Molecular Mechanisms of Nostoc flagelliforme Environmental Adaptation: A Comprehensive Review
Abstract
:1. Introduction
2. Drought Adaptation Mechanisms
2.1. Morphological and Life Cycle Strategies
2.2. Cellular Osmoprotectants
2.3. Desiccation-Induced Proteins and Protection Mechanisms
2.4. Challenges and Future Directions in Drought Adaptation Research
3. Ultraviolet Sunscreen Biosynthesis and Regulation
3.1. Scytonemin
3.2. Mycosporine-like Amino Acids (MAAs)
3.3. Regulation of MAA Synthesis
3.4. Future Directions
4. Photoprotection Mechanisms: OCPs, HLIPs, and Molecular Chaperones
4.1. High-Light Inducible Proteins (HLIPs)
4.2. Orange Carotenoid Proteins (OCPs)
4.3. Molecular Chaperones
4.4. Other Photoprotective Factors
5. Light Signal Transduction
5.1. Diurnal Light as an Anticipatory Signal
5.2. Red Light Sensing Pathway (NfPixJ–NfSrr1)
5.3. Expanded Photoreceptor Network
5.4. Challenges and Future Directions
6. Cold Stress Adaptation
6.1. Membrane Lipid Desaturation
6.2. Cold-Responsive Hypothetical Protein—Csrnf1
6.3. Challenges and Future Directions
7. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-Pichel, F. The Microbiology of Biological Soil Crusts. Annu. Rev. Microbiol. 2023, 77, 149–171. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Qiu, B.; Xia, J.; Yu, A. Light dependency of the photosynthetic recovery of Nostoc flagelliforme. J. Appl. Phycol. 1998, 10, 51–53. [Google Scholar] [CrossRef]
- Xu, H.F.; Raanan, H.; Dai, G.Z.; Oren, N.; Berkowicz, S.; Murik, O.; Kaplan, A.; Qiu, B.S. Reading and surviving the harsh conditions in desert biological soil crust: The cyanobacterial viewpoint. FEMS Microbiol. Rev. 2021, 45, fuab036. [Google Scholar] [CrossRef]
- Gao, X.; Ai, Y.; Qiu, B. Drought adaptation of a terrestrial macroscopic cyanobacterium, Nostoc flagelliforme, in arid areas: A review. Afr. J. Microbiol. Res. 2012, 6, 5728–5735. [Google Scholar]
- Xu, H.F.; Dai, G.Z.; Bai, Y.; Shang, J.L.; Zheng, B.; Ye, D.M.; Shi, H.; Kaplan, A.; Qiu, B.S. Coevolution of tandemly repeated hlips and RpaB-like transcriptional factor confers desiccation tolerance to subaerial Nostoc species. Proc. Natl. Acad. Sci. USA 2022, 119, e2211244119. [Google Scholar] [CrossRef]
- Wang, Q.W.; Hidema, J.; Hikosaka, K. Is UV-induced DNA damage greater at higher elevation? Am. J. Bot. 2014, 101, 796–802. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, Z.; Xu, H.; Liu, L.; An, J.; Ji, B.; Ye, S. Cold adaptation in drylands: Transcriptomic insights into cold-stressed Nostoc flagelliforme and characterization of a hypothetical gene with cold and nitrogen stress tolerance. Environ. Microbiol. 2021, 23, 713–727. [Google Scholar] [CrossRef]
- Nelson, C.; Giraldo-Silva, A.; Garcia-Pichel, F. A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus. ISME J. 2021, 15, 282–292. [Google Scholar] [CrossRef]
- Shang, J.L.; Zhang, Z.C.; Yin, X.Y.; Chen, M.; Hao, F.H.; Wang, K.; Feng, J.L.; Xu, H.F.; Yin, Y.C.; Tang, H.R.; et al. UV-B induced biosynthesis of a novel sunscreen compound in solar radiation and desiccation tolerant cyanobacteria. Environ. Microbiol. 2018, 20, 200–213. [Google Scholar] [CrossRef]
- Shang, J.L.; Chen, M.; Hou, S.; Li, T.; Yang, Y.W.; Li, Q.; Jiang, H.B.; Dai, G.Z.; Zhang, Z.C.; Hess, W.R.; et al. Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats. Environ. Microbiol. 2019, 21, 845–863. [Google Scholar] [CrossRef]
- Li, X.; Ding, M.; Wang, M.; Yang, S.; Ma, X.; Hu, J.; Song, F.; Wang, L.; Liang, W. Proteome profiling reveals changes in energy metabolism, transport and antioxidation during drought stress in Nostoc flagelliforme. BMC Plant Biol. 2022, 22, 162. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yang, L.; Zhang, Y.; Chen, S.; Gao, X.; Wan, C. Investigation of the dynamical expression of Nostoc flagelliforme proteome in response to rehydration. J. Proteomics. 2019, 192, 160–168. [Google Scholar] [CrossRef]
- Gao, X.; Liu, B.; Ji, B. Profiling of Small Molecular Metabolites in Nostoc flagelliforme during Periodic Desiccation. Mar. Drugs 2019, 17, 298. [Google Scholar] [CrossRef]
- Yang, Y.W.; Liu, K.; Huang, D.; Yu, C.; Chen, S.Z.; Chen, M.; Qiu, B.S. Functional specialization of expanded orange carotenoid protein paralogs in subaerial Nostoc species. Plant Physiol. 2023, 192, 2640–2655. [Google Scholar] [CrossRef]
- Gao, X.; Xu, H.Y.; Yuan, X.L. The Overlooked Genetic Diversity in the Dryland Soil Surface-Dwelling Cyanobacterium Nostoc flagelliforme as Revealed by the Marker Gene wspA. Microb Ecol. 2021, 81, 828–831. [Google Scholar] [CrossRef]
- Han, P.P.; Sun, Y.; Jia, S.R.; Zhong, C.; Tan, Z.L. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme. Carbohydr. Polym. 2014, 105, 145–151. [Google Scholar] [CrossRef]
- Potts, M. Mechanisms of desiccation tolerance in cyanobacteria. Eur. J. Phycol. 1999, 34, 319–328. [Google Scholar] [CrossRef]
- Wu, S.; He, L.; Shen, R.; Zhang, X.; Wang, Q. Molecular cloning of maltooligosyltrehalose trehalohydrolase gene from Nostoc flagelliforme and trehalose-related response to stresses. J. Microbiol. Biotechnol. 2011, 21, 830–837. [Google Scholar] [CrossRef]
- Pang, W.; Wu, S.; Yu, J.; Wang, Q. Determination of trehalose and sucrose contents in Nostoc flagelliforme. J. Shanghai Norm. Univ. 2007, 36, 73–76. [Google Scholar]
- Tapia, H.; Young, L.; Fox, D.; Bertozzi, C.R.; Koshland, D. Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2015, 112, 6122–6127. [Google Scholar] [CrossRef]
- Higo, A.; Katoh, H.; Ohmori, K.; Ikeuchi, M.; Ohmori, M. The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 2006, 152, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.S.; Zhang, A.H.; Zhou, W.B.; Wei, J.M.; Dong, H.; Liu, Z.L. Effects of potassium on the photosynthetic recovery of the terrestrial cyanobacterium, Nostoc flagelliforme (cyanophyceae) during rehydration. J. Phycol. 2004, 40, 323–332. [Google Scholar] [CrossRef]
- Klähn, S.; Hagemann, M. Compatible solute biosynthesis in cyanobacteria. Environ. Microbiol. 2011, 13, 551–562. [Google Scholar] [CrossRef]
- Ehira, S.; Kimura, S.; Miyazaki, S.; Ohmori, M. Sucrose synthesis in the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 is controlled by the two-component response regulator OrrA. Appl. Environ. Microbiol. 2014, 80, 5672–5679. [Google Scholar] [CrossRef]
- Kim, K.K.; Kim, R.; Kim, S.H. Crystal structure of a small heat-shock protein. Nature 1998, 394, 595–599. [Google Scholar] [CrossRef]
- Cornette, R.; Kanamori, Y.; Watanabe, M.; Nakahara, Y.; Gusev, O.; Mitsumasu, K.; Kadono-Okuda, K.; Shimomura, M.; Mita, K.; Kikawada, T.; et al. Identification of anhydrobiosis-related genes from an expressed sequence tag database in the cryptobiotic midge Polypedilum vanderplanki (Diptera; Chironomidae). J. Biol. Chem. 2010, 285, 35889–35899. [Google Scholar] [CrossRef]
- Liang, W.; Jiao, F.; Zhou, Y.; You, X.; Zhang, Y.; Chen, W. Differential expression and gene cloning of peroxiredoxin from Nostoc flagelliforme subjected to dehydration and rehydration. Chin. J. Appl. Environ. Biol. 2011, 17, 666–672. [Google Scholar]
- Wright, D.J.; Smith, S.C.; Joardar, V.; Scherer, S.; Jervis, J.; Warren, A.; Helm, R.F.; Potts, M. UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J. Biol. Chem. 2005, 280, 40271–40281. [Google Scholar] [CrossRef]
- Gao, X.; Liu, L.T.; Cui, L.J.; Zheng, T.; Ji, B.Y.; Liu, K. Characterization of two β-galactosidases LacZ and WspA1 from Nostoc flagelliforme with focus on the latter’s central active region. Sci. Rep. 2021, 11, 18448. [Google Scholar] [CrossRef]
- Liu, W.; Cui, L.; Xu, H.; Zhu, Z.; Gao, X. Flexibility-rigidity coordination of the dense exopolysaccharide matrix in terrestrial cyanobacteria acclimated to periodic desiccation. Appl. Environ. Microbiol. 2017, 83, e01619. [Google Scholar] [CrossRef]
- Liu, X.J.; Chen, F.; Jiang, Y. Differentiation of Nostoc flagelliforme and its neighboring species using fatty-acid profiling as a chemotaxonomic tool. Curr. Microbiol. 2003, 47, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Allakhverdiev, S.I.; Kinoshita, M.; Inaba, M.; Suzuki, I.; Murata, N. Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against saltinduced damage in Synechococcus. Plant Physiol. 2001, 125, 1842–1853. [Google Scholar] [CrossRef]
- Gao, K.S.; Ye, C.P. Photosynthetic insensitivity of the terrestrial cyanobacterium Nostoc flagelliforme to solar UV radiation while rehydrated or desiccated. J. Phycol. 2007, 43, 628–635. [Google Scholar] [CrossRef]
- Garcia-Pichel, F.; Castenholz, R.W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 1991, 27, 395–409. [Google Scholar] [CrossRef]
- Ferroni, L.; Klisch, M.; Pancaldi, S.; Häder, D.P. Complementary UV-absorption of mycosporine-like amino acids and scytonemin is responsible for the UV-insensitivity of photosynthesis in Nostoc flagelliforme. Mar. Drugs 2010, 8, 106–121. [Google Scholar] [CrossRef]
- Soule, T.; Garcia-Pichel, F.; Stout, V. Gene expression patterns associated with the biosynthesis of the sunscreen scytonemin in Nostoc punctiforme ATCC 29133 in response to UVA radiation. J. Bacteriol. 2009, 191, 4639–4646. [Google Scholar] [CrossRef]
- Gao, X.; Yuan, X.; Zheng, T.; Ji, B. Promoting efficient production of scytonemin in cell culture of Nostoc flagelliforme by periodic short-term solar irradiation. Bioresour. Technol. Rep. 2023, 21, 101352. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Wang, K.; Hao, F.H.; Shang, J.L.; Tang, H.R.; Qiu, B.S. New types of ATP-grasp ligase are associated with the novel pathway for complicated mycosporine-like amino acid production in desiccation-tolerant cyanobacteria. Environ. Microbiol. 2021, 23, 6420–6432. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Nie, X.; Liu, L.; Hua, Q.; Zhao, G.P.; Yang, C. The cyanobacterial ornithine-ammonia cycle involves an arginine dihydrolase. Nat. Chem. Biol. 2018, 14, 575–581. [Google Scholar] [CrossRef]
- Georg, J.; Dienst, D.; Schürgers, N.; Wallner, T.; Kopp, D.; Stazic, D.; Kuchmina, E.; Klähn, S.; Lokstein, H.; Hess, W.R.; et al. The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria. Plant Cell 2014, 26, 3661–3679. [Google Scholar] [CrossRef]
- Brenes-Álvarez, M.; Minguet, M.; Vioque, A.; Muro-Pastor, A.M. NsiR1, a small RNA with multiple copies, modulates heterocyst differentiation in the cyanobacterium Nostoc sp. PCC 7120. Environ. Microbiol. 2020, 22, 3325–3338. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Escribano, I.; Vioque, A.; Muro-Pastor, A.M. NsrR1, a Nitrogen Stress-Repressed sRNA, Contributes to the Regulation of nblA in Nostoc sp. PCC 7120. Front. Microbiol. 2018, 9, 2267. [Google Scholar] [CrossRef] [PubMed]
- Brenes-Álvarez, M.; Olmedo-Verd, E.; Vioque, A.; Muro-Pastor, A.M. A nitrogen stress-inducible small RNA regulates CO2 fixation in Nostoc. Plant Physiol. 2021, 187, 787–798. [Google Scholar] [CrossRef]
- Harel, Y.; Ohad, I.; Kaplan, A. Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol. 2004, 136, 3070–3079. [Google Scholar] [CrossRef]
- Rajeev, L.; da Rocha, U.N.; Klitgord, N.; Luning, E.G.; Fortney, J.; Axen, S.D.; Shih, P.M.; Bouskill, N.J.; Bowen, B.P.; A Kerfeld, C.; et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 2013, 7, 2178–2191. [Google Scholar] [CrossRef]
- Dolganov, N.A.; Bhaya, D.; Grossman, A.R. Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: Evolution and regulation. Proc. Natl. Acad. Sci. USA 1995, 92, 636–640. [Google Scholar] [CrossRef]
- Komenda, J.; Sobotka, R. Cyanobacterial high-light-inducible proteins-Protectors of chlorophyll-protein synthesis and assembly. BBA-Bioenergetics 2016, 1857, 288–295. [Google Scholar] [CrossRef]
- Riediger, M.; Kadowaki, T.; Nagayama, R.; Georg, J.; Hihara, Y.; Hess, W.R. Biocomputational Analyses and Experimental Validation Identify the Regulon Controlled by the Redox-Responsive Transcription Factor RpaB. iScience 2019, 15, 316–331. [Google Scholar] [CrossRef]
- Kerfeld, C.A.; Sutter, M. Orange carotenoid proteins: Structural understanding of evolution and function. Trends Biochem. Sci. 2024, 49, 819–828. [Google Scholar] [CrossRef]
- Domínguez-Martín, M.A.; Sauer, P.V.; Kirst, H.; Sutter, M.; Bína, D.; Greber, B.J.; Nogales, E.; Polívka, T.; Kerfeld, C.A. Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 2022, 609, 835–845. [Google Scholar] [CrossRef]
- Sutter, M.; Wilson, A.; Leverenz, R.L.; Lopez-Igual, R.; Thurotte, A.; Salmeen, A.E.; Kirilovsky, D.; Kerfeld, C.A. Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc. Natl. Acad. Sci. USA 2013, 110, 10022–10027. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.W.; Yin, Y.C.; Li, Z.K.; Huang, D.; Shang, J.L.; Chen, M.; Qiu, B.S. Orange and red carotenoid proteins are involved in the adaptation of terrestrial cyanobacterium Nostoc ffagelliforme to desiccation. Photosynth. Res. 2019, 14098, 103–113. [Google Scholar] [CrossRef]
- Xu, H.F.; Dai, G.Z.; Ye, D.M.; Shang, J.L.; Song, W.Y.; Shi, H.Z.; Qiu, B.S. Dehydration induced DnaK2 chaperone is involved in PSII repair of desiccation-tolerant cyanobacteria. Plant Physiol. 2020, 182, 1991–2005. [Google Scholar] [CrossRef]
- McDonald, H.J.; Kweon, H.; Kurnfuli, S.; Risser, D.D. A DnaK(Hsp70) chaperone system connects type IV pilus activity to polysaccharide secretion in cyanobacteria. mBio 2022, 13, e00514–e00522. [Google Scholar] [CrossRef]
- Huang, J.J.; Xu, W.; Lin, S.; Cheung, P.C.K. The bioactivities and biotechnological production approaches of carotenoids derived from microalgae and cyanobacteria. Crit. Rev. Biotechnol. 2025, 45, 276–304. [Google Scholar] [CrossRef]
- Han, P.-P.; Shen, S.-G.; Guo, R.-J.; Zhao, D.-X.; Lin, Y.-H.; Jia, S.-R.; Yan, R.-R.; Wu, Y.-K. ROS is a factor regulating the increased polysaccharide production by light quality in the edible cyanobacterium Nostoc flagelliforme. J. Agric. Food Chem. 2019, 67, 2235–2244. [Google Scholar] [CrossRef]
- Helman, Y.; Tchernov, D.; Reinhold, L.; Shibata, M.; Ogawa, T.; Schwarz, R.; Ohad, I.; Kaplan, A. Genes encoding Atype ffavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr. Biol. 2003, 13, 230–235. [Google Scholar] [CrossRef]
- Ermakova, M.; Battchikova, N.; Richaud, P.; Leino, H.; Kosourov, S.; Isojärvi, J.; Peltier, G.; Flores, E.; Cournac, L.; Allahverdiyeva, Y.; et al. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120. Proc. Natl. Acad. Sci. USA 2014, 111, 11205–11210. [Google Scholar] [CrossRef]
- Xu, H.-F.; Dai, G.-Z.; Li, R.-H.; Bai, Y.; Zuo, A.-W.; Zhao, L.; Cui, S.-R.; Shang, J.-L.; Cheng, C.; Wang, Y.-J.; et al. Red-light signaling pathway activates desert cyanobacteria to prepare for desiccation tolerance. Proc. Natl. Acad. Sci. USA 2025, 122, e2502034122. [Google Scholar] [CrossRef]
- Oren, N.; Raanan, H.; Murik, O.; Keren, N.; Kaplan, A. Dawn illumination prepares desert cyanobacteria for dehydration. Curr. Biol. 2017, 27, R1056–R1057. [Google Scholar] [CrossRef]
- Xu, H.F.; Dai, G.Z.; Qiu, B.S. Weak red light plays an important role in awakening the photosynthetic machinery following desiccation in the subaerial cyanobacterium Nostoc flagelliforme. Environ. Microbiol. 2019, 21, 2261–2272. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.; Zhou, G.; Gustafsson, P.; Oquist, G.; Clarke, A.K. Electron transport regulates exchange of two forms of photosystem II D1 protein in the cyanobacterium Synechococcus. EMBO J. 1995, 14, 5457–5466. [Google Scholar] [CrossRef] [PubMed]
- Cser, K.; Vass, I. Radiative and non-radiative charge recombination pathways in photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803. BBA-Bioenergetics 2007, 1767, 233–243. [Google Scholar] [CrossRef]
- Oren, N.; Raanan, H.; Kedem, I.; Turjeman, A.; Bronstein, M.; Kaplan, A.; Murik, O. Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light and temperature sensing. Mol. Ecol. 2019, 28, 2305–2320. [Google Scholar] [CrossRef]
- Chang, Y.W.; Zhang, R.Q.; Hai, C.X.; Zhang, L.X. Seasonal variation in soil temperature and moisture of a desert steppe environment: A case study from Xilamuren, Inner Mongolia. Environ. Earth Sci. 2021, 80, 290. [Google Scholar] [CrossRef]
- Wada, H.; Gombos, Z.; Murata, N. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 1990, 347, 200–203. [Google Scholar] [CrossRef]
- Sinetova, M.A.; Los, D.A. New insights in cyanobacterial cold stress responses: Genes, sensors, and molecular triggers. Biochim. Biophys. Acta 2016, 1860, 2391–2403. [Google Scholar] [CrossRef]
- Morgan-Kiss, R.M.; Priscu, J.C.; Pocock, T.; Gudynaite-Savitch, L.; Huner, N.P. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev. 2006, 70, 222–252. [Google Scholar] [CrossRef]
- Yadav, P.; Singh, R.P.; Rana, S.; Joshi, D.; Kumar, D.; Bhardwaj, N.; Gupta, R.K.; Kumar, A. Mechanisms of stress tolerance in cyanobacteria under extreme conditions. Stresses 2022, 2, 531–549. [Google Scholar] [CrossRef]
- Los, D.A.; Murata, N. Responses to cold shock in cyanobacteria. J. Mol. Microbiol. Biotechnol. 1999, 1, 221–230. [Google Scholar]
- Liu, X.J.; Jiang, Y.; Chen, F. Fatty acid profile of the edible filamentous cyanobacterium Nostoc flagelliforme at different temperatures and developmental stages in liquid suspension culture. Process Biochem. 2005, 40, 371–377. [Google Scholar] [CrossRef]
- Bashir, S.; Dabravolski, D.A.; Isayenkov, S.V. Metabolites facilitating adaptation of desert cyanobacteria to extremely arid environments. Plants 2022, 11, 3225. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, J.-L.; Xie, Y.-X.; Shi, L.-Y.; Diao, S.-R.; Guan, J.-Y. Molecular Mechanisms of Nostoc flagelliforme Environmental Adaptation: A Comprehensive Review. Plants 2025, 14, 1582. https://doi.org/10.3390/plants14111582
Shang J-L, Xie Y-X, Shi L-Y, Diao S-R, Guan J-Y. Molecular Mechanisms of Nostoc flagelliforme Environmental Adaptation: A Comprehensive Review. Plants. 2025; 14(11):1582. https://doi.org/10.3390/plants14111582
Chicago/Turabian StyleShang, Jin-Long, Yong-Xue Xie, Lu-Yao Shi, Shuo-Ren Diao, and Jin-Yan Guan. 2025. "Molecular Mechanisms of Nostoc flagelliforme Environmental Adaptation: A Comprehensive Review" Plants 14, no. 11: 1582. https://doi.org/10.3390/plants14111582
APA StyleShang, J.-L., Xie, Y.-X., Shi, L.-Y., Diao, S.-R., & Guan, J.-Y. (2025). Molecular Mechanisms of Nostoc flagelliforme Environmental Adaptation: A Comprehensive Review. Plants, 14(11), 1582. https://doi.org/10.3390/plants14111582