (RT) is the cornerstone treatment for prostate cancer; however, it frequently induces gastrointestinal and genitourinary toxicities that substantially diminish the patients’ quality of life. While many individuals experience transient side effects, a subset endures persistent, long-term complications. A promising strategy to [...] Read more.
Radiation therapy (RT) is the cornerstone treatment for prostate cancer; however, it frequently induces gastrointestinal and genitourinary toxicities that substantially diminish the patients’ quality of life. While many individuals experience transient side effects, a subset endures persistent, long-term complications. A promising strategy to mitigate these toxicities involves enhancing tumor radiosensitivity, potentially allowing for lower radiation doses. In this context, mito-lonidamine (Mito-LND), an antineoplastic agent targeting the mitochondrial electron transport chain’s complexes I and II, emerges as a potential radiosensitizer. This study investigated Mito-LND’s capacity to augment RT efficacy and reduce adverse effects through comprehensive in vitro and in vivo assessments using hormone-sensitive and hormone-refractory prostate cancer models. Employing a Seahorse analysis and 1H/31P magnetic resonance spectroscopy (MRS), we observed that Mito-LND selectively suppressed lactate production, decreased intracellular pH, and reduced bioenergetics and oxygen consumption levels within tumor cells. These findings suggest that Mito-LND remodels the tumor microenvironment by inducing acidification, metabolic de-energization, and enhanced oxygenation, thereby sensitizing tumors to RT. Our results underscore the potential of Mito-LND as a therapeutic adjunct in RT to improve patient outcomes and reduce radiation-associated toxicities in early-stage prostate cancer. Full article
Show Figures

Figure 1

22 pages, 8398 KiB  
Article
Underwater Horizontal Attitude Determination Technology Based on Fusion Power Circle Theory and Improved 3D Cone Hough Transform
by Haosu Zhang, Zihao Wang, Shiyin Zhou, Cheng Ma, Sheng Wang, Fafu Zhang and Lingji Xu
Electronics 2024, 13(23), 4689; https://doi.org/10.3390/electronics13234689 - 27 Nov 2024
Cited by 1 | Viewed by 856
Abstract
Due to the complexity of underwater conditions, achieving stable long-endurance autonomous underwater navigation has always been a challenging issue. Polarized light navigation, which utilizes the polarization field in the underwater downward radiation field to determine the heading angle, requires a known horizontal attitude [...] Read more.
Due to the complexity of underwater conditions, achieving stable long-endurance autonomous underwater navigation has always been a challenging issue. Polarized light navigation, which utilizes the polarization field in the underwater downward radiation field to determine the heading angle, requires a known horizontal attitude beforehand. In response to the significant deviations caused by interference in the existing underwater polarization attitude determination algorithms, this paper proposes an edge recognition method that integrates the Power theorem of circles and Improved 3D Conical Hough Transformation (PTC–3D-CoHT). This method has the advantages of pre-screening effective pixel points, better handling of distorted circles, and improving the deviation in extracting Snell’s window. The theoretical basis, model, and detailed calculation process of this method are provided in this paper. Underwater experiments show that, compared to the Circular Hough Transformation (CiHT) and 3D Conical Hough Transformation (3D-CoHT) algorithms, PTC–3D-CoHT enhances the robustness of Snell’s window extraction, verifying the effectiveness of the proposed method. Full article
Show Figures

Figure 1

20 pages, 11978 KiB  
Article
Superhydrophobic Coating Based on Nano-Silica Modification for Antifog Application of Partition Glass
by Linfei Yu, Kaiyang Ma, Hong Yin, Chenliang Zhou, Wenxiu He, Gewen Yu, Qiang Zhang, Quansheng Liu and Yanxiong Zhao
Coatings 2024, 14(11), 1375; https://doi.org/10.3390/coatings14111375 - 29 Oct 2024
Cited by 4 | Viewed by 2243
Abstract
In this study, vinyl triethoxysilane (VTES), KH-560 and trimethylchlorosilane (TMCS) were used to modify the surface groups of commercially available nano-silica (SiO2, 50 nm), and ethylene vinyl acetate copolymer (EVA) was used as a film-forming agent. EVA/SiO2, EVA/V-SiO2 [...] Read more.
In this study, vinyl triethoxysilane (VTES), KH-560 and trimethylchlorosilane (TMCS) were used to modify the surface groups of commercially available nano-silica (SiO2, 50 nm), and ethylene vinyl acetate copolymer (EVA) was used as a film-forming agent. EVA/SiO2, EVA/V-SiO2, EVA/K-SiO2 and EVA/T-SiO2 coatings were prepared, respectively. The coatings were characterized by SEM, FTIR, TG and contact angle. It was found that when the mass percentage of SiO2 was 66 wt%, the hydrophobicity performance of the coating could be significantly improved by silica modification. Compared to the EVA/SiO2, the water contact angle (WCA) of the EVA/V-SiO2, EVA/K-SiO2 and EVA/T-SiO2 were increased by 24.0%, 14.4% and 24.6%, respectively. The FTIR results indicated that VTES, KH-560 and TMCS could effectively replace the -OH groups on the surface of the SiO2 after hydrolysis, resulting in the presence of water transport groups on the SiO2 surface. The TG results certified that TMCS had the highest substitution rate (24.6%) for the -OH groups on the SiO2 surface after the hydrolysis. Additionally, the SEM results indicated that T-SiO2 was more easily dispersed in the EVA film-forming agent, leading to a uniform micro–nano surface rough structure, which aligned with the Cassie–Wenzel model. The durability test had demonstrated that the EVA/T-SiO2 maintained its hydrophobic properties even after enduring 40,000 drops of water and the impact of 200 g of sand. Furthermore, it exhibited excellent resistance to acid corrosion, along with superior self-cleaning properties and an anti-fog performance. It also provided outstanding protection against high temperatures and UV radiation for outdoor applications. Full article
Show Figures

Figure 1

18 pages, 8070 KiB  
Article
Comparative Analysis of Dielectric Behavior under Temperature and UV Radiation Exposure of Insulating Paints for Electrical Equipment Protection—The Necessity of a New Standard?
by Alina Ruxandra Caramitu, Magdalena Valentina Lungu, Romeo Cristian Ciobanu, Mihaela Aradoaei, Eduard-Marius Lungulescu and Virgil Marinescu
Coatings 2024, 14(9), 1194; https://doi.org/10.3390/coatings14091194 - 16 Sep 2024
Cited by 1 | Viewed by 1691
Abstract
This paper describes the behavior of some epoxy, acrylic and polyurethane paints used in the protection of electrical equipment under the action of different degradation factors. The degradation factors chosen were temperature and UV radiation. The behavior of the paints under the action [...] Read more.
This paper describes the behavior of some epoxy, acrylic and polyurethane paints used in the protection of electrical equipment under the action of different degradation factors. The degradation factors chosen were temperature and UV radiation. The behavior of the paints under the action of these factors was interpreted by the variation of the tangent of the dielectric loss angle (tg Delta) as well as by FTIR and TG DSC analyses. Tg Delta was considered the reference dielectric characteristic because it best simulates the functionality of the material. The results presented in this paper lead to the conclusion that exposure to thermal cycles and UV radiation is necessary for each paint to give indications about their possibility of use in these conditions. At the same time, the evaluation of thermal stability, even if the exposure is at lower temperatures (than those at which we performed the tests) and/or for shorter periods, is very important for placing the paint in an insulation class. The tests that were the subject of this work provide us with the following information about the three types of paints analyzed: the highest resistance to thermal cycles is presented by S3, followed by S2 and then S1; thermal endurance tests place the polyurethane paint (S3) in insulation class E and the epoxy paint (S1) in insulation class B; and the tests to determine resistance to UV radiation qualify the best paint as acrylic (S2) and the worst as polyurethane (S3). Thus, it can be said that in applications where it is necessary for the protective film to withstand high temperatures, the use of S3 paint (polyurethane) is recommended, and in applications where the films are kept under the influence of UV radiation for a longer time, it is recommended to use coded paint S2 (acrylic). The results presented in this paper lead to the conclusion that the exposure to thermal cycles simulating the use in outdoor conditions and the resilience of paints under UV radiation conditions must be performed for each paint according to its specific use, and the dielectric characteristics must be carefully evaluated because they can reach values under the accepted limit—e.g., thermal stability evaluation—even if the exposure is at lower temperatures and/or for shorter periods. The conclusions of the experimental work must be generalized at different types of electrical insulating paints, and maybe a new standard is necessary to assess the paints’ behavior under usage conditions, with the paints needing to be treated separately from the classical polymeric insulation systems. Full article
(This article belongs to the Special Issue Surface Modification and Coating Techniques for Polymers)
Show Figures

Figure 1

12 pages, 8740 KiB  
Article
VO2-Based Spacecraft Smart Radiator with High Emissivity Tunability and Protective Layer
by Qingjie Xu, Haining Ji, Yang Ren, Yangyong Ou, Bin Liu, Yi Wang, Yongxing Chen, Peng Long, Cong Deng and Jingting Wang
Nanomaterials 2024, 14(16), 1348; https://doi.org/10.3390/nano14161348 - 15 Aug 2024
Cited by 1 | Viewed by 2152
Abstract
In the extreme space environment, spacecraft endure dramatic temperature variations that can impair their functionality. A VO2-based smart radiator device (SRD) offers an effective solution by adaptively adjusting its radiative properties. However, current research on VO2-based thermochromic films mainly [...] Read more.
In the extreme space environment, spacecraft endure dramatic temperature variations that can impair their functionality. A VO2-based smart radiator device (SRD) offers an effective solution by adaptively adjusting its radiative properties. However, current research on VO2-based thermochromic films mainly focuses on optimizing the emissivity tunability (Δε) of single-cycle sandwich structures. Although multi-cycle structures have shown increased Δε compared to single-cycle sandwich structures, there have been few systematic studies to find the optimal cycle structure. This paper theoretically discusses the influence of material properties and cyclic structure on SRD performance using Finite-Difference Time-Domain (FDTD) software, which is a rigorous and powerful tool for modeling nano-scale optical devices. An optimal structural model with maximum emissivity tunability is proposed. The BaF2 obtained through optimization is used as the dielectric material to further optimize the cyclic resonator. The results indicate that the tunability of emissivity can reach as high as 0.7917 when the BaF2/VO2 structure is arranged in three periods. Furthermore, to ensure a longer lifespan for SRD under harsh space conditions, the effects of HfO2 and TiO2 protective layers on the optical performance of composite films are investigated. The results show that when TiO2 is used as the protective layer with a thickness of 0.1 µm, the maximum emissivity tunability reaches 0.7932. Finally, electric field analysis is conducted to prove that the physical mechanism of the smart radiator device is the combination of stacked Fabry–Perot resonance and multiple solar reflections. This work not only validates the effectiveness of the proposed structure in enhancing spacecraft thermal control performance but also provides theoretical guidance for the design and optimization of SRDs for space applications. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Optoelectronics: Second Edition)
Show Figures

Figure 1

9 pages, 4093 KiB  
Article
Hydrophobic and Luminescent Polydimethylsiloxane PDMS-Y2O3:Eu3+ Coating for Power Enhancement and UV Protection of Si Solar Cells
by Darya Goponenko, Kamila Zhumanova, Sabina Shamarova, Zhuldyz Yelzhanova, Annie Ng and Timur Sh. Atabaev
Nanomaterials 2024, 14(8), 674; https://doi.org/10.3390/nano14080674 - 12 Apr 2024
Cited by 7 | Viewed by 2831
Abstract
Solar cells have been developed as a highly efficient source of alternative energy, collecting photons from sunlight and turning them into electricity. On the other hand, ultraviolet (UV) radiation has a substantial impact on solar cells by damaging their active layers and, as [...] Read more.
Solar cells have been developed as a highly efficient source of alternative energy, collecting photons from sunlight and turning them into electricity. On the other hand, ultraviolet (UV) radiation has a substantial impact on solar cells by damaging their active layers and, as a result, lowering their efficiency. Potential solutions include the blocking of UV light (which can reduce the power output of solar cells) or converting UV photons into visible light using down-conversion optical materials. In this work, we propose a novel hydrophobic coating based on a polydimethylsiloxane (PDMS) layer with embedded red emitting Y2O3:Eu3+ (quantum yield = 78.3%) particles for UV radiation screening and conversion purposes. The favorable features of the PDMS-Y2O3:Eu3+ coating were examined using commercially available polycrystalline silicon solar cells, resulting in a notable increase in the power conversion efficiency (PCE) by ~9.23%. The chemical and UV stability of the developed coatings were assessed by exposing them to various chemical conditions and UV irradiation. It was found that the developed coating can endure tough environmental conditions, making it potentially useful as a UV-protective, water-repellent, and efficiency-enhancing coating for solar cells. Full article
(This article belongs to the Special Issue Photofunctional Nanomaterials and Nanostructures)
Show Figures

Figure 1

10 pages, 2637 KiB  
Communication
A Radiation-Hardened Triple Modular Redundancy Design Based on Spin-Transfer Torque Magnetic Tunnel Junction Devices
by Shubin Zhang, Peifang Dai, Ning Li and Yanbo Chen
Appl. Sci. 2024, 14(3), 1229; https://doi.org/10.3390/app14031229 - 1 Feb 2024
Cited by 1 | Viewed by 1929
Abstract
Integrated circuits suffer severe deterioration due to single-event upsets (SEUs) in irradiated environments. Spin-transfer torque magnetic random-access memory (STT-MRAM) appears to be a promising candidate for next-generation memory as it shows promising properties, such as non-volatility, speed, and unlimited endurance. One of the [...] Read more.
Integrated circuits suffer severe deterioration due to single-event upsets (SEUs) in irradiated environments. Spin-transfer torque magnetic random-access memory (STT-MRAM) appears to be a promising candidate for next-generation memory as it shows promising properties, such as non-volatility, speed, and unlimited endurance. One of the important merits of STT-MRAM is its radiation hardness, thanks to its core component, a magnetic tunnel junction (MTJ), being capable of good function in an irradiated environment. This property makes MRAM attractive for space and nuclear technology applications. In this paper, a novel radiation-hardened triple modular redundancy (TMR) design for anti-radiation reinforcement is proposed based on the utilization of STT-MTJ devices. Simulation results demonstrate the radiation-hardened performance of the design. This shows improvements in the design’s robustness against ionizing radiation. Full article
(This article belongs to the Special Issue Integrated Circuit Design in Post-Moore Era)
Show Figures

Figure 1

21 pages, 31851 KiB  
Article
A Novel Reverse Combination Configuration to Reduce Mismatch Loss for Stratospheric Airship Photovoltaic Arrays
by Chuan Shan, Kangwen Sun, Dongji Cheng, Xinzhe Ji, Jian Gao and Tong Zou
Appl. Sci. 2024, 14(2), 747; https://doi.org/10.3390/app14020747 - 15 Jan 2024
Cited by 2 | Viewed by 1220
Abstract
Enhancing the output power of stratospheric airship photovoltaic arrays during months with weak irradiance is crucial for extending the endurance of airships. Models for predicting the output power of photovoltaic arrays and the phenomenon of mismatch losses have been proposed. However, static reconstruction [...] Read more.
Enhancing the output power of stratospheric airship photovoltaic arrays during months with weak irradiance is crucial for extending the endurance of airships. Models for predicting the output power of photovoltaic arrays and the phenomenon of mismatch losses have been proposed. However, static reconstruction schemes to reduce or eliminate mismatch losses have not been studied. In this paper, an output power model for stratospheric airship arrays including the solar radiation and irradiance distribution is established. The characteristics of the irradiance distribution for the photovoltaic array (PV) are investigated through simulation. Furthermore, an innovative reverse combination configuration is developed and compared to the SP and TCT configurations in terms of performance, mismatch loss and fill factor. Finally, simulations are conducted for a full-day irradiance period of 4 days in a real wind field. The simulation results demonstrate that the proposed RC configuration significantly reduces mismatch losses and output power fluctuations, thereby enhancing the PV array’s output power. This research provides interesting insights for the design of PV array topologies for stratospheric airships. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

26 pages, 7202 KiB  
Article
First Genome Sequence of the Microcolonial Black Fungus Saxispiralis lemnorum MUM 23.14: Insights into the Unique Genomic Traits of the Aeminiaceae Family
by Diana S. Paiva, Luís Fernandes, António Portugal and João Trovão
Microorganisms 2024, 12(1), 104; https://doi.org/10.3390/microorganisms12010104 - 4 Jan 2024
Cited by 6 | Viewed by 2156
Abstract
Saxispiralis lemnorum MUM 23.14 is an extremotolerant microcolonial black fungus, originally isolated from a biodeteriorated limestone artwork in Portugal. This recently introduced species belongs to the Aeminiaceae family, representing the second member of this monophyletic clade. This fungus exhibits a unique set of [...] Read more.
Saxispiralis lemnorum MUM 23.14 is an extremotolerant microcolonial black fungus, originally isolated from a biodeteriorated limestone artwork in Portugal. This recently introduced species belongs to the Aeminiaceae family, representing the second member of this monophyletic clade. This fungus exhibits a unique set of characteristics, including xerophily, cold tolerance, high UV radiation tolerance, and an exceptional ability to thrive in NaCl concentrations of up to 30% while also enduring pH levels ranging from 5 to 11. To gain insights into its genomic traits associated with stress resistance mechanisms, specialization, and their potential implications in stone biodeterioration, we conducted a comprehensive genome sequencing and analysis. This draft genome not only marks the first for the Saxispiralis genus but also the second for the Aeminiaceae family. Furthermore, we performed two comparative genomic analyses: one focusing on the closest relative within the Aeminiaceae family, Aeminium ludgeri, and another encompassing the genome of different extremotolerant black fungi. In this study, we successfully achieved high genome completeness for S. lemnorum and confirmed its close phylogenetic relationship to A. ludgeri. Our findings revealed traits contributing to its extremophilic nature and provided insights into potential mechanisms contributing to stone biodeterioration. Many traits are common to both Aeminiaceae species and are shared with other black fungi, while numerous unique traits may be attributed to species-specific characteristics. Full article
(This article belongs to the Special Issue New Insights into the Diversity and Characterization of Extremophiles)
Show Figures

Figure 1

Back to TopTop