Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (122)

Search Parameters:
Keywords = quorum sensing modulators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6310 KB  
Article
Dopamine Is a Key Regulatory Molecule for Escherichia coli and May Serve as a Xenosiderophore
by Ben Xu, Xiran Chen, Jinmei Chai and Yunlin Wei
Microorganisms 2026, 14(2), 327; https://doi.org/10.3390/microorganisms14020327 - 30 Jan 2026
Abstract
Previous studies have demonstrated that catecholamines, including epinephrine (Epi), norepinephrine (NE), and dopamine (DA), function both as xenosiderophores for bacteria possessing dedicated transport channels and as potential quorum-sensing signaling molecules or regulatory factors. However, current research on the interactions between dopamine and bacteria [...] Read more.
Previous studies have demonstrated that catecholamines, including epinephrine (Epi), norepinephrine (NE), and dopamine (DA), function both as xenosiderophores for bacteria possessing dedicated transport channels and as potential quorum-sensing signaling molecules or regulatory factors. However, current research on the interactions between dopamine and bacteria remains relatively limited. In this study, treatment of Escherichia coli (E. coli) ATCC 11303 with a specific concentration of dopamine resulted in a 33.63% increase in the maximum growth biomass, a 47.32% enhancement in biofilm formation, a 24.60% increase in protease activity, a 68.81% improvement in swimming motility, and increases of 33.77% and 47.67% in chemotaxis and swarming motility, respectively. Transcriptome analysis revealed that dopamine promoted the expression of numerous iron uptake-related genes, while biofilm formation-related genes and virulence genes were concomitantly upregulated. High-performance liquid chromatography–mass spectrometry (HPLC-MS) and isotope ratio mass spectrometry (IRMS) analyses confirmed that E. coli ATCC 11303 can uptake dopamine, suggesting the existence of specific transport pathways. Multi-omics analysis revealed significant regulatory effects on metal ion transport, amino acid metabolism, purine metabolism, environmental adaptation, quorum sensing, two-component systems, and xylene degradation pathways. Dopamine may act as both a xenosiderophore and a signaling molecule, thereby modulating multiple critical physiological and biochemical processes and promoting bacterial growth. These findings provide valuable insights into the development of novel exogenous xenosiderophores and signaling modulators, advancing our understanding of microbial interactions with their host environment and contributing to the field of microbial endocrinology. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

24 pages, 2793 KB  
Concept Paper
Engineered Microbial Consortium Embedded in a Biodegradable Matrix: A Triple-Action, Synthetic Biology Framework for Sustainable Post-Wildfire Restoration
by Markos Mathioudakis, Rafail Andreou, Angeliki-Maria Papapanou, Artemis-Chrysanthi Savva, Asimenia Ioannidou, Nefeli-Maria Makri, Stefanos Anagnostopoulos, Thetis Tsinoglou, Ioanna Gerogianni, Christos Giannakopoulos, Angeliki-Argyri Savvopoulou-Tzakopoulou, Panagiota Baka, Nicky Efstathiou, Soultana Delizisi, Michaela Ververi, Rigini Papi, Konstantina Psatha, Michalis Aivaliotis and Spyros Gkelis
SynBio 2026, 4(1), 3; https://doi.org/10.3390/synbio4010003 - 26 Jan 2026
Viewed by 302
Abstract
Wildfires are increasingly frequent and intense due to climate change, resulting in degraded soils with diminished microbial activity, reduced water retention, and low nutrient availability. In many regions, previously restored areas face repeated burning events, which further exhaust soil fertility and limit the [...] Read more.
Wildfires are increasingly frequent and intense due to climate change, resulting in degraded soils with diminished microbial activity, reduced water retention, and low nutrient availability. In many regions, previously restored areas face repeated burning events, which further exhaust soil fertility and limit the potential for natural regeneration. Traditional reforestation approaches such as seed scattering or planting seedlings often fail in these conditions due to extreme aridity, erosion, and lack of biological support. To address this multifaceted problem, this study proposes a living, biodegradable hydrogel that integrates an engineered soil-beneficial microorganism consortium, designed to deliver beneficial compounds and nutrients combined with endemic plant seeds into a single biopolymeric matrix. Acting simultaneously as a biofertilizer, soil conditioner, and reforestation aid, this 3-in-1 system provides a microenvironment that retains moisture, supports microbial diversity restoration, and facilitates plant germination even in nutrient-poor, arid soils. The concept is rooted in circular economy principles, utilizing polysaccharides from food industry by-products for biopolymer formation, thereby ensuring environmental compatibility and minimizing waste. The encapsulated microorganisms, a Bacillus subtilis strain and a Nostoc oryzae strain, are intended to enrich the soil with useful compounds. They are engineered based on synthetic biology principles to incorporate specific genetic modules. The B. subtilis strain is engineered to break down large polyphenolic compounds through laccase overexpression, thus increasing soil bioavailable organic matter. The cyanobacterium strain is modified to enhance its nitrogen-fixing capacity, supplying fixed nitrogen directly to the soil. After fulfilling its function, the matrix naturally decomposes, returning organic matter, while the incorporation of a quorum sensing-based kill-switch system is designed to prevent the environmental escape of the engineered microorganisms. This sustainable approach aims to transform post-wildfire landscapes into self-recovering ecosystems, offering a scalable and eco-friendly alternative to conventional restoration methods while advancing the integration of synthetic biology and environmental engineering for climate resilience. Full article
Show Figures

Figure 1

20 pages, 1447 KB  
Review
Environmental and Regulatory Control of RTX Toxins in Gram-Negative Pathogens
by Hossein Jamali, Tylor Pereira and Charles M. Dozois
Toxins 2026, 18(1), 27; https://doi.org/10.3390/toxins18010027 - 6 Jan 2026
Viewed by 404
Abstract
Repeat-in-toxin (RTX) toxins are calcium-dependent exoproteins secreted by diverse Gram-negative bacteria and play central roles in cytotoxicity, immune modulation, and tissue colonization. While their structure and secretion mechanisms are well-characterized, the regulation of RTX toxin expression remains complex and species-specific. This review provides [...] Read more.
Repeat-in-toxin (RTX) toxins are calcium-dependent exoproteins secreted by diverse Gram-negative bacteria and play central roles in cytotoxicity, immune modulation, and tissue colonization. While their structure and secretion mechanisms are well-characterized, the regulation of RTX toxin expression remains complex and species-specific. This review provides a comprehensive overview of the regulatory networks governing RTX gene expression, highlighting both conserved mechanisms and niche-specific adaptations. RTX genes are controlled by multilayered regulatory systems that integrate global transcriptional control, metabolic regulation, and environmental sensing. Expression is further shaped by host-derived signals, physical contact with host cells, and population-dependent cues. Quorum sensing, post-transcriptional regulation by small RNAs, and post-translational activation mechanisms contribute additional layers of control to ensure precise regulation of toxin production. We also explore how RTX regulation varies across anatomical niches, including the gut, lung, bloodstream, and biofilms, and how it is co-regulated with broader bacterial virulence. Finally, we discuss emerging insights from omics-based approaches and the potential of anti-virulence strategies targeting RTX regulatory pathways. Together, these topics underscore RTX regulation as a model for adaptive virulence control in bacterial pathogens. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

26 pages, 398 KB  
Review
Nitric Oxide-Releasing Gels in the Context of Antimicrobial Stewardship, Biofilm Management, and Wound-Repair Biology
by Simon J. L. Teskey, Lisa Khoma, Michelle Lorbes and Chris C. Miller
Antibiotics 2026, 15(1), 54; https://doi.org/10.3390/antibiotics15010054 - 4 Jan 2026
Viewed by 363
Abstract
Topical antibiotics have long been used for the prevention and treatment of superficial skin and soft tissue infections; however, increasing evidence indicates that their clinical value is undermined by rising antimicrobial resistance, high rates of allergic sensitization, inadequate activity against biofilms, and a [...] Read more.
Topical antibiotics have long been used for the prevention and treatment of superficial skin and soft tissue infections; however, increasing evidence indicates that their clinical value is undermined by rising antimicrobial resistance, high rates of allergic sensitization, inadequate activity against biofilms, and a lack of wound-healing properties. Agents such as bacitracin, neomycin, polymyxin B, mupirocin, and fusidic acid act through narrow, target-specific mechanisms that facilitate resistance selection and provide limited benefit in chronic or polymicrobial wound environments. Contemporary antimicrobial stewardship frameworks therefore discourage routine use of topical antibiotics and increasingly favor non-antibiotic antiseptics with broad-spectrum activity and low resistance risk, including silver, iodine, polyhexamethylene biguanide, octenidine, and medical-grade honey. These modalities, however, primarily serve to reduce microbial burden and do not directly address the underlying biological impairments that prevent healing. Nitric oxide-releasing gels (NORGs) represent a novel class of topical antimicrobials that combine multi-target bactericidal activity with physiologic pro-healing effects. Nitric oxide exerts potent antimicrobial and antibiofilm effects via oxidative and nitrosative stress, disruption of metabolic pathways, inhibition of DNA replication, and interference with quorum sensing. Simultaneously, nitric oxide enhances angiogenesis, modulates inflammation, improves microvascular perfusion, and promotes fibroblast and keratinocyte function. Preclinical models and early-phase clinical studies demonstrate broad-spectrum efficacy—including activity against multidrug-resistant organisms—with favorable tolerability and minimal risk of resistance development. Although the current evidence base remains preliminary, NORGs offer a promising antimicrobial platform with the potential to reduce reliance on topical antibiotics while simultaneously addressing key barriers to wound healing. Larger randomized controlled trials, direct comparisons with established advanced dressings, and robust pharmacoeconomic evaluations are needed to define their optimal role within stewardship-aligned wound-care practice. Full article
24 pages, 1137 KB  
Article
Biogenic Quorum-Sensing Amides from Streptomyces sp. NP10
by Marija S. Genčić, Tatjana Ilic-Tomic, Marko Z. Mladenović, Milena Z. Živković Stošić, Jasmina Nikodinovic-Runic and Niko S. Radulović
Molecules 2026, 31(1), 155; https://doi.org/10.3390/molecules31010155 - 1 Jan 2026
Viewed by 399
Abstract
Volatile organic compounds produced by microbes are increasingly recognized as modulators of microbial interactions and mediators of both intra- and inter-kingdom communication. This study explored the possible ecophysiological roles of nine amides from Streptomyces sp. NP10 in quorum sensing (QS) and biofilm formation [...] Read more.
Volatile organic compounds produced by microbes are increasingly recognized as modulators of microbial interactions and mediators of both intra- and inter-kingdom communication. This study explored the possible ecophysiological roles of nine amides from Streptomyces sp. NP10 in quorum sensing (QS) and biofilm formation in Pseudomonas aeruginosa PAO1. GC-MS profiling, synthesis, spectral validation, and co-injection experiments confirmed compound identities. Notably, N-(3-methyl-2-butenyl)acetamide is reported as a new natural product and N-(2-methylbutyl)acetamide as a new Streptomyces-produced metabolite. At subinhibitory concentrations (250 μg/mL), most of the amides enhanced P. aeruginosa biofilm formation, with N-(2-methylbutyl)acetamide, N-(3-methyl-2-butenyl)acetamide, and 2-phenylacetamide showing the strongest effects. Simultaneously, these compounds suppressed QS by reducing the production of N-acyl homoserine lactones (AHLs) and 2-alkyl-4-quinolones (AHQs). Aliphatic acetamides preferentially inhibited short-chain AHLs, while N-acetyltyramine and 2-phenylacetamide mainly affected quinolone signaling. These opposing effects on QS and biofilm are consistent with the involvement of alternative regulatory circuits. Motility assays showed biofilm stimulation was not correlated with altered swarming or twitching. Cross-species assays revealed limited QS inhibition, with only N-acetyltryptamine reducing violacein production in Chromobacterium violaceum CV026. Most of the amides were non-cytotoxic at 100 μM (10.5–20.2 μg/mL), except for 2-phenylacetamide. Overall, these amides likely serve as microbial signals influencing QS and biofilm formation, offering leads for anti-virulence strategies. Full article
Show Figures

Figure 1

19 pages, 527 KB  
Review
The Role of Biofilm-Derived Compounds in Microbial and Protozoan Interactions
by Smruti Mahapatra and Serge Ankri
Microorganisms 2026, 14(1), 64; https://doi.org/10.3390/microorganisms14010064 - 27 Dec 2025
Viewed by 503
Abstract
Biofilms are more than just structural microbial communities. They are dynamic chemical ecosystems that synthesize a range of extracellular compounds involved in functions that extend beyond biofilm architecture. From quorum-sensing molecules like acyl-homoserine lactones (AHLs) to short-chain fatty acids (SCFAs), phenazines, indoles, and [...] Read more.
Biofilms are more than just structural microbial communities. They are dynamic chemical ecosystems that synthesize a range of extracellular compounds involved in functions that extend beyond biofilm architecture. From quorum-sensing molecules like acyl-homoserine lactones (AHLs) to short-chain fatty acids (SCFAs), phenazines, indoles, and reactive sulfur species (RSS), biofilm-derived metabolites can impact the physiology and behavior of microorganisms living in the same ecosystem, including other bacteria and protozoa. It has recently been demonstrated that such molecules may also modulate competition between microbes, promote cooperation, and impact motility, differentiation, or virulence of free-living and parasitic protozoa. This review aims to discuss biofilm compounds that mediate interspecies or interkingdom interactions and their involvement in regulating gut and environmental microbiomes functions, and host–pathogen relationships with special emphasis on protozoan activity and the infection outcome. This review will also address how this chemical dialog can be explored to identify new therapeutic interventions against microbial infections and parasitic diseases. Full article
(This article belongs to the Special Issue Advances in Molecular Biology of Entamoeba histolytica)
Show Figures

Figure 1

26 pages, 2623 KB  
Article
Deletion of sRNA0024 Reduces Virulence of Pseudomonas plecoglossicida and Alleviates Host Immune Injury in Epinephelus coioides
by Lingmin Zhao, Yihai Ouyang, Jiang Zheng, Yujia Sun, Yingxue Qin and Meiqin Mao
Animals 2025, 15(24), 3623; https://doi.org/10.3390/ani15243623 - 17 Dec 2025
Viewed by 380
Abstract
Visceral white spot disease caused by Pseudomonas plecoglossicida severely threatens marine aquaculture, highlighting the need for effective control strategies. To clarify the role of a novel small RNA, sRNA0024, in bacterial pathogenicity, we constructed an sRNA0024 deletion mutant (ΔsRNA0024) and compared its phenotype [...] Read more.
Visceral white spot disease caused by Pseudomonas plecoglossicida severely threatens marine aquaculture, highlighting the need for effective control strategies. To clarify the role of a novel small RNA, sRNA0024, in bacterial pathogenicity, we constructed an sRNA0024 deletion mutant (ΔsRNA0024) and compared its phenotype and virulence with those of the wild-type strain NZBD9. In vitro assays showed that deletion of sRNA0024 did not affect bacterial growth but significantly reduced biofilm formation and adhesion. In vivo infection experiments in orange-spotted grouper (Epinephelus coioides) demonstrated that the ΔsRNA0024 mutant had a 3.8-fold higher 50% lethal dose (LD50), improved host survival, and milder splenic lesions than the wild type. Histopathology and host transcriptome analyses revealed weakened activation of complement–coagulation cascades, neutrophil extracellular traps, leukocyte migration, and inflammatory signaling pathways, indicating a lower-intensity immune response. Bacterial transcriptomics showed that deletion of sRNA0024 was associated with reduced luxR expression and attenuated quorum-sensing–associated virulence traits, supporting a possible role for this small RNA in modulating luxR expression and QS-related host immunopathology. These findings identify sRNA0024 as an important contributor to the virulence of P. plecoglossicida and highlight the sRNA0024–luxR module as a potential antivirulence target for controlling visceral white spot disease in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 2921 KB  
Article
Impact of Antibiotic Exposure on Growth and Biofilms Formation in Aeromonas salmonicida Subspecies Isolated from Atlantic Salmon (Salmo salar)
by Dong Hwi Kim, Min Soo Joo, Se Rin Jang, Hee Jin Kim, Joon Gyu Min and Bo Hye Nam
Microorganisms 2025, 13(12), 2863; https://doi.org/10.3390/microorganisms13122863 - 16 Dec 2025
Viewed by 355
Abstract
Aeromonas salmonicida is a major pathogen in aquaculture, and its ability to form biofilms contributes significantly to antibiotic resistance and chronic infections. This study investigated the effects of four antibiotics—ampicillin, amoxicillin, oxytetracycline, and doxycycline—at various concentrations on bacterial growth, biofilm formation, and gene [...] Read more.
Aeromonas salmonicida is a major pathogen in aquaculture, and its ability to form biofilms contributes significantly to antibiotic resistance and chronic infections. This study investigated the effects of four antibiotics—ampicillin, amoxicillin, oxytetracycline, and doxycycline—at various concentrations on bacterial growth, biofilm formation, and gene expression related to antibiotic resistance and quorum sensing (QS) in two subspecies: A. salmonicida subsp. masoucida (ASM) and A. salmonicida subsp. salmonicida (ASS). Bacterial isolates from Atlantic salmon were identified using 16S rRNA and vapA gene sequencing. Growth inhibition was more pronounced in ASS than ASM under high antibiotic concentrations. Conversely, sub-inhibitory concentrations (sub-MICs) enhanced biofilm formation in both subspecies, particularly in ASM. PCR results showed that tetA and tetE resistance genes were present only in ASM. qRT-PCR analysis revealed that expression of QS-related genes (ahyI and ahyR) was generally downregulated under tetracycline treatment, while litR expression varied across antibiotic conditions and strains. Some isolates showed increased litR expression alongside elevated biofilm formation, suggesting involvement of additional regulatory mechanisms. These results highlight the potential for sub-MIC antibiotic exposure to promote biofilm development and modulate gene expression, emphasizing the need for careful antibiotic use in aquaculture and providing insight into alternative pathogen control strategies. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

17 pages, 536 KB  
Review
Microbial Quorum Sensing: Unlocking Sustainable Animal Production and Beyond
by Chenxin Tang, Kehui Ouyang, Mingren Qu and Qinghua Qiu
Agriculture 2025, 15(24), 2579; https://doi.org/10.3390/agriculture15242579 - 13 Dec 2025
Viewed by 630
Abstract
Quorum sensing (QS) is a unique form of communication that exists among microbial communities. This system enables microbial cells to achieve behavioral coordination by generating and perceiving specific QS signaling molecules. This “chemical dialogue” allows microorganisms to synchronously express specific genes, thereby regulating [...] Read more.
Quorum sensing (QS) is a unique form of communication that exists among microbial communities. This system enables microbial cells to achieve behavioral coordination by generating and perceiving specific QS signaling molecules. This “chemical dialogue” allows microorganisms to synchronously express specific genes, thereby regulating group-level functions such as biofilm formation, virulence factor production, antibiotic biosynthesis, and metabolic coordination. Recently, the livestock industry has faced a multitude of challenges, including antibiotic resistance, environmental impact, and production efficiency. QS-based technologies have emerged as novel strategies to address these challenges simultaneously. It is important to note that a key principle of this strategy is that treatments should focus on regulating and modulating microbial QS systems rather than broadly inhibiting them. Therefore, the application of QS-based technologies provides new technical approaches to address core challenges in sustainable livestock production, including alternatives to antibiotics, improved farming efficiency, and environmentally friendly management. Moreover, it contributes to the achievement of carbon neutrality objectives by reducing methane emissions in ruminants through targeted inhibition of methanogen QS. This review systematically examines the biosynthesis mechanisms and regulatory features of the three core QS signaling molecules, with a focus on their practical applications in monogastric animal production, ruminant production, and aquatic animal production. It also explores the interdisciplinary innovative applications of QS-based technologies across multiple fields. By analyzing current research limitations and industrialization bottlenecks, this review outlines key future research directions and development challenges, aiming to provide a reference for the widespread application of QS-based technologies in animal production. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

56 pages, 1028 KB  
Review
Essential Oils as Antimicrobial Agents Against WHO Priority Bacterial Pathogens: A Strategic Review of In Vitro Clinical Efficacy, Innovations and Research Gaps
by Katia Iskandar, Nada Ahmed, Narayan Paudyal, Maria-Jose Ruiz Alvarez, Subramani Paranthaman Balasubramani, Danielle Saadeh, Sami Ullah Baig, Hiba Sami, Dalal Hammoudi Halat, Nebojša Pavlović, Christine Roques, Meher Rizvi, Pascale Salameh, Faten Hamed and Maarten Van Dongen
Antibiotics 2025, 14(12), 1250; https://doi.org/10.3390/antibiotics14121250 - 10 Dec 2025
Cited by 4 | Viewed by 2194
Abstract
The rapid rise of antimicrobial resistance (AMR) has emerged as a critical global health crisis, driven by the widespread emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) pathogens. This growing threat, coupled with the stagnation in the development of novel antibiotics, necessitates the [...] Read more.
The rapid rise of antimicrobial resistance (AMR) has emerged as a critical global health crisis, driven by the widespread emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) pathogens. This growing threat, coupled with the stagnation in the development of novel antibiotics, necessitates the investigation of alternative antimicrobial strategies. Plant-derived essential oils (EOs) have emerged as promising candidates due to their broad-spectrum antibacterial activity, multi-targeted mechanisms, and capacity to enhance the efficacy of existing antibiotics. Recent studies have underscored the potential of EOs in disrupting biofilms, inhibiting quorum sensing, modulating efflux pumps, and reversing resistance in a variety of bacterial pathogens, including those listed as priorities by the World Health Organization. Notably, many of these effects have been demonstrated against resistant strains isolated directly from clinical samples, thereby enhancing the translational significance of EOs. In addition to their antimicrobial properties, advances in analytical, omics-based, and microfluidic technologies have further elucidated the mechanisms of EOs and may accelerate their therapeutic development. Nevertheless, challenges such as variability in composition, lack of standardized testing protocols, and limited in vivo data continue to impede clinical application. Therefore, the aim of this scoping review is to critically examine the advances over the past decade in the antibacterial activity of plant EOs against clinical isolates, with a particular focus on their efficacy against resistant bacterial pathogens and their potential role in combating AMR. Full article
Show Figures

Figure 1

25 pages, 2266 KB  
Review
Current Insights into Antibiotic Resistance in Uropathogenic Escherichia coli and Interventions Using Selected Bioactive Phytochemicals
by Bożena Futoma-Kołoch, Jolanta Sarowska, Mohamed Abd El-Salam, David Miñana-Galbis, Barbora Drabová, Katarzyna Guz-Regner, Paula Wiśniewska and Vivien Kryniewska
Antibiotics 2025, 14(12), 1242; https://doi.org/10.3390/antibiotics14121242 - 8 Dec 2025
Viewed by 741
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs) and a major contributor to the global antimicrobial resistance crisis. The increasing prevalence of multidrug-resistant (MDR) strains, including expanded-spectrum β-lactamases (ESBL) and carbapenemase-producing isolates, severely limits treatment options. This review [...] Read more.
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs) and a major contributor to the global antimicrobial resistance crisis. The increasing prevalence of multidrug-resistant (MDR) strains, including expanded-spectrum β-lactamases (ESBL) and carbapenemase-producing isolates, severely limits treatment options. This review provides an overview on the key molecular mechanisms of UPEC antibiotic resistance, such as enzymatic inactivation, target-site mutations, efflux pump activity, and biofilm formation. Beyond conventional antibiotics, special emphasis is placed on phytochemical strategies as promising alternatives. Flavonoids, alkaloids, terpenoids, and essential oils exhibit antibacterial, anti-adhesive, and antibiofilm properties. These natural bioactive compounds modulate motility, suppress fimbrial expression, inhibit quorum sensing, and enhance antibiotic efficacy, acting both as standalone agents and as adjuvants. Current in vitro and in vivo studies highlight the potential of plant-derived compounds and biologically based therapies to combat UPEC. However, challenges related to standardization, bioavailability, and clinical validation remain unresolved. Integrating molecular mechanistic insights with advanced phytochemical research may offers a sustainable and effective strategy for mitigating UPEC antibiotic resistance. Full article
Show Figures

Figure 1

34 pages, 1268 KB  
Review
Boron Bioavailability Revisited: From Plasma-Accessible Species to Microbiota-Accessible Complexes—Implications for Nutritional Essentiality
by Andrei Biţă, Ion Romulus Scorei, Marvin A. Soriano-Ursúa, Cătălina Gabriela Pisoschi, Cristina Elena Biţă, Laura Dincă, Simona Ştefănescu, Maria-Victoria Racu, Iurie Pinzaru, Cristina Florescu, Diana-Ruxandra Hădăreanu, Cristian Adrian Siloşi, Johny Neamţu, Dan Ionuţ Gheonea, George Dan Mogoşanu and Marian Valentin Zorilă
Biomolecules 2025, 15(12), 1711; https://doi.org/10.3390/biom15121711 - 8 Dec 2025
Viewed by 1102
Abstract
Boron (B) remains one of the least understood trace elements in human nutrition. Traditionally regarded as non-essential, its biological role has been reevaluated in light of emerging microbiome research. We provide a narrative synthesis of mechanistic, preclinical, and clinical studies to assess whether [...] Read more.
Boron (B) remains one of the least understood trace elements in human nutrition. Traditionally regarded as non-essential, its biological role has been reevaluated in light of emerging microbiome research. We provide a narrative synthesis of mechanistic, preclinical, and clinical studies to assess whether the colonic actions of B meet accepted criteria for nutritional essentiality. This review revisits B bioavailability through a dual-pathway framework distinguishing plasma-accessible boron (PAB)—small, fully absorbable species with transient systemic effects—from microbiota-accessible boron complexes (MABCs)—indigestible conjugates that reach the colon intact. Evidence indicates that PAB exerts short-term metabolic modulation, whereas MABCs act as prebiotic cofactors that stabilize microbial quorum sensing (autoinducer-2–borate; AI-2B), reinforce the colonic mucus barrier through borate–diol crosslinking, and support host–microbiota symbiosis. Deficiency or low intake of MABCs leads to dysbiosis, barrier fragility, and low-grade inflammation along gut–organ axes—effects reversible by MABC-rich diets. Analytical and clinical tools are proposed to discriminate between PAB and MABC pathways, including fecal B/speciation, AI-2B assays, and mucus-penetration markers. Recognizing B’s essentiality as a microbiota-dependent nutrient reframes its nutritional assessment, guiding future dietary guidelines and prebiotic design toward the microbiome–mucus interface. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

16 pages, 1256 KB  
Review
Proactive Strategies to Prevent Biofilm-Associated Infections: From Mechanistic Insights to Clinical Translation
by María Teresa Hernández-Huerta, Eduardo Pérez-Campos, Laura Pérez-Campos Mayoral, Itzel Patricia Vásquez Martínez, Wendy Reyna González, Efrén Emmanuel Jarquín González, Hanan Aldossary, Ibrahim Alhabib, Lamya Zohair Yamani, Nasreldin Elhadi, Ebtesam Al-Suhaimi and Hector A. Cabrera-Fuentes
Microorganisms 2025, 13(12), 2726; https://doi.org/10.3390/microorganisms13122726 - 29 Nov 2025
Cited by 1 | Viewed by 680
Abstract
Biofilms are structured microbial communities that adhere to biotic and abiotic surfaces embedded in an autonomous extracellular matrix. These structures contribute to persistent infections, especially in patients with indwelling medical devices, due to their resistance to antimicrobial agents; they have evolved to evade [...] Read more.
Biofilms are structured microbial communities that adhere to biotic and abiotic surfaces embedded in an autonomous extracellular matrix. These structures contribute to persistent infections, especially in patients with indwelling medical devices, due to their resistance to antimicrobial agents; they have evolved to evade host immune responses. Despite advances in antimicrobial therapies, biofilm-associated infections remain a major challenge in clinical infectious diseases. This perspective explores the underlying mechanisms of biofilm resilience and immune evasion, emphasizing the limitations of conventional treatments and the need to develop pre-emptive measures that focus on preventing biofilm formation rather than implementing a treatment. This work discusses emerging strategies, such as quorum-sensing inhibition, hormonal modulation, matrix-degrading enzymes, anti-adhesive surface modifications, and nanotechnology-based drug delivery, that offer promising avenues to disrupt biofilm formation and maturation. Also offers a shift from the paradigm, looking into proactive prevention rather than treatment, emphasizing clinical translation, scalability, and biocompatibility. Embedding these strategies into routine care could significantly reduce healthcare-associated infections, improve patient outcomes, and mitigate the development of antimicrobial resistance. Our analysis highlights biofilm prevention as a critical frontier in the future of infectious disease management. Full article
(This article belongs to the Section Biofilm)
Show Figures

Graphical abstract

24 pages, 7480 KB  
Article
Interference of Pseudomonas aeruginosa Virulence Factors by Different Extracts from Inula Species
by Tsvetelina Paunova-Krasteva, Petya D. Dimitrova, Tsvetozara Damyanova, Dayana Borisova, Milena Leseva, Iveta Uzunova, Petya A. Dimitrova, Viktoria Ivanova, Antoaneta Trendafilova, Ralitsa Veleva and Tanya Topouzova-Hristova
Pharmaceuticals 2025, 18(12), 1824; https://doi.org/10.3390/ph18121824 - 29 Nov 2025
Viewed by 859
Abstract
Objectives: Pseudomonas aeruginosa is an opportunistic pathogen of high clinical relevance due to its ability to form biofilms, its inherent virulence regulated by quorum-sensing systems, and its multidrug resistance. In the present study, we evaluated the inhibitory potential of nine extracts from [...] Read more.
Objectives: Pseudomonas aeruginosa is an opportunistic pathogen of high clinical relevance due to its ability to form biofilms, its inherent virulence regulated by quorum-sensing systems, and its multidrug resistance. In the present study, we evaluated the inhibitory potential of nine extracts from Inula species (chloroform and methanolic fractions, including a sesquiterpene lactone-enriched fraction) against biofilm formation and virulence-associated traits of P. aeruginosa PAO1 and three multidrug-resistant clinical isolates, as well as their cytotoxicity, biocompatibility, and ability to affect cytokine and nitric oxide production in infected skin explants. Methods: The following methods were applied: fractionation and extraction of plant extracts; cytotoxicity assessment on HFF cells; crystal violet assay for determining antibiofilm activity; fluorescence microscopy for evaluating biofilm viability; electron microscopy for assessing the 3D structure of biofilms and morphological alterations; inhibition assays of pyocyanin pigment, protease activity, bacterial motility, interleukin-17, and nitric oxide production; histological analysis of mouse skin explants. Results: Quantitative analyses of antibiofilm activity revealed that five of the tested extracts inhibited biofilm formation by more than 50%. Structural and functional analyses using confocal laser scanning microscopy and scanning electron microscopy demonstrated a substantial reduction in biofilm thickness, exfoliation of biofilm biomass, the presence of isolated bacterial clusters, metabolically inactive cell populations, and morphological abnormalities associated with cell elongation, invaginations, and polar deformations as a consequence of treatment. In addition, the plant extracts strongly affected virulence factors regulated by quorum sensing. The methanolic fractions from I. britannica and I. bifrons significantly suppressed pyocyanin synthesis. In contrast, the chloroform fractions from I. helenium and I. spiraeifolia produced the largest inhibition zones in assays for extracellular protease activity. Furthermore, all chloroform extracts suppressed bacterial motility, with the lowest swarming diameter observed for the chloroform and lactone-enriched fractions from I. britannica. The chloroform extracts of I. helenium and I. bifrons, methanolic extracts of I. britannica, and chloroform and methanolic extracts of I. spiraeifolia showed relatively low toxicity to normal diploid human fibroblasts. Methanolic and chloroform fractions from I. britannica disrupted biofilm integrity and reduced IL-17A and nitric oxide production in infected skin explants. Conclusions: All these findings indicate a possible synergistic action of the chemical constituents within the fractions on quorum-sensing regulation, biofilm formation, cellular viability, and modulation of host inflammatory responses. Full article
Show Figures

Graphical abstract

14 pages, 1449 KB  
Review
Noise as Medicine: The Role of Microbial and Electrical Noise in Restoring Neuroimmune Tolerance Through Stochastic Resonance
by Eneidy Piña Mojica, Joao Victor Ribeiro and Felipe Fregni
NeuroSci 2025, 6(4), 118; https://doi.org/10.3390/neurosci6040118 - 18 Nov 2025
Viewed by 720
Abstract
The rising prevalence of neuroimmune disorders such as multiple sclerosis and fibromyalgia has renewed interest in the hygiene hypothesis, which posits that reduced early-life microbial exposure deprives the immune system of formative “noise” that calibrates thresholds of tolerance. We extended this framework by [...] Read more.
The rising prevalence of neuroimmune disorders such as multiple sclerosis and fibromyalgia has renewed interest in the hygiene hypothesis, which posits that reduced early-life microbial exposure deprives the immune system of formative “noise” that calibrates thresholds of tolerance. We extended this framework by introducing stochastic resonance (SR), a system phenomenon in which optimally tuned noise enhances weak-signal detection in nonlinear networks, as a potential surrogate for missing microbial variability. As electrical noise and subthreshold stimulation have been shown to modulate cortical excitability and enhance perception, microbial noise may be necessary for sustaining immune plasticity. Conversely, a lack of stimulation, whether microbial or electrical, can lead to maladaptive states characterized by dysregulated signaling and heightened vulnerability to chronic inflammation. Evidence from immunology highlights noise-aware processes, such as T-cell receptor proofreading, NF-κB pulsatility, and cytokine quorum sensing, all of which exploit stochastic fluctuations. Computational tumor–immune models similarly suggest that tuned noise can optimize immune surveillance. Clinical data from neuroscience demonstrate that subsensory electrical noise improves motor excitability and sensory perception, whereas vagus nerve stimulation modulates inflammatory pathways, underscoring translational feasibility. We propose that SR reframes noise from a biological error to a therapeutic resource capable of recalibrating dysregulated neuroimmune thresholds. This conceptual synthesis positions microbial and electrical noise as parallel modulators of tolerance and outlines testable predictions with translational potential for neuroimmune disorders. Full article
Show Figures

Figure 1

Back to TopTop