Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = radial cell sizes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5769 KiB  
Article
Higher Winter Precipitation and Temperature Are Associated with Smaller Earlywood Vessel Size but Wider Latewood Width in Quercus faginea Lam.
by Ignacio García-González, Filipe Campelo, Joana Vieira and Cristina Nabais
Forests 2025, 16(8), 1252; https://doi.org/10.3390/f16081252 - 1 Aug 2025
Abstract
Quercus faginea Lam., a winter-deciduous oak native to the Iberian Peninsula, typically grows under a Mediterranean climate. To identify the main drivers influencing radial wood increment, we analyzed the climatic signals in tree-ring width and wood anatomical traits using increment cores. Winter conditions [...] Read more.
Quercus faginea Lam., a winter-deciduous oak native to the Iberian Peninsula, typically grows under a Mediterranean climate. To identify the main drivers influencing radial wood increment, we analyzed the climatic signals in tree-ring width and wood anatomical traits using increment cores. Winter conditions influenced both latewood width and earlywood vessel size in the first row. Latewood was positively correlated with precipitation and temperature, with the long-term positive effect of winter water supply supported by SPEI. In contrast, vessel size showed negative correlations, also reflecting a long-term negative effect of winter precipitation. Consequently, conditions that enhanced latewood width and overall tree-ring growth appear to be associated with the formation of smaller earlywood vessels. Although ample winter precipitation replenishes soil water reserves and supports prolonged wood formation, it may also induce anaerobic soil conditions that promote root fermentation, depleting carbohydrates needed for cell turgor and expansion, and ultimately regulating earlywood vessel size. This physiological decoupling may help explain the lack of a significant correlation between latewood width and earlywood vessel size, underscoring their independent responses to environmental influences. Our findings highlighted the complex interplay between various climatic conditions affecting Q. faginea, with implications for understanding its adaptive capacity in changing climates. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

13 pages, 32181 KiB  
Article
Radiation-Induced Cardiotoxicity in Hypertensive Salt-Sensitive Rats: A Feasibility Study
by Dayeong An, Alison Kriegel, Suresh Kumar, Heather Himburg, Brian Fish, Slade Klawikowski, Daniel Rowe, Marek Lenarczyk, John Baker and El-Sayed Ibrahim
Life 2025, 15(6), 862; https://doi.org/10.3390/life15060862 - 27 May 2025
Viewed by 490
Abstract
Radiation therapy (RT) plays a vital role in managing thoracic cancers, though it can lead to adverse effects, including significant cardiotoxicity. Understanding the risk factors like hypertension in RT is important for patient prognosis and management. A Dahl salt-sensitive (SS) female rat model [...] Read more.
Radiation therapy (RT) plays a vital role in managing thoracic cancers, though it can lead to adverse effects, including significant cardiotoxicity. Understanding the risk factors like hypertension in RT is important for patient prognosis and management. A Dahl salt-sensitive (SS) female rat model was used to study hypertension effect on RT-induced cardiotoxicity. Rats were fed a high-salt diet to induce hypertension and then divided into RT and sham groups. The RT group received 24 Gy of whole-heart irradiation. Cardiac function was evaluated using MRI and blood pressure measurements at baseline, 8 weeks and 12 weeks post-RT. Histological examination was performed after the last timepoint or animal death. The hypertensive RT rats demonstrated significant decreases in left-ventricular ejection fraction (EF) (45 ± 7.2%) compared to sham (68 ± 7.3%). Furthermore, circumferential (Ecc) and radial (Err) myocardial strains were significantly reduced (Ecc: −7.4 ± 2.0% RT rats vs. −11 ± 2.4% sham; Err: 15 ± 6.5% RT rats vs. 23 ± 8.9% sham). Histological analysis revealed significant pathophysiological remodeling post-RT, including nuclear size, interstitial fibrosis, necrosis, and the presence of inflammatory cells. This study provides valuable insights into the cardiotoxic effects of RT in the context of hypertension, highlighting the potential of using MRI for improved risk assessment with potential for future clinical translation. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

59 pages, 51081 KiB  
Article
Ultrastructural Study and Immunohistochemical Characteristics of Mesencephalic Tegmentum in Juvenile Chum Salmon (Oncorhynchus keta) Brain After Acute Traumatic Injury
by Evgeniya V. Pushchina, Evgeniya A. Pimenova, Ilya A. Kapustyanov and Mariya E. Bykova
Int. J. Mol. Sci. 2025, 26(2), 644; https://doi.org/10.3390/ijms26020644 - 14 Jan 2025
Viewed by 1263
Abstract
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon (Oncorhynchus keta) was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of fasciculus longitudinalis medialis (NFLM), and the nucleus of the oculomotor [...] Read more.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon (Oncorhynchus keta) was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of fasciculus longitudinalis medialis (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro–glial relationships in them. Neurons of three size types with a high metabolic rate, characterized by the presence of numerous mitochondria, polyribosomes, Golgi apparatus, and cytoplasmic inclusions (vacuoles, lipid droplets, and dense bodies), were distinguished. It was found that large interneurons of the NFLM formed contacts with protoplasmic astrocytes. Excitatory synaptic structures were identified in the tegmentum and their detailed characteristic are provided for the first time. Microglia-like cells were found in the NIII. The ultrastructural characteristics of neurogenic zones of the tegmentum of juvenile chum salmon were also determined for the first time. In the neurogenic zones of the tegmentum, adult-type neural stem progenitor cells (aNSPCs) corresponding to cells of types III and IVa Danio rerio. In the neurogenic zones of the tegmentum, neuroepithelial-like cells (NECs) corresponding to cells previously described from the zebrafish cerebellum were found and characterized. In the tegmentum of juvenile chum salmon, patterns of paracrine neurosecretion were observed and their ultrastructural characteristics were recorded. Patterns of apoptosis in large neurons of the tegmentum were examined by TEM. Using immunohistochemical (IHC) labeling of the brain lipid-binding protein (BLBP) and aromatase B (AroB), patterns of their expression in the tegmentum of intact animals and in the post-traumatic period after acute injury to the medulla oblongata were characterized. The response to brainstem injury in chum salmon was found to activate multiple signaling pathways, which significantly increases the BLBP and AroB expression in various regions of the tegmentum and valvula cerebelli. However, post-traumatic patterns of BLBP and AroB localizations are not the same. In addition to a general increase in BLBP expression in the tegmental parenchyma, BLBP overexpression was observed in the rostro-lateral tegmental neurogenic zone (RLTNZ), while AroB expression in the RLTNZ was completely absent. Another difference was the peripheral overexpression of AroB and the formation of dense reactive clusters in the ventro-medial zone of the tegmentum. Thus, in the post-traumatic period, various pathways were activated whose components were putative candidates for inducers of the “astrocyte-like” response in the juvenile chum salmon brain that are similar to those present in the mammalian brain. In this case, BLBP acted as a factor enhancing the differentiation of both radial glia and neurons. Estradiol from AroB+ astrocytes exerted paracrine neuroprotective effects through the potential inhibition of inflammatory processes. These results indicate a new role for neuronal aromatization as a mechanism preventing the development of neuroinflammation. Moreover, our findings support the hypothesis that BLBP is a factor enhancing neuronal and glial differentiation in the post-traumatic period in the chum salmon brain. Full article
(This article belongs to the Special Issue Molecular Research on Brain Injury)
Show Figures

Figure 1

12 pages, 665 KiB  
Article
Retinal Vascular Abnormalities and Clinical Parameters in Systemic Sclerosis
by Rosario Foti, Marco Zeppieri, Roberta Foti, Elisa Visalli, Giorgio Amato, Roberta Amato, Edoardo Dammino, Fabiana D’Esposito and Caterina Gagliano
J. Clin. Med. 2024, 13(10), 2738; https://doi.org/10.3390/jcm13102738 - 7 May 2024
Cited by 6 | Viewed by 1565
Abstract
Background: Systemic sclerosis is a complex autoimmune disease characterized by vasculopathy, fibrosis, and immune dysregulation. Ocular manifestations in these patients are increasingly recognized, suggesting potential correlations between systemic vascular abnormalities and ocular microvascular changes. Advancements in molecular immunology and imaging technology using [...] Read more.
Background: Systemic sclerosis is a complex autoimmune disease characterized by vasculopathy, fibrosis, and immune dysregulation. Ocular manifestations in these patients are increasingly recognized, suggesting potential correlations between systemic vascular abnormalities and ocular microvascular changes. Advancements in molecular immunology and imaging technology using ocular coherence tomography (OCT) have unveiled intricate pathways underlying possible disease pathogenesis. Understanding the interplay between retinal vascular abnormalities and molecular immunology parameters could provide insights into disease mechanisms and potential biomarkers. Purpose: The aim of this study was to investigate vascular abnormalities, detected with optical coherence tomography angiography (OCT-A), in systemic sclerosis patients and to find correlations between the severity of the disease detected with molecular immunology findings and OCT-A parameters. Methods: A group of 32 systemic sclerosis patients were compared with 9 healthy controls. Ganglion cell complex thickness (GCC), retina thickness of the fovea and parafovea, nerve fiber layer thickness (RNFL) and cup/disc area ratio were investigated using OCT. Vessel density (VD) of the superficial (SCP) and deep capillary plexus (DCP) of the whole macular area and ETDRS grid, size of the foveal avascular zone (FAZ) and vessel density of the radial peripapillary capillary plexus (RPCP) were evaluated using OCT-A. Modified Rodnan skin score (mRSS), capillaroscopy and disease duration were used to stage disease severity. Results: There was a statistically significant reduction in retina thickness of the fovea and parafovea, VD of the whole DCP, VD of the SCP and DCP in ETDRS grid in the patient group compared to controls (p < 0.001). The patients presented a significant enlargement of the FAZ (p 0.005). No significant correlation between OCT and OCT-A parameters and disease severity scores was found. Conclusions: OCT-A could represent a non-invasive tool to detect retinal microvascular damage in systemic sclerosis. Full article
(This article belongs to the Special Issue New Clinical Treatment for Ocular Vascular Disease and Fundus Disease)
Show Figures

Figure 1

15 pages, 4872 KiB  
Article
Effect of High-Intensity Microwave Treatment on Structural and Chemical Characteristics of Chinese Fir
by Xiaomei Liao, Xuan Fang, Xin Gao, Songlin Yi and Yongdong Zhou
Forests 2024, 15(3), 516; https://doi.org/10.3390/f15030516 - 11 Mar 2024
Cited by 6 | Viewed by 1918
Abstract
High-intensity microwave (HIMW) treatment is a time-saving and environmentally friendly method widely applied in the wood processing industry. It enhances wood permeability, making it suitable for drying and impregnation modification. This study aimed to investigate the effects of HIMW on macroscopic and microscopic [...] Read more.
High-intensity microwave (HIMW) treatment is a time-saving and environmentally friendly method widely applied in the wood processing industry. It enhances wood permeability, making it suitable for drying and impregnation modification. This study aimed to investigate the effects of HIMW on macroscopic and microscopic cracks, tracheid cell wall damage, and the chemical structure of Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] wood. Through the use of a camera, optical microscope, scanning electron microscope, transmission electron microscope, Fourier-transform infrared spectroscopy, and X-ray diffraction, the morphology of cracks, cell wall damage, the chemical composition of the cell wall, and the crystalline structure of cellulose treated with HIMW were examined and analyzed. The results revealed that the initial moisture content (MC) and microwave energy density (MWED) significantly influenced the crack characteristics and cell wall structure and slightly influenced the chemical composition and crystalline structure of cellulose of the Chinese fir cell wall. HIMW treatment can produce different characteristics of wood cracks. The size and number of cracks were significantly increased with the increase in MWED, and more cracks were found in low MC. Microcracks caused by HIMW treatment tended to initiate at the ray parenchyma, resulting in the stripping of ray cells along its radial direction. Meanwhile, the cracking of adjacent cell junctions, the rupturing of the pit margo and pit torus, and cell wall parts tearing along the direction of microfibers occurred as a result of the HIMW treatment. The most severe damage to the cell walls occurred at the interface of S1/S2, S1, and ML layers, and the cell walls were torn in the S2 layer. There were no significant changes in the FTIR spectra of the HIMW treatment samples. Hemicellulose degradation occurred first, which increased with the increase in MWED. The recrystallization of cellulose and the lignin content increased because of the change in the aromatic C=O groups. As MWED increased, both the crystallinity index (CI) and cellulose crystal width (D200) of the samples that underwent HIMW treatment increased accordingly, and the number of low-MC samples was greater than that of the high-MC samples. The findings contribute to understanding the crack characteristics and damage mechanism induced by HIMW treatment on wood. This study provides valuable insights into regulating the effects of HIMW treatment and expanding its application in wood processing, such as wood drying and functionalized impregnation, according to the specific end-use requirements. Full article
Show Figures

Figure 1

16 pages, 5243 KiB  
Article
Reconstruction of Seasonal Kinetics in Conifer Radial Growth from Daily Meteorological Conditions, Tree-Ring Width, and Radial Size of Tracheids
by Grigory K. Zelenov, Liliana V. Belokopytova, Elena A. Babushkina, Dina F. Zhirnova, Bao Yang, Xiaomei Peng, Jingjing Liu, Gleb A. Sitnikov and Eugene A. Vaganov
Forests 2024, 15(2), 249; https://doi.org/10.3390/f15020249 - 28 Jan 2024
Cited by 2 | Viewed by 1673
Abstract
The development of the tree ring is a process occurring under limitations caused by a complex of environmental factors and intrinsic regulatory mechanisms. Its understanding is of interest in many scientific fields, but most quantitative models trying to describe its details meet several [...] Read more.
The development of the tree ring is a process occurring under limitations caused by a complex of environmental factors and intrinsic regulatory mechanisms. Its understanding is of interest in many scientific fields, but most quantitative models trying to describe its details meet several issues stemming from the difficulty of its verification. This study attempted to combine several observational and modeling approaches to verify intermediate details of the description of xylogenesis, aiming to restore the tree-ring seasonal growth kinetics on the basis of dendrochronological and wood anatomical data. It was carried out for Scots pine in two semiarid habitats in South Siberia. The Vaganov-Shashkin model was used jointly with tree-ring width chronology and climatic data to model the tree radial growth rate with daily precision. The Band-model was then used to calculate the kinetics of tracheid production from the growth rate and actual final number of cells per radial file in the ring. Seasonal observations of cell population and final measurements of cell sizes were used to fit model parameters and verify the numbers of developing tracheids produced by the Band-model. The patterns of modeled seasonal kinetics for six seasons and two sites were found to repeat the actual drought-derived deviations in tree growth and observations (R2 = 0.70–0.84). Further research is required to test other climatic limitations and species-specific ecophysiological mechanisms of growth regulation. Full article
Show Figures

Figure 1

21 pages, 3457 KiB  
Article
The Blocking of Drug Resistance Channels by Selected Hydrophobic Statins in Chemoresistance Human Melanoma
by Wojciech Placha, Piotr Suder, Agnieszka Panek, Patrycja Bronowicka-Adamska, Marta Zarzycka, Małgorzata Szczygieł, Jacek Zagajewski and Monika Weronika Piwowar
Biomolecules 2023, 13(12), 1682; https://doi.org/10.3390/biom13121682 - 21 Nov 2023
Cited by 1 | Viewed by 2177
Abstract
Despite the development of modern drugs, drug resistance in oncology remains the main factor limiting the curability of patients. This paper shows the use of a group of hydrophobic statins to inhibit drug resistance (Pgp protein). In a chemoresistance melanoma cell model, viability, [...] Read more.
Despite the development of modern drugs, drug resistance in oncology remains the main factor limiting the curability of patients. This paper shows the use of a group of hydrophobic statins to inhibit drug resistance (Pgp protein). In a chemoresistance melanoma cell model, viability, necroptosis with DNA damage, the absorption of the applied pharmaceuticals, and the functional activity of the ABCB1 drug transporter after administration of docetaxel or docetaxel with a selected hydrophobic statin were studied. Taxol-resistant human melanoma cells from three stages of development were used as a model: both A375P and WM239A metastatic lines and radial growth phase WM35 cells. An animal model (Mus musculus SCID) was developed for the A375P cell line. The results show that hydrophobic statins administered with docetaxel increase the accumulation of the drug in the tumor cell a.o. by blocking the ABCB1 channel. They reduce taxol-induced drug resistance. The tumor size reduction was observed after the drug combination was administrated. It was shown that the structural similarity of statins is of secondary importance, e.g., pravastatin and simvastatin. Using cytostatics in the presence of hydrophobic statins increases their effectiveness while reducing their overall toxicity. Full article
Show Figures

Figure 1

33 pages, 4643 KiB  
Review
Selective Laser Melting and Spark Plasma Sintering: A Perspective on Functional Biomaterials
by Ramin Rahmani, Sérgio Ivan Lopes and Konda Gokuldoss Prashanth
J. Funct. Biomater. 2023, 14(10), 521; https://doi.org/10.3390/jfb14100521 - 16 Oct 2023
Cited by 19 | Viewed by 3994
Abstract
Achieving lightweight, high-strength, and biocompatible composites is a crucial objective in the field of tissue engineering. Intricate porous metallic structures, such as lattices, scaffolds, or triply periodic minimal surfaces (TPMSs), created via the selective laser melting (SLM) technique, are utilized as load-bearing matrices [...] Read more.
Achieving lightweight, high-strength, and biocompatible composites is a crucial objective in the field of tissue engineering. Intricate porous metallic structures, such as lattices, scaffolds, or triply periodic minimal surfaces (TPMSs), created via the selective laser melting (SLM) technique, are utilized as load-bearing matrices for filled ceramics. The primary metal alloys in this category are titanium-based Ti6Al4V and iron-based 316L, which can have either a uniform cell or a gradient structure. Well-known ceramics used in biomaterial applications include titanium dioxide (TiO2), zirconium dioxide (ZrO2), aluminum oxide (Al2O3), hydroxyapatite (HA), wollastonite (W), and tricalcium phosphate (TCP). To fill the structures fabricated by SLM, an appropriate ceramic is employed through the spark plasma sintering (SPS) method, making them suitable for in vitro or in vivo applications following minor post-processing. The combined SLM-SPS approach offers advantages, such as rapid design and prototyping, as well as assured densification and consolidation, although challenges persist in terms of large-scale structure and molding design. The individual or combined application of SLM and SPS processes can be implemented based on the specific requirements for fabricated sample size, shape complexity, densification, and mass productivity. This flexibility is a notable advantage offered by the combined processes of SLM and SPS. The present article provides an overview of metal–ceramic composites produced through SLM-SPS techniques. Mg-W-HA demonstrates promise for load-bearing biomedical applications, while Cu-TiO2-Ag exhibits potential for virucidal activities. Moreover, a functionally graded lattice (FGL) structure, either in radial or longitudinal directions, offers enhanced advantages by allowing adjustability and control over porosity, roughness, strength, and material proportions within the composite. Full article
Show Figures

Figure 1

23 pages, 13299 KiB  
Article
Observation of Weibull, Lognormal, and Gamma Distributions in Electrodeposited Cu and Cu-Ag Particles
by Yunkai Sun and Giovanni Zangari
Materials 2023, 16(19), 6452; https://doi.org/10.3390/ma16196452 - 28 Sep 2023
Cited by 2 | Viewed by 1711
Abstract
In this work, the nearest-neighbor distances and Voronoi cell features of Cu-Ag deposits were analyzed and fitted with Lognormal, Weibull, and Gamma distributions. The nearest-neighbor distance distributions of the samples were compared with those of complete spatially random points, showing spatial inhomogeneity due [...] Read more.
In this work, the nearest-neighbor distances and Voronoi cell features of Cu-Ag deposits were analyzed and fitted with Lognormal, Weibull, and Gamma distributions. The nearest-neighbor distance distributions of the samples were compared with those of complete spatially random points, showing spatial inhomogeneity due to the nucleation exclusion effect. The radial distribution function was calculated, showing both influences from the grain size and the nucleation exclusion effect. Voronoi cells were generated based on the shape of the grains. The size, occupancy, and coordination of the Voronoi cells were examined and fitted. The results show that although the Cu-Ag deposits seemed to be governed by the instantaneous nucleation mode, the spatial distribution of the nuclei was more impacted by the nucleation exclusion effect than the Cu-only samples. This behavior is also justified by the grain size distribution generated with Voronoi cell size and occupancy distributions. Full article
(This article belongs to the Special Issue Electrochemical Phase Formation of Materials and Its Modeling)
Show Figures

Figure 1

14 pages, 4182 KiB  
Article
Supercritical Dynamics of an Oscillating Interface of Immiscible Liquids in Axisymmetric Hele-Shaw Cells
by Victor Kozlov, Stanislav Subbotin and Ivan Karpunin
Fluids 2023, 8(7), 204; https://doi.org/10.3390/fluids8070204 - 12 Jul 2023
Cited by 3 | Viewed by 1491
Abstract
The oscillation of the liquid interface in axisymmetric Hele-Shaw cells (conical and flat) is experimentally studied. The cuvettes, which are thin conical layers of constant thickness and flat radial Hele-Shaw cells, are filled with two immiscible liquids of similar densities and a large [...] Read more.
The oscillation of the liquid interface in axisymmetric Hele-Shaw cells (conical and flat) is experimentally studied. The cuvettes, which are thin conical layers of constant thickness and flat radial Hele-Shaw cells, are filled with two immiscible liquids of similar densities and a large contrast in viscosity. The axis of symmetry of the cell is oriented vertically; the interface without oscillations is axially symmetric. An oscillating pressure drop is set at the cell boundaries, due to which the interface performs radial oscillations in the form of an oscillating “tongue” of a low-viscosity liquid, periodically penetrating into a more viscous liquid. An increase in the oscillation amplitude leads to the development of a system of azimuthally periodic structures (fingers) at the interface. The fingers grow when the viscous liquid is forced out of the layer and reach their maximum in the phase of maximum displacement of the interface. In the reverse course, the structures decrease in size and, at a certain phase of oscillations, take the form of small pits directed toward the low-viscosity fluid. In a conical cell, a bifurcation of period doubling with an increase in amplitude is found; in a flat cell, it is absent. A slow azimuthal drift of finger structures is found. It is shown that the drift is associated with the inhomogeneity of the amplitude of fluid oscillations in different radial directions. The fingers move from the region of a larger to the region of a lower amplitude of the interface oscillations. Full article
(This article belongs to the Special Issue Multiphase Flow and Granular Mechanics)
Show Figures

Figure 1

22 pages, 17451 KiB  
Article
Voronoi Diagrams Generated by the Archimedes Spiral: Fibonacci Numbers, Chirality and Aesthetic Appeal
by Mark Frenkel, Irina Legchenkova, Nir Shvalb, Shraga Shoval and Edward Bormashenko
Symmetry 2023, 15(3), 746; https://doi.org/10.3390/sym15030746 - 17 Mar 2023
Cited by 6 | Viewed by 3934
Abstract
Voronoi mosaics inspired by seed points placed on the Archimedes Spirals are reported. Voronoi (Shannon) entropy was calculated for these patterns. Equidistant and non-equidistant patterns are treated. Voronoi tessellations generated by the seeds located on the Archimedes spiral and separated by linearly growing [...] Read more.
Voronoi mosaics inspired by seed points placed on the Archimedes Spirals are reported. Voronoi (Shannon) entropy was calculated for these patterns. Equidistant and non-equidistant patterns are treated. Voronoi tessellations generated by the seeds located on the Archimedes spiral and separated by linearly growing radial distance demonstrate a switch in their chirality. Voronoi mosaics built from cells of equal size, which are of primary importance for the decorative arts, are reported. The pronounced prevalence of hexagons is inherent for the patterns with an equidistant and non-equidistant distribution of points when the distance between the seed points is of the same order of magnitude as the distance between the turns of the spiral. Penta- and heptagonal “defected” cells appeared in the Voronoi diagrams due to the finite nature of the pattern. The ordered Voronoi tessellations demonstrating the Voronoi entropy larger than 1.71, reported for the random 2D distribution of points, were revealed. The dependence of the Voronoi entropy on the total number of seed points located on the Archimedes Spirals is reported. Voronoi tessellations generated by the phyllotaxis-inspired patterns are addressed. The aesthetic attraction of the Voronoi mosaics arising from seed points placed on the Archimedes Spirals is discussed. Full article
Show Figures

Figure 1

15 pages, 3347 KiB  
Article
Morphological Features and Biological Activity of Different Extracts of Echinops spinosissimus Grown in Saudi Arabia
by Luluah M. Al Masoudi and Ahmed M. Hashim
Agronomy 2023, 13(2), 573; https://doi.org/10.3390/agronomy13020573 - 17 Feb 2023
Cited by 1 | Viewed by 3572
Abstract
Based on a shortage of available data on Echinops spinosissimus in Saudi Arabia, the current study’s aim was to present some new information on the topic. Plant samples were collected from different locations in the northeast of Mecca. Out of fifteen species from [...] Read more.
Based on a shortage of available data on Echinops spinosissimus in Saudi Arabia, the current study’s aim was to present some new information on the topic. Plant samples were collected from different locations in the northeast of Mecca. Out of fifteen species from this genus found in Saudi Arabia, one species was targeted in the current study. It was noted as a perennial subshrub that is 30–80 cm in length. Its stem is gray, striate, and slightly covered with glandular hairs. The epidermis is converted into cork cells in older stem parts. The vascular system showed a continuous siphonostelic structure and dissected vascular bundles. The lamina is abaxially rounded and straight. The pollen grains are monads, radially symmetric, medium-sized, and a prolate spheroidal shape with an aculeate–foveolate exine structure. Based on its historical pharmaceutical properties, the phytochemical properties were studied, and it was noted that ethyl acetate was the best solvent for producing high amounts of bioactive compounds such as phenols, flavonoids, and alkaloids. The obtained extracts appeared to exhibit high activity against Gram-positive pathogenic bacteria. These extracts were identified by using HPLC and GC-MS. Many bioactive compounds were detected, such as protocatechuic acid, gallic acid, rutin, vanillic acid, quercetin, and kaempferol. Additionally, four main compounds, including hexadecanoic, stearic, oleic, and linoleic acids, were detected via GC-MS. The total antioxidants of E. spinosissimus extracts showed that the ethyl acetate extract exhibited a high total antioxidant capacity and free radical-scavenging properties. Full article
(This article belongs to the Special Issue Research Progress and Application Prospect of Medicinal Plants)
Show Figures

Figure 1

27 pages, 5724 KiB  
Article
Optimal Placement and Sizing of Electric Vehicle Charging Infrastructure in a Grid-Tied DC Microgrid Using Modified TLBO Method
by Nandini K. Krishnamurthy, Jayalakshmi N. Sabhahit, Vinay Kumar Jadoun, Dattatraya Narayan Gaonkar, Ashish Shrivastava, Vidya S. Rao and Ganesh Kudva
Energies 2023, 16(4), 1781; https://doi.org/10.3390/en16041781 - 10 Feb 2023
Cited by 61 | Viewed by 4653
Abstract
In this work, a DC microgrid consists of a solar photovoltaic, wind power system and fuel cells as sources interlinked with the utility grid. The appropriate sizing and positioning of electric vehicle charging stations (EVCSs) and renewable energy sources (RESs) are concurrently determined [...] Read more.
In this work, a DC microgrid consists of a solar photovoltaic, wind power system and fuel cells as sources interlinked with the utility grid. The appropriate sizing and positioning of electric vehicle charging stations (EVCSs) and renewable energy sources (RESs) are concurrently determined to curtail the negative impact of their placement on the distribution network’s operational parameters. The charging station location problem is presented in a multi-objective context comprising voltage stability, reliability, the power loss (VRP) index and cost as objective functions. RES and EVCS location and capacity are chosen as the objective variables. The objective functions are tested on modified IEEE 33 and 123-bus radial distribution systems. The minimum value of cost obtained is USD 2.0250 × 106 for the proposed case. The minimum value of the VRP index is obtained by innovative scheme 6, i.e., 9.6985 and 17.34 on 33-bus and 123-bus test systems, respectively. The EVCSs on medium- and large-scale networks are optimally placed at bus numbers 2, 19, 20; 16, 43, and 107. There is a substantial rise in the voltage profile and a decline in the VRP index with RESs’ optimal placement at bus numbers 2, 18, 30; 60, 72, and 102. The location and size of an EVCS and RESs are optimized by the modified teaching-learning-based optimization (TLBO) technique, and the results show the effectiveness of RESs in reducing the VRP index using the proposed algorithm. Full article
Show Figures

Figure 1

17 pages, 2685 KiB  
Review
Evaluation of Blood Levels of Omentin-1 and Orexin-A in Adults with Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis
by Iman Mohammadi, Masoud Sadeghi, Golnaz Tajmiri, Annette Beatrix Brühl, Laleh Sadeghi Bahmani and Serge Brand
Life 2023, 13(1), 245; https://doi.org/10.3390/life13010245 - 16 Jan 2023
Cited by 4 | Viewed by 3100
Abstract
Background and objective: Obstructive sleep apnea (OSA) can be related to changes in the levels of adipokines and neuropeptides, which in turn may affect the energy balance components of neuronal cells. Herein, a systematic review and meta-analysis checked the changes in serum/plasma levels [...] Read more.
Background and objective: Obstructive sleep apnea (OSA) can be related to changes in the levels of adipokines and neuropeptides, which in turn may affect the energy balance components of neuronal cells. Herein, a systematic review and meta-analysis checked the changes in serum/plasma levels of omentin-1 (OM-1: an adipokine) and orexin-A (OXA: a neuropeptide) in adults (age > 18 years old) with OSA (aOSA) compared to controls. Materials and methods: Four databases (Cochrane Library, PubMed, Web of Science, and Scopus) were systematically searched until 14 November 2022, without any restrictions. The Joanna Briggs Institute (JBI) critical appraisal checklist adapted for case–control studies was used to assess the quality of the papers. The effect sizes were extracted using the Review Manager 5.3 software for the blood levels of OM-1 and OXA in aOSA compared with controls. Results: Thirteen articles, with six studies for OM-1 levels and eight for OXA levels, were included. The pooled standardized mean differences were −0.85 (95% confidence interval (CI): −2.19, 0.48; p = 0.21; I2 = 98%) and −0.20 (95%CI: −1.16, 0.76; p = 0.68; I2 = 96%) for OM-1 and OXA levels, respectively. Among the studies reporting OM-1, five were high and one was moderate quality. Among the studies reporting OXA, six were moderate, one was high, and one was low quality. Based on the trial sequential analysis, more participants are needed to confirm the pooled results of the analyses of blood levels of OM-1 and OXA. In addition, the radial plot showed outliers as significant factors for high heterogeneity. Conclusions: The main findings indicated a lack of association between the blood levels of OM-1 and OXA and OSA risk. Therefore, OM-1 and OXA did not appear to be suitable biomarkers for the diagnosis and development of OSA. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

17 pages, 11287 KiB  
Article
Effect of Radial-Shear Rolling on the Structure and Hardening of an Al–8%Zn–3.3%Mg–0.8%Ca–1.1%Fe Alloy Manufactured by Electromagnetic Casting
by Yury V. Gamin, Nikolay A. Belov, Torgom K. Akopyan, Victor N. Timofeev, Stanislav O. Cherkasov and Mikhail M. Motkov
Materials 2023, 16(2), 677; https://doi.org/10.3390/ma16020677 - 10 Jan 2023
Cited by 6 | Viewed by 2224
Abstract
Aluminum alloys are one of the most common structural materials. To improve the mechanical properties, an alloy of the Al–Zn–Mg–Ca–Fe system was proposed. In this alloy, when Fe and Ca are added, compact particles of the Al10CaFe2 compound are formed, [...] Read more.
Aluminum alloys are one of the most common structural materials. To improve the mechanical properties, an alloy of the Al–Zn–Mg–Ca–Fe system was proposed. In this alloy, when Fe and Ca are added, compact particles of the Al10CaFe2 compound are formed, which significantly reduces the negative effect of Fe on the mechanical properties. Because of the high solidification rate (about 600 K/s) during cylindrical ingot (~33 mm) production, the electromagnetic casting method (ECM) makes it possible to obtain a highly dispersed structure in the cast state. The size of the dendritic cell is ~7 μm, while the entire amount of Fe is bound into eutectic inclusions of the Al10CaFe2 phase with an average size of less than 3 μm. In this study, the effect of radial shear rolling (RSR) on the formation of the structure and hardening of the Al–8%Zn–3.3%Mg–0.8%Ca–1.1%Fe alloy obtained by EMC was studied. Computer simulation of the RSR process made it possible to analyze the temperature and stress–strain state of the alloy and to select the optimal rolling modes. It was shown that the flow features during RSR and the severe shear strains near the surface of the rod (10 mm) provided a refining and decrease in the size of the initial Fe-containing particles. Full article
(This article belongs to the Special Issue Radial-Shear and Screw Rolling Process)
Show Figures

Figure 1

Back to TopTop