Environmental and Regulatory Control of RTX Toxins in Gram-Negative Pathogens
Abstract
1. Introduction
2. Diversity of RTX Toxins Across Bacterial Genera
2.1. Enterobacteriaceae
2.2. Pasteurellaceae
2.3. Bordetella Spp.
2.4. Vibrio and Shewanella
2.5. RTX Toxins in Other Genera
3. Mechanisms of RTX Toxin Regulation
3.1. Transcriptional Regulation: Activators, Repressors, and Two-Component Systems
3.1.1. Global Repressors and Anti-Repressors
3.1.2. Nutrient-Sensing and Global Regulation
3.1.3. Quorum Sensing and Cell Density Signals
3.1.4. Regulation by Two-Component Systems (TCS)
3.1.5. Dedicated Transcriptional Mechanisms
3.2. Post-Transcriptional and Post-Translational Controls
3.2.1. mRNA Stability and Translational Control
3.2.2. Enzymatic Activation: Acylation
3.2.3. Secretion: Coupling to Translation and Environmental Feedback
3.2.4. Proteolytic Processing and Degradation
3.2.5. Protein Folding and Role of Chaperones
3.3. Environmental and Host-Derived Cues Influencing RTX Regulation
3.3.1. Temperature-Dependent Regulation
3.3.2. Iron and Metal Availability
3.3.3. Oxygen Tension and Redox State
3.4. Niche-Specific and Host-Microbiome Contexts
3.4.1. Intestinal Niches: Gut-Specific Signals and Microbiota Interactions
3.4.2. Respiratory Niches: BvgAS, Inflammation, and Redox Signals
3.4.3. Bloodstream and Deep Tissue Environments
3.4.4. Mucosal and Biofilm-Associated Niches
3.4.5. Coordination with Other Virulence Determinants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benz, R. RTX-toxins. Toxins 2020, 12, 359. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, G.; Li, H. Templated folding of the RTX domain of the bacterial toxin adenylate cyclase revealed by single molecule force spectroscopy. Nat. Commun. 2022, 13, 2784. [Google Scholar] [CrossRef] [PubMed]
- Chacko, F.M.; Schmitt, L. Interaction of RTX toxins with the host cell plasma membrane. Biol. Chem. 2023, 404, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Wiles, T.J.; Mulvey, M.A. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: Progress and perspectives. Future Microbiol. 2013, 8, 73–84. [Google Scholar] [CrossRef]
- Jamali, H.; Layeghkhavidaki, H. From pathogenesis to immune defense: A review of repeat-in-toxins (RTX) and host response. Toxin Rev. 2025, 44, 370–382. [Google Scholar]
- Lee, Z.-W.; Hwang, S.-H.; Choi, G.; Jang, K.K.; Lee, T.H.; Chung, K.M.; Kim, B.S.; Choi, S.H. A MARTX toxin rtxA gene is controlled by host environmental signals through a CRP-coordinated regulatory network in Vibrio vulnificus. mBio 2020, 11, e00723-20. [Google Scholar] [CrossRef]
- Pourhassan, N.Z.; Hachani, E.; Spitz, O.; Smits, S.H.; Schmitt, L. Investigations on the substrate binding sites of hemolysin B, an ABC transporter, of a type 1 secretion system. Front. Microbiol. 2022, 13, 1055032. [Google Scholar] [CrossRef] [PubMed]
- Jamali, H.; Akrami, F.; Layeghkhavidaki, H.; Bouakkaz, S. Bacterial protein secretion systems: Mechanisms, functions, and roles in virulence. Microb. Pathog. 2025, 206, 107790. [Google Scholar] [CrossRef]
- Osickova, A.; Khaliq, H.; Masin, J.; Jurnecka, D.; Sukova, A.; Fiser, R.; Holubova, J.; Stanek, O.; Sebo, P.; Osicka, R. Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins. J. Biol. Chem. 2020, 295, 9268–9280. [Google Scholar] [CrossRef]
- Dhakal, B.K.; Mulvey, M.A. The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 2012, 11, 58–69. [Google Scholar]
- Johnsen, N.; Hamilton, A.D.; Greve, A.S.; Christensen, M.G.; Therkildsen, J.R.; Wehmöller, J.; Skals, M.; Praetorius, H.A. α-Haemolysin production, as a single factor, causes fulminant sepsis in a model of Escherichia coli-induced bacteraemia. Cell. Microbiol. 2019, 21, e13017. [Google Scholar]
- Schwidder, M.; Heinisch, L.; Schmidt, H. Genetics, toxicity, and distribution of enterohemorrhagic Escherichia coli hemolysin. Toxins 2019, 11, 502. [Google Scholar] [CrossRef]
- Kolenda, R.; Sidorczuk, K.; Noszka, M.; Aleksandrowicz, A.; Khan, M.M.; Burdukiewicz, M.; Pickard, D.; Schierack, P. Genome placement of alpha-haemolysin cluster is associated with alpha-haemolysin sequence variation, adhesin and iron acquisition factor profile of Escherichia coli. Microb. Genom. 2021, 7, 000743. [Google Scholar]
- Cestari, S.E.; Ludovico, M.S.; Martins, F.H.; da Rocha, S.P.D.; Elias, W.P.; Pelayo, J.S. Molecular detection of HpmA and HlyA hemolysin of uropathogenic Proteus mirabilis. Curr. Microbiol. 2013, 67, 703–707. [Google Scholar] [CrossRef]
- Frey, J. RTX toxins of animal pathogens and their role as antigens in vaccines and diagnostics. Toxins 2019, 11, 719. [Google Scholar] [CrossRef]
- Deshpande, M.; Ambagala, T.; Ambagala, A.; Kehrli, M., Jr.; Srikumaran, S. Bovine CD18 is necessary and sufficient to mediate Mannheimia (Pasteurella) haemolytica leukotoxin-induced cytolysis. Infect. Immun. 2002, 70, 5058–5064. [Google Scholar] [CrossRef]
- Batra, S.A.; Shanthalingam, S.; Munske, G.R.; Raghavan, B.; Kugadas, A.; Bavanthasivam, J.; Highlander, S.K.; Srikumaran, S. Acylation enhances, but is not required for, the cytotoxic activity of Mannheimia haemolytica leukotoxin in bighorn sheep. Infect. Immun. 2015, 83, 3982–3988. [Google Scholar] [CrossRef]
- Ahmad, J.N.; Holubova, J.; Benada, O.; Kofronova, O.; Stehlik, L.; Vasakova, M.; Sebo, P. Bordetella adenylate cyclase toxin inhibits monocyte-to-macrophage transition and dedifferentiates human alveolar macrophages into monocyte-like cells. mBio 2019, 10, e01743-19. [Google Scholar] [CrossRef]
- Abettan, A.; Nguyen, M.-H.; Ladant, D.; Monticelli, L.; Chenal, A. CyaA translocation across eukaryotic cell membranes. Front. Mol. Biosci. 2024, 11, 1359408. [Google Scholar] [CrossRef]
- Novák, J.; Fabrik, I.; Linhartová, I.; Link, M.; Černý, O.; Stulík, J.; Šebo, P. Phosphoproteomics of cAMP signaling of Bordetella adenylate cyclase toxin in mouse dendritic cells. Sci. Rep. 2017, 7, 16298. [Google Scholar] [CrossRef]
- Satchell, K.J. Multifunctional-autoprocessing repeats-in-toxin (MARTX) Toxins of Vibrios. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef]
- Chen, L.; Khan, H.; Tan, L.; Li, X.; Zhang, G.; Im, Y.J. Structural basis of the activation of MARTX cysteine protease domain from Vibrio vulnificus. PLoS ONE 2024, 19, e0307512. [Google Scholar]
- Kudryashov, D.S.; Cordero, C.L.; Reisler, E.; Satchell, K.J.F. Characterization of the enzymatic activity of the actin cross-linking domain from the Vibrio cholerae MARTXVc toxin. J. Biol. Chem. 2008, 283, 445–452. [Google Scholar]
- Lee, A.; Kim, M.S.; Cho, D.; Jang, K.K.; Choi, S.H.; Kim, T.S. Vibrio vulnificus RtxA is a major factor driving inflammatory T helper type 17 cell responses in vitro and in vivo. Front. Immunol. 2018, 9, 2095. [Google Scholar] [CrossRef]
- Lages, M.A.; Balado, M.; Lemos, M.L. The expression of virulence factors in Vibrio anguillarum is dually regulated by iron levels and temperature. Front. Microbiol. 2019, 10, 2335. [Google Scholar] [CrossRef]
- Qiu, X.; Sundin, G.W.; Wu, L.; Zhou, J.; Tiedje, J.M. Comparative analysis of differentially expressed genes in Shewanella oneidensis MR-1 following exposure to UVC, UVB, and UVA radiation. J. Bacteriol. 2005, 187, 3556–3564. [Google Scholar] [CrossRef]
- Mekasha, S.; Linke, D. Secretion systems in gram-negative bacterial fish pathogens. Front. Microbiol. 2021, 12, 782673. [Google Scholar] [CrossRef]
- Rahman, W.U.; Osickova, A.; Klimova, N.; Lora, J.; Balashova, N.; Osicka, R. Binding of Kingella kingae RtxA toxin depends on cell surface oligosaccharides, but not on β2 integrins. Int. J. Mol. Sci. 2020, 21, 9092. [Google Scholar] [CrossRef]
- Brown, A.C.; Boesze-Battaglia, K.; Balashova, N.V.; Mas Gómez, N.; Speicher, K.; Tang, H.-Y.; Duszyk, M.E.; Lally, E.T. Membrane localization of the repeats-in-toxin (RTX) leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans. PLoS ONE 2018, 13, e0205871. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.F.; Angelos, J.A. The Moraxella bovis RTX toxin locus mbx defines a pathogenicity island. J. Med. Microbiol. 2006, 55, 443–449. [Google Scholar] [PubMed]
- Navarre, W.W.; Porwollik, S.; Wang, Y.; McClelland, M.; Rosen, H.; Libby, S.J.; Fang, F.C. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 2006, 313, 236–238. [Google Scholar] [CrossRef]
- Desvaux, M.; Dalmasso, G.; Beyrouthy, R.; Barnich, N.; Delmas, J.; Bonnet, R. Pathogenicity factors of genomic islands in intestinal and extraintestinal Escherichia coli. Front. Microbiol. 2020, 11, 2065. [Google Scholar] [CrossRef]
- Wang, H.; Ayala, J.C.; Benitez, J.A.; Silva, A.J. RNA-seq analysis identifies new genes regulated by the histone-like nucleoid structuring protein (H-NS) affecting Vibrio cholerae virulence, stress response and chemotaxis. PLoS ONE 2015, 10, e0118295. [Google Scholar] [CrossRef]
- Liu, M.; Naka, H.; Crosa, J.H. HlyU acts as an H-NS antirepressor in the regulation of the RTX toxin gene essential for the virulence of the human pathogen Vibrio vulnificus CMCP6. Mol. Microbiol. 2009, 72, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Ono, S.; Goldberg, M.D.; Olsson, T.; Esposito, D.; Hinton, J.C.; Ladbury, J.E. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem. J. 2005, 391, 203–213. [Google Scholar] [CrossRef]
- Nishi, K.; Lee, H.-J.; Park, S.-Y.; Bae, S.J.; Lee, S.E.; Adams, P.D.; Rhee, J.H.; Kim, J.-S. Crystal structure of the transcriptional activator HlyU from Vibrio vulnificus CMCP6. FEBS Lett. 2010, 584, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S. Spatiotemporal regulation of Vibrio exotoxins by HlyU and other transcriptional regulators. Toxins 2020, 12, 544. [Google Scholar] [CrossRef]
- Choi, G.; Jang, K.K.; Lim, J.G.; Lee, Z.-W.; Im, H.; Choi, S.H. The transcriptional regulator IscR integrates host-derived nitrosative stress and iron starvation in activation of the vvhBA operon in Vibrio vulnificus. J. Biol. Chem. 2020, 295, 5350–5361. [Google Scholar] [CrossRef]
- Chou, L.-F.; Peng, H.-L.; Yang, Y.-C.; Kuo, M.-C.; Chang, H.-Y. Localization and characterization of VVA0331, a 489-kDa RTX-like protein, in Vibrio vulnificus YJ016. Arch. Microbiol. 2009, 191, 441–450. [Google Scholar] [CrossRef]
- Hsu, Y.-M.; Chin, N.; Chang, C.-F.; Chang, Y.-F. Cloning and characterization of the Actinobacillus pleuropneumoniae fur gene and its role in regulation of ApxI and AfuABC expression. DNA Seq. 2003, 14, 169–181. [Google Scholar] [CrossRef]
- Manneh-Roussel, J.; Haycocks, J.R.; Magán, A.; Perez-Soto, N.; Voelz, K.; Camilli, A.; Krachler, A.-M.; Grainger, D.C. cAMP receptor protein controls Vibrio cholerae gene expression in response to host colonization. mBio 2018, 9, e00966-18. [Google Scholar] [CrossRef]
- Kim, Y.R.; Lee, S.E.; Kim, B.; Choy, H.; Rhee, J.H. A dual regulatory role of cyclic adenosine monophosphate receptor protein in various virulence traits of Vibrio vulnificus. Microbiol. Immunol. 2013, 57, 273–280. [Google Scholar] [CrossRef]
- Inoue, T.; Tanimoto, I.; Tada, T.; Ohashi, T.; Fukui, K.; Ohta, H. Fermentable-sugar-level-dependent regulation of leukotoxin synthesis in a variably toxic strain of Actinobacillus actinomycetemcomitans. Microbiology 2001, 147, 2749–2756. [Google Scholar] [CrossRef]
- Shao, C.-P.; Lo, H.-R.; Lin, J.-H.; Hor, L.-I. Regulation of cytotoxicity by quorum-sensing signaling in Vibrio vulnificus is mediated by SmcR, a repressor of hlyU. J. Bacteriol. 2011, 193, 2557–2565. [Google Scholar] [CrossRef]
- Tsou, A.M.; Zhu, J. Quorum sensing negatively regulates hemolysin transcriptionally and posttranslationally in Vibrio cholerae. Infect. Immun. 2010, 78, 461–467. [Google Scholar] [CrossRef]
- Gonyar, L.A.; Gray, M.C.; Christianson, G.J.; Mehrad, B.; Hewlett, E.L. Albumin, in the presence of calcium, elicits a massive increase in extracellular Bordetella adenylate cyclase toxin. Infect. Immun. 2017, 85, e00198-17. [Google Scholar] [CrossRef]
- Gu, H.; Cai, X.; Zhang, X.; Luo, J.; Zhang, X.; Hu, X.; Cai, W.; Li, G. A previously uncharacterized two-component signaling system in uropathogenic Escherichia coli coordinates protection against host-derived oxidative stress with activation of hemolysin-mediated host cell pyroptosis. PLoS Pathog. 2021, 17, e1010005. [Google Scholar] [CrossRef]
- Bruna, R.E.; Kendra, C.G.; Pontes, M.H. An intracellular phosphorus-starvation signal activates the PhoB/PhoR two-component system in Salmonella enterica. mBio 2024, 15, e0164224. [Google Scholar] [CrossRef]
- Yoshida, Y.; Sugiyama, S.; Oyamada, T.; Yokoyama, K.; Makino, K. Identification and characterization of novel phosphate regulon genes, ecs0540–ecs0544, in Escherichia coli O157: H7. Mol. Genet. Genom. 2010, 284, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Qiu, G.-W.; Zheng, W.-C.; Yang, H.-M.; Wang, Y.-Y.; Qi, X.; Huang, D.; Dai, G.-Z.; Shi, H.; Price, N.M.; Qiu, B.-S. Phosphorus deficiency alleviates iron limitation in Synechocystis cyanobacteria through direct PhoB-mediated gene regulation. Nat. Commun. 2024, 15, 4426. [Google Scholar] [CrossRef]
- Leeds, J.A.; Welch, R.A. RfaH enhances elongation of Escherichia coli hlyCABD mRNA. J. Bacteriol. 1996, 178, 1850–1857. [Google Scholar] [CrossRef]
- Leeds, J.A.; Welch, R.A. Enhancing transcription through the Escherichia coli hemolysin operon, hlyCABD: RfaH and upstream JUMPStart DNA sequences function together via a postinitiation mechanism. J. Bacteriol. 1997, 179, 3519–3527. [Google Scholar]
- Bruna, R.E.; Molino, M.V.; Lazzaro, M.; Mariscotti, J.F.; Garcia Vescovi, E. CpxR-dependent thermoregulation of Serratia marcescens PrtA metalloprotease expression and its contribution to bacterial biofilm formation. J. Bacteriol. 2018, 200, e00006-18. [Google Scholar] [CrossRef]
- Saitoh, T.; Iyoda, S.; Yamamoto, S.; Lu, Y.; Shimuta, K.; Ohnishi, M.; Terajima, J.; Watanabe, H. Transcription of the ehx enterohemolysin gene is positively regulated by GrlA, a global regulator encoded within the locus of enterocyte effacement in enterohemorrhagic Escherichia coli. J. Bacteriol. 2008, 190, 4822–4830. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, N.; Zhang, W.; Xu, Y.; Yao, Y.-F. Dual role of CsrA in regulating the hemolytic activity of Escherichia coli O157:H7. Virulence 2022, 13, 859–874. [Google Scholar] [CrossRef]
- Bloch, S.; Węgrzyn, A.; Węgrzyn, G.; Nejman-Faleńczyk, B. Small and smaller—sRNAs and microRNAs in the regulation of toxin gene expression in prokaryotic cells: A mini-review. Toxins 2017, 9, 181. [Google Scholar] [CrossRef]
- Papenfort, K.; Förstner, K.U.; Cong, J.-P.; Sharma, C.M.; Bassler, B.L. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc. Natl. Acad. Sci. USA 2015, 112, E766–E775. [Google Scholar] [CrossRef]
- Osickova, A.; Knoblochova, S.; Bumba, L.; Man, P.; Kalaninova, Z.; Lepesheva, A.; Jurnecka, D.; Cizkova, M.; Biedermannova, L.; Goldsmith, J.A. A conserved tryptophan in the acylated segment of RTX toxins controls their β2 integrin–independent cell penetration. J. Biol. Chem. 2023, 299, 104978. [Google Scholar] [CrossRef]
- Osickova, A.; Balashova, N.; Masin, J.; Sulc, M.; Roderova, J.; Wald, T.; Brown, A.C.; Koufos, E.; Chang, E.H.; Giannakakis, A. Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg. Microbes Infect. 2018, 7, 1–15. [Google Scholar] [CrossRef]
- Linhartova, I.; Osicka, R.; Bumba, L.; Masin, J.; Sebo, P. RTX toxins: A review. In Microbial Toxins; Gopalakrishnakone, P., Stiles, B., Alape-Girón, A., Dubreuil, J.D., Mandal, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 353–381. Available online: https://link.springer.com/referencework/10.1007/978-94-007-6449-1 (accessed on 19 December 2025).
- Boardman, B.K.; Meehan, B.M.; Fullner Satchell, K.J. Growth phase regulation of Vibrio cholerae RTX toxin export. J. Bacteriol. 2007, 189, 1827–1835. [Google Scholar] [CrossRef]
- Hews, C.L.; Cho, T.; Rowley, G.; Raivio, T.L. Maintaining integrity under stress: Envelope stress response regulation of pathogenesis in gram-negative bacteria. Front. Cell. Infect. Microbiol. 2019, 9, 313. [Google Scholar] [CrossRef]
- Audrain, B.; Ferrières, L.; Zairi, A.; Soubigou, G.; Dobson, C.; Coppée, J.-Y.; Beloin, C.; Ghigo, J.-M. Induction of the Cpx envelope stress pathway contributes to Escherichia coli tolerance to antimicrobial peptides. Appl. Environ. Microbiol. 2013, 79, 7770–7779. [Google Scholar] [CrossRef]
- Humphreys, S.; Rowley, G.; Stevenson, A.; Anjum, M.F.; Woodward, M.J.; Gilbert, S.; Kormanec, J.; Roberts, M. Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium. Infect. Immun. 2004, 72, 4654–4661. [Google Scholar] [CrossRef]
- Nagamatsu, K.; Hannan, T.J.; Guest, R.L.; Kostakioti, M.; Hadjifrangiskou, M.; Binkley, J.; Dodson, K.; Raivio, T.L.; Hultgren, S.J. Dysregulation of Escherichia coli α-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc. Natl. Acad. Sci. USA 2015, 112, E871–E880. [Google Scholar] [CrossRef]
- Li, X.-H.; Lee, J.-H. Quorum sensing-dependent post-secretional activation of extracellular proteases in Pseudomonas aeruginosa. J. Biol. Chem. 2019, 294, 19635–19644. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xu, J.; Lu, X.; Li, J.; Lou, J.; Zhao, H.; Diao, B.; Shi, Q.; Zhang, Y.; Kan, B. Expression of hemolysin is regulated under the collective actions of HapR, Fur, and HlyU in Vibrio cholerae El Tor serogroup O1. Front. Microbiol. 2018, 9, 1310. [Google Scholar] [CrossRef]
- Martínez-Alonso, M.; Toledo-Rubio, V.; Noad, R.; Unzueta, U.; Ferrer-Miralles, N.; Roy, P.; Villaverde, A. Rehosting of bacterial chaperones for high-quality protein production. Appl. Environ. Microbiol. 2009, 75, 7850–7854. [Google Scholar] [CrossRef]
- Kimes, N.E.; Grim, C.J.; Johnson, W.R.; Hasan, N.A.; Tall, B.D.; Kothary, M.H.; Kiss, H.; Munk, A.C.; Tapia, R.; Green, L. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 2012, 6, 835–846. [Google Scholar] [CrossRef]
- Gardiner, M.; Bournazos, A.M.; Maturana-Martinez, C.; Zhong, L.; Egan, S. Exoproteome analysis of the seaweed pathogen Nautella italica R11 reveals temperature-dependent regulation of RTX-like proteins. Front. Microbiol. 2017, 8, 1203. [Google Scholar] [CrossRef]
- Velasco, E.; Wang, S.; Sanet, M.; Fernández-Vázquez, J.; Jové, D.; Glaría, E.; Valledor, A.F.; O’Halloran, T.V.; Balsalobre, C. A new role for Zinc limitation in bacterial pathogenicity: Modulation of α-hemolysin from uropathogenic Escherichia coli. Sci. Rep. 2018, 8, 6535. [Google Scholar] [CrossRef]
- Barbieri, N.L.; Nicholson, B.; Hussein, A.; Cai, W.; Wannemuehler, Y.M.; Dell’Anna, G.; Logue, C.M.; Horn, F.; Nolan, L.K.; Li, G. FNR regulates expression of important virulence factors contributing to pathogenicity of uropathogenic Escherichia coli. Infect. Immun. 2014, 82, 5086–5098. [Google Scholar] [CrossRef]
- Spitznagel, J., Jr.; Kraig, E.; Kolodrubetz, D. The regulation of leukotoxin production in Actinobacillus actinomycetemcomitans strain JP2. Adv. Dent. Res. 1995, 9, 48–54. [Google Scholar] [CrossRef]
- Hritz, M.; Fisher, E.; Demuth, D.R. Differential regulation of the leukotoxin operon in highly leukotoxic and minimally leukotoxic strains of Actinobacillus actinomycetemcomitans. Infect. Immun. 1996, 64, 2724–2729. [Google Scholar] [CrossRef]
- Kolodrubetz, D.; Phillips, L.; Jacobs, C.; Burgum, A.; Kraig, E. Anaerobic regulation of Actinobacillus actinomycetemcomitans leukotoxin transcription is ArcA/FnrA-independent and requires a novel promoter element. Res. Microbiol. 2003, 154, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Reimer, D.; Frey, J.; Jansen, R.; Veit, H.P.; Inzana, T.J. Molecular investigation of the role of Apxl and Apxll in the virulence of Actinobacillus pleuropneumoniae serotype 5. Microb. Pathog. 1995, 18, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Jarma, E.; Regassa, L.B. Growth phase mediated regulation of the Actinobacillus pleuropneumoniae ApxI and ApxII toxins. Microb. Pathog. 2004, 36, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Frey, J.; Nicolet, J. Regulation of hemolysin expression in Actinobacillus pleuropneumoniae serotype 1 by Ca2+. Infect. Immun. 1988, 56, 2570–2575. [Google Scholar]
- Jarma, E.; Corradino, G.; Regassa, L.B. Anaerobiosis, growth phase and Actinobacillus pleuropneumoniae RTX toxin production. Microb. Pathog. 2004, 37, 29–33. [Google Scholar] [CrossRef]
- Guo, R.H.; Lim, J.Y.; Tra My, D.N.; Jo, S.J.; Park, J.U.; Rhee, J.H.; Kim, Y.R. Vibrio vulnificus RtxA1 toxin expression upon contact with host cells is RpoS-dependent. Front. Cell. Infect. Microbiol. 2018, 8, 70. [Google Scholar] [CrossRef]
- Woida, P.J.; Satchell, K.J. The Vibrio cholerae MARTX toxin silences the inflammatory response to cytoskeletal damage before inducing actin cytoskeleton collapse. Sci. Signal. 2020, 13, eaaw9447. [Google Scholar] [CrossRef]
- Woida, P.J.; Kitts, G.; Shee, S.; Godzik, A.; Satchell, K.J. Actin cross-linking effector domain of the Vibrio vulnificus F-type MARTX Toxin dominates disease progression during intestinal infection. Infect. Immun. 2022, 90, e0062721. [Google Scholar] [CrossRef]
- Compan, I.; Touati, D. Anaerobic activation of arcA transcription in Escherichia coli: Roles of Fnr and ArcA. Mol. Microbiol. 1994, 11, 955–964. [Google Scholar] [CrossRef]
- Confer, A.W.; Ayalew, S. Mannheimia haemolytica in bovine respiratory disease: Immunogens, potential immunogens, and vaccines. Anim. Health Res. Rev. 2018, 19, 79–99. [Google Scholar] [CrossRef]
- Pedre, B.; Young, D.; Charlier, D.; Mourenza, Á.; Rosado, L.A.; Marcos-Pascual, L.; Wahni, K.; Martens, E.; de la Rubia, A.G.; Belousov, V.V. Structural snapshots of OxyR reveal the peroxidatic mechanism of H2O2 sensing. Proc. Natl. Acad. Sci. USA 2018, 115, E11623–E11632. [Google Scholar] [CrossRef]
- Sora, V.M.; Meroni, G.; Martino, P.A.; Soggiu, A.; Bonizzi, L.; Zecconi, A. Extraintestinal pathogenic Escherichia coli: Virulence factors and antibiotic resistance. Pathogens 2021, 10, 1355. [Google Scholar] [CrossRef]
- Wen, Y.; Kim, I.H.; Kim, K.-S. Iron-and quorum-sensing signals converge on small quorum-regulatory RNAs for coordinated regulation of virulence factors in Vibrio vulnificus. J. Biol. Chem. 2016, 291, 14213–14230. [Google Scholar] [CrossRef]
- Syahiran, S.; Taib, W.R.W.; Jaffar, N. Aggregatibacter actinomycetemcomitans: The virulence factors and relation to persistence biofilm formation. Biomedicine 2020, 40, 429–435. [Google Scholar] [CrossRef]
- Kachlany, S. Aggregatibacter actinomycetemcomitans leukotoxin: From threat to therapy. J. Dent. Res. 2010, 89, 561–570. [Google Scholar] [CrossRef]
- Lee, Z.-W.; Kim, B.S.; Jang, K.K.; Bang, Y.-J.; Kim, S.; Ha, N.-C.; Jung, Y.H.; Lee, H.J.; Han, H.J.; Kim, J.-S. Small-molecule inhibitor of HlyU attenuates virulence of Vibrio species. Sci. Rep. 2019, 9, 4346. [Google Scholar] [CrossRef]
- Elgaml, A.; Miyoshi, S.I. Regulation systems of protease and hemolysin production in Vibrio vulnificus. Microbiol. Immunol. 2017, 61, 1–11. [Google Scholar] [CrossRef]
- Coutte, L.; Huot, L.; Antoine, R.; Slupek, S.; Merkel, T.J.; Chen, Q.; Stibitz, S.; Hot, D.; Locht, C. The multifaceted RisA regulon of Bordetella pertussis. Sci. Rep. 2016, 6, 32774. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.; Bonocora, R.P.; Kim, D.D.; Chen, Q.; Wade, J.T.; Stibitz, S.; Hinton, D.M. The BvgAS regulon of Bordetella pertussis. mBio 2017, 8, e01526-17. [Google Scholar] [CrossRef] [PubMed]


| Toxin | Producing Species | Host Target | Key Regulator(s) | Secretion/Activation Genes |
|---|---|---|---|---|
| HlyA | E. coli | RBCs, macrophages | H-NS, RfaH, CRP | hlyCABD, hlyC |
| CyaA | B. pertussis | Neutrophils | BvgAS | cyaCABD, cyaC |
| RtxA1 | V. vulnificus | Epithelial cells | HlyU, Fur, CRP, SmcR | rtxHCA, rtxBDE |
| LktA | M. haemolytica | Bovine leukocytes | Possibly Fur, others unknown | lktCABD, lktC |
| MARTX | V. cholerae | Host cytoskeleton, actin | HlyU, HapR | rtxA, rtxBDE |
| ApxI-IV | A. pleuropneumoniae | Porcine epithelial & immune cells | OxyR, Fur | apxI–IV, apxCABD |
| LtxA | A. actinomycetemcomitans | Human leukocytes | Unknown (possibly H-NS) | ltxCABD, ltxC |
| RtxA | K. kingae | Bone/joint tissue | Unknown | rtxCABD |
| Regulatory Category | Key Regulators/ Systems | General Impact on RTX Expression | Primary Signals | Species |
|---|---|---|---|---|
| Global transcriptional repression and anti-repression | H-NS, HlyU-like anti-repressors | Silencing under non-host conditions; derepression during infection | Temperature, DNA topology, host contact | Vibrio, E. coli |
| Metal and nutrient sensing | Fur, Zur, calcium- responsive regulators | Repression or activation depending on metal availability | Iron, zinc, calcium | Vibrio, E. coli, A. pleuropneumoniae |
| Metabolic regulation | CRP, CsrA | Coordination of RTX expression with metabolic state and growth | Carbon availability, growth phase | Vibrio, E. coli |
| Quorum sensing | HapR, SmcR, LuxR-type regulators | Cell-density-dependent repression or modulation | Autoinducers, population density | Vibrio |
| Two-component systems | BvgAS, PhoBR, OrhK/OrhR | Conditional activation or repression in response to environment | Temperature, phosphate, oxidative stress | Bordetella, E. coli |
| Envelope stress responses | CpxAR, σE | Fine-tuning of RTX secretion and toxin levels | Envelope stress, secretion burden | E. coli, Salmonella |
| Post-transcriptional regulation | sRNAs, CsrA | Modulation of mRNA stability and translation | Growth phase, quorum sensing | Vibrio, E. coli |
| Post-translational activation | RTX acyltransferases | Control of toxin activation and cytotoxic potency | Acyl-ACP availability | Multiple RTX-producing pathogens |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jamali, H.; Pereira, T.; Dozois, C.M. Environmental and Regulatory Control of RTX Toxins in Gram-Negative Pathogens. Toxins 2026, 18, 27. https://doi.org/10.3390/toxins18010027
Jamali H, Pereira T, Dozois CM. Environmental and Regulatory Control of RTX Toxins in Gram-Negative Pathogens. Toxins. 2026; 18(1):27. https://doi.org/10.3390/toxins18010027
Chicago/Turabian StyleJamali, Hossein, Tylor Pereira, and Charles M. Dozois. 2026. "Environmental and Regulatory Control of RTX Toxins in Gram-Negative Pathogens" Toxins 18, no. 1: 27. https://doi.org/10.3390/toxins18010027
APA StyleJamali, H., Pereira, T., & Dozois, C. M. (2026). Environmental and Regulatory Control of RTX Toxins in Gram-Negative Pathogens. Toxins, 18(1), 27. https://doi.org/10.3390/toxins18010027

