Biogenic Quorum-Sensing Amides from Streptomyces sp. NP10
Abstract
1. Introduction
2. Results and Discussion
2.1. Identification and Synthesis of Amides 1–9
2.2. Modulation of QS Systems in Pseudomonas aeruginosa by Amides 1–9
2.2.1. Impact of Amides on Pyocyanin Production
2.2.2. Amide-Induced Enhancement of Biofilm Formation
2.2.3. Influence of Amides on Autoinducers Production
2.2.4. Interaction of Amides with Bacterial DNA
2.2.5. Effect of Amides on Motility of Pseudomonas aeruginosa PAO1
2.3. Modulation of QS in Chromobacterium violaceum and Serratia marcescens
2.4. Safety of Amides 1–9 Toward Eukaryotic and Prokaryotic Cells
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analyses
3.3. NMR Measurements
3.4. Preparation of Crude Extracts from NP10 Culture
3.5. Synthesis of Acetamides 1–3 and 5–8
3.6. Synthesis of N-(3-Methyl-2-butenyl)acetamide (4)
3.7. Synthesis of 2-Phenylacetamide (9)
3.8. Antiproliferative Effect
3.9. Antimicrobial Effect—Disk Diffusion Assay
3.10. Antimicrobial Effect—Microdilution Method
3.11. Static Biofilm Formation Assay
3.12. Effect on Bacterial Pigments Production
3.13. Effects on AHLs and AHQs Production
3.14. Motility Assays
3.15. In Vitro DNA Interaction by Gel Electrophoresis Assay
3.16. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lacey, H.J.; Rutledge, P.J. Recently discovered secondary metabolites from Streptomyces species. Molecules 2022, 27, 887. [Google Scholar] [CrossRef] [PubMed]
- Chater, K.F. Recent advances in understanding Streptomyces. F1000Res 2016, 5, 2795. [Google Scholar] [CrossRef]
- van der Meij, A.; Worsley, S.F.; Hutchings, M.I.; van Wezel, G.P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 2017, 41, 392–416. [Google Scholar] [CrossRef] [PubMed]
- Alam, K.; Mazumder, A.; Sikdar, S.; Zhao, Y.M.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y.; et al. Streptomyces: The biofactory of secondary metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef]
- Vojnovic, S.; Aleksic, I.; Ilic-Tomic, T.; Stevanovic, M.; Nikodinovic-Runic, J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl. Microbiol. Biotechnol. 2024, 108, 185. [Google Scholar] [CrossRef]
- Janković, V.; Pantelic, B.; Ponjavic, M.; Marković, D.; Radetić, M.; Nikodinovic-Runic, J.; Ilic-Tomic, T. Degradation of synthetic and natural textile materials using Streptomyces strains: Model compost and genome exploration for potential plastic-degrading enzymes. Microorganisms 2025, 13, 1800. [Google Scholar] [CrossRef] [PubMed]
- Polkade, A.V.; Mantri, S.S.; Patwekar, U.J.; Jangid, K. Quorum sensing: An under-explored phenomenon in the phylum Actinobacteria. Front. Microbiol. 2016, 7, 131. [Google Scholar] [CrossRef]
- Prazdnova, E.V.; Gorovtsov, A.V.; Vasilchenko, N.G.; Kulikov, M.P.; Statsenko, V.N.; Bogdanova, A.A.; Refeld, A.G.; Brislavskiy, Y.A.; Chistyakov, V.A.; Chikindas, M.L. Quorum-sensing inhibition by Gram-positive bacteria. Microorganisms 2022, 10, 350. [Google Scholar] [CrossRef]
- Zhan, H.; Li, X.; Zou, X.; Qu, G.; Zhang, L.; Li, Y.; Li, J.; Sun, Y.; Ju, W.; Ye, M.; et al. Isolation and characterization of Pseudomonas fluorescens producing biogenic amines: AHL-mediated quorum sensing as a key regulatory mechanism. LWT Food Sci. Technol. 2025, 223, 117789. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Yi, Y.; Bai, X.; Zhu, L.; Zhu, J.; Gu, M.; Zhu, Y.; Jiang, L. Screening and identification of a Streptomyces strain with quorum-sensing inhibitory activity and effect of the crude extracts on virulence factors of Pseudomonas aeruginosa. Microorganisms 2023, 11, 2079. [Google Scholar] [CrossRef]
- Ilic-Tomic, T.; Genčić, M.S.; Živković, M.Z.; Vasiljevic, B.; Djokic, L.; Nikodinovic-Runic, J.; Radulović, N.S. Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp. NP10. Appl. Microbiol. Biot. 2015, 99, 4815–4833. [Google Scholar] [CrossRef]
- Schneider, O.; Ilic-Tomic, T.; Rückert, C.; Kalinowski, J.; Genčić, M.S.; Živković, M.Z.; Stankovic, N.; Radulović, N.S.; Vasiljevic, B.; Nikodinovic-Runic, J.; et al. Genomics-based insights into the biosynthesis and unusually high accumulation of free fatty acids by Streptomyces sp. NP10. Front. Microbiol. 2018, 9, 1302. [Google Scholar] [CrossRef]
- Ali, Q.; Khan, A.R.; Raza, W.; Bilal, M.S.; Khalid, S.; Ayaz, M.; Khan, A.U.R.; Mundra, S. Mechanisms of microbial VOC-mediated communication in plant ecosystems and agricultural applications. J. Sustain. Agric. Environ. 2025, 4, 70044. [Google Scholar] [CrossRef]
- Sidorova, D.E.; Skripka, M.I.; Khmel, I.A.; Koksharova, O.A.; Plyuta, V.A. Effects of volatile organic compounds on biofilms and swimming motility of Agrobacterium tumefaciens. Microorganisms 2022, 10, 1512. [Google Scholar] [CrossRef]
- Reina, J.C.; Pérez-Victoria, I.; Martín, J.; Llamas, I. A quorum-sensing inhibitor strain of Vibrio alginolyticus blocks QS-controlled phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa. Mar. Drugs 2019, 17, 494. [Google Scholar] [CrossRef] [PubMed]
- Schreier, P.; Drawert, F. Gaschromatographisch-massenspektrometrische untersuchung flüchtiger inhaltsstoffe des weines. Z. Lebensm. Unters. Forsch. 1974, 154, 273–278. [Google Scholar] [CrossRef]
- Park, S.J.; Pérez, J.; Mendez, V.; Taylor, P.W. Rectal glands and tergal glands as sources of volatile pheromones in cucumber fruit fly, Zeugodacus cucumis. Sci. Rep. 2025, 15, 743. [Google Scholar] [CrossRef] [PubMed]
- Dickschat, J.S.; Bode, H.B.; Wenzel, S.C.; Müller, R.; Schulz, S. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. ChemBioChem 2005, 6, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Harig, T.; Schlawis, C.; Ziesche, L.; Pohlner, M.; Engelen, B.; Schulz, S. Nitrogen-containing volatiles from marine Salinispora pacifica and Roseobacter-group bacteria. J. Nat. Prod. 2017, 80, 3289–3295. [Google Scholar] [CrossRef]
- El-Mehalawy, A.A.; Abd-Allah, N.A.; Mohamed, R.M.; Abu-Shady, M.R. Actinomycetes antagonizing plant and human pathogenic fungi. II. Factors affecting antifungal production and chemical characterization of the active components. Int. J. Agric. Biol. 2005, 7, 188–196. [Google Scholar]
- Koteska, D.; Marter, P.; Huang, S.; Pradella, S.; Petersen, J.; Schulz, S. Volatiles of the apicomplexan alga Chromera velia and associated bacteria. ChemBioChem 2023, 24, e202200530. [Google Scholar] [CrossRef]
- Kowalewska, J.; Zelazowska, H.; Babuchowski, A.; Hammond, E.G.; Glatz, B.A.; Ross, F. Isolation of aroma-bearing material from Lactobacillus helveticus culture and cheese. J. Dairy Sci. 1985, 68, 2165–2171. [Google Scholar] [CrossRef]
- Eichholzer, J.V.; Lewis, I.A.; Macleod, J.K.; Oelrichs, P.B.; Vallely, P.J. Galegine and a new dihydroxyalkylacetamide from Verbesina enceloiodes. Phytochemistry 1982, 21, 97–99. [Google Scholar] [CrossRef]
- Zenkevich, I.G.; Chupalov, A.A. New possibilities of chromate-mass-spectrometric identification of organic compounds using increments of gas chromatographic retention indices of molecular structural fragments. Zh. Org. Khim. 1996, 32, 656–666. [Google Scholar]
- Andriamaharavo, N.R. NIST Mass Spectrometry Data Center. Retention Data. In NIST Chemistry WebBook; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014. Available online: https://webbook.nist.gov/chemistry/ (accessed on 28 November 2025).
- Maskey, R.P.; Helmke, E.; Laatsch, H. Himalomycin A and B: Isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J. Antibiot. 2003, 56, 942–949. [Google Scholar] [CrossRef]
- Heidari, B.; Mohammadipanah, F. Isolation and identification of two alkaloid structures with radical scavenging activity from Actinokineospora sp. UTMC 968, a new promising source of alkaloid compounds. Mol. Biol. Rep. 2018, 45, 2325–2332. [Google Scholar] [CrossRef]
- Driche, E.H.; Badji, B.; Bijani, C.; Belghit, S.; Pont, F.; Mathieu, F.; Zitouni, A. A new saharan strain of Streptomyces sp. GSB-11 produces maculosin and N-acetyltyramine active against multidrug-resistant pathogenic bacteria. Curr. Microbiol. 2022, 79, 298. [Google Scholar] [CrossRef]
- Kokare, C.; Rangari, V.; Chopade, B.; Mahadik, K.; Kadam, S. Production of acetamide derivative from marine Streptomyces sp. isolated from west coast of India. Biosci. Biotechnol. Res. Asia 2005, 3, 307–316. [Google Scholar]
- Ben Ameur Mehdi, R.; Shaaban, K.A.; Rebai, I.K.; Smaoui, S.; Bejar, S.; Mellouli, L. Five naturally bioactive molecules including two rhamnopyranoside derivatives isolated from the Streptomyces sp. strain TN58. Nat. Prod. Res. 2009, 23, 1095–1107. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, S.; Zhang, J.; Wu, W. Antibacterial activity composition of the fermentation broth of Streptomyces djakartensis NW35. Molecules 2013, 18, 2763–2768. [Google Scholar] [CrossRef]
- Newaz, A.W.; Yong, K.; Lian, X.Y.; Zhang, Z. Streptoindoles A–D, novel antimicrobial indole alkaloids from the marine-associated actinomycete Streptomyces sp. ZZ1118. Tetrahedron 2022, 104, 132598. [Google Scholar] [CrossRef]
- Nonpanya, N.; Niamsanit, S.; Kanokmedhakul, K.; Paluka, J.; Wonglakorn, L.; Pannucharoenwong, N.; Echaroj, S. Synergistic antibacterial activities of bioactive compounds from Streptomyces sp. RS2 in combination with vancomycin against Staphylococcus aureus. In Proceedings of the IEEE 5th International Conference on Engineering Technologies and Applied Sciences, Bangkok, Thailand, 22–23 November 2018. [Google Scholar]
- He, Z.; Guan, M.M.; Xiong, L.T.; Li, X.; Zeng, Y.; Deng, X.; Herron, A.N.; Cui, Z.N. Discovery of novel amide derivatives as potent quorum sensing inhibitors of Pseudomonas aeruginosa. Eur. J. Med. Chem. 2024, 271, 116410. [Google Scholar] [CrossRef]
- Milan, M.; Carboni, G.; Salamone, M.; Costas, M.; Bietti, M. Tuning selectivity in aliphatic C–H bond oxidation of N-alkylamides and phthalimides catalyzed by manganese complexes. ACS Catal. 2017, 7, 5903–5911. [Google Scholar] [CrossRef]
- Alalla, A.; Merabet-Khelassi, M.; Aribi-Zouioueche, L.; Riant, O. Green synthesis of benzamides in solvent-and activation-free conditions. Synth. Commun. 2014, 44, 2364–2376. [Google Scholar] [CrossRef]
- Häring, A.P.; Biallas, P.; Kirsch, S.F. An unconventional reaction of 2,2-diazido acylacetates with amines. Eur. J. Org. Chem. 2017, 2017, 1526–1539. [Google Scholar] [CrossRef]
- Li, C.; Wang, M.; Lu, X.; Zhang, L.; Jiang, J.; Zhang, L. Reusable brønsted acidic ionic liquid efficiently catalyzed N-formylation and N-acylation of amines. ACS Sustain. Chem. Eng. 2020, 8, 4353–4361. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, D.; Wan, Y.; Zhang, G.; Bi, J.; Liu, Q.; Liu, T.; Shi, L. Selective cleavage of inert aryl C–N bonds in N-aryl amides. J. Org. Chem. 2018, 83, 1369–1376. [Google Scholar] [CrossRef]
- Aksić, J.; Genčić, M.; Stojanović, N.; Radulović, N.; Zlatković, D.; Dimitrijević, M.; Stojanović-Radić, Z.; Srbljanović, J.; Štajner, T.; Jovanović, L. New iron twist to chloroquine—Upgrading antimalarials with immunomodulatory and antimicrobial features. J. Med. Chem. 2023, 66, 2084–2101. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.F.; Kim, D.S.; Choi, H.D.; Son, B.W. Indolyl alkaloid derivatives, Nb-acetyltryptamine and oxaline from a marine-derived fungus. Arch. Pharm. Res. 2003, 26, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, P.; Panagiotaki, M.; Rizzoli, C.; Greci, L. Reactions of indoles with nitrogen dioxide and nitrous acid in an aprotic solvent. Org. Biomol. Chem. 2006, 4, 3282–3290. [Google Scholar] [CrossRef]
- Noushini, S.; Park, S.J.; Jamie, I.; Jamie, J.; Taylor, P.W. Sampling technique biases in the analysis of fruit fly volatiles: A case study of Queensland fruit fly. Sci. Rep. 2020, 10, 19799. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.; Park, S.J.; Taylor, P.W. Domestication modifies the volatile emissions produced by male Queensland fruit flies during sexual advertisement. Sci. Rep. 2018, 8, 16503. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Horikawa, H.; Nishitani, T.; Iwasaki, T. A facile synthesis of optically pure amines by reduction of N-acyl-α-methoxyalkylamines derived from α-amino acids using triethylsilane. Chem. Pharm. Bull. 1990, 38, 2024–2026. [Google Scholar] [CrossRef]
- Park, S.J.; Pandey, G.; Castro-Vargas, C.; Oakeshott, J.G.; Taylor, P.W.; Mendez, V. Cuticular chemistry of the Queensland fruit fly Bactroceratryoni (Froggatt). Molecules 2020, 25, 4185. [Google Scholar] [CrossRef] [PubMed]
- Schuck, D.C.; Jordão, A.K.; Nakabashi, M.; Cunha, A.C.; Ferreira, V.F.; Garcia, C.R. Synthetic indole and melatonin derivatives exhibit antimalarial activity on the cell cycle of the human malaria parasite Plasmodium falciparum. Eur. J. Med. Chem. 2014, 78, 375–382. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Capson, T.L.; Guzmán, H.M.; González, J.; Ortega-Barría, E.; Quiñoá, E.; Riguera, R. Antiplasmodial metabolites isolated from the marine octocoral Muricea austera. J. Nat. Prod. 2006, 69, 1379–1383. [Google Scholar] [CrossRef]
- Genčić, M.; Aksić, J.; Mladenović, M.; Stošić, M.Ž.; Radulović, N. Phenethyl angelate – A new ester from immortale essential oil? Facta Univ. Ser. Phys. Chem. Technol. 2021, 19, 17–29. [Google Scholar] [CrossRef]
- Ivanova, V.; Graefe, U.; Schlegel, R.; Schlegel, B.; Gusterova, A.; Kolarova, M.; Aleksieva, K. Isolation and structure elucidation of tyramine and indole alkaloids from antarctic strain Microbisporaaerata IMBAS-11A. Biotechnol. Biotechnol. Equip. 2003, 17, 128–133. [Google Scholar] [CrossRef]
- Grace, A.; Sahu, R.; Owen, D.R.; Dennis, V.A. Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review. Front. Microbiol. 2022, 13, 1023523. [Google Scholar] [CrossRef]
- Ilic-Tomic, T.; Sokovic, M.; Vojnovic, S.; Ciric, A.; Veljic, M.; Nikodinovic-Runic, J.; Novakovic, M. Diarylheptanoids from Alnus viridis ssp. viridis and Alnus glutinosa: Modulation of quorum sensing activity in Pseudomonas aeruginosa. Planta Med. 2017, 83, 117–125. [Google Scholar] [CrossRef]
- Miranda, S.W.; Asfahl, K.L.; Dandekar, A.A.; Greenberg, E.P. Pseudomonas aeruginosa quorum sensing. Adv. Exp. Med. Biol. 2022, 1386, 95–115. [Google Scholar] [CrossRef]
- del Mar Cendra, M.; Torrents, E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol. Adv. 2021, 49, 1–15. [Google Scholar] [CrossRef]
- Mudaliar, S.B.; Bharath Prasad, A.S. A biomedical perspective of pyocyanin from Pseudomonas aeruginosa: Its applications and challenges. World J. Microbiol. Biotechnol. 2024, 40, 90. [Google Scholar] [CrossRef]
- Zhou, J.W.; Luo, H.Z.; Jiang, H.; Jian, T.K.; Chen, Z.Q.; Jia, A.Q. Hordenine: A novel quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa. J. Agric. Food Chem. 2018, 66, 1620–1628. [Google Scholar] [CrossRef]
- Brandenburg, K.S.; Rodriguez, K.J.; McAnulty, J.F.; Murphy, C.J.; Abbott, N.L.; Schurr, M.J.; Czuprynski, C.J. Tryptophan inhibits biofilm formation by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 1921–1925. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Daware, A.V.; Kumari, M.; Chatterjee, A.; Bhattacharyya, D.; Mitra, G.; Akhter, Y.; Bhattacharjee, S.; Tribedi, P. Free tryptophan residues inhibit quorum sensing of Pseudomonas aeruginosa: A potential approach to inhibit the development of microbial biofilm. Arch. Microbiol. 2018, 200, 1419–1425. [Google Scholar] [CrossRef]
- Mashburn, L.M.; Whiteley, M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 2005, 437, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Park, H.Y.; Lee, J.H. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect. Appl. Environ. Microbiol. 2015, 81, 2328–2338. [Google Scholar] [CrossRef]
- Okshevsky, M.; Regina, V.R.; Meyer, R.L. Extracellular DNA as a target for biofilm control. Curr. Opin. Biotechnol. 2015, 33, 73–80. [Google Scholar] [CrossRef]
- Murray, T.S.; Ledizet, M.; Kazmierczak, B.I. Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J. Med. Microbiol. 2010, 59, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Bukvicki, D.; Novaković, M.; Ilić-Tomić, T.; Nikodinović-Runić, J.; Todorović, N.; Veljić, M.; Asakawa, Y. Biotransformation of perrottetin F by Aspergillus niger: New bioactive secondary metabolites. Rec. Nat. Prod. 2021, 15, 281–292. [Google Scholar] [CrossRef]
- Teasdale, M.E.; Liu, J.; Wallace, J.; Akhlaghi, F.; Rowley, D.C. Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl. Environ. Microbiol. 2009, 75, 567–572. [Google Scholar] [CrossRef]
- Lee, M.J.; Kim, G.J.; Shin, M.S.; Moon, J.; Kim, S.; Nam, J.W.; Kang, K.S.; Choi, H. Chemical investigation of diketopiperazines and N-phenethylacetamide isolated from Aquimarina sp. MC085 and their effect on TGF-β-induced epithelial–mesenchymal transition. Appl. Sci. 2021, 11, 8866. [Google Scholar] [CrossRef]
- Kunimoto, S.; Chin-Zhi, X.; Naganawa, H.; Hamada, M.; Masuda, T.; Takeuchi, T.; Umezawa, H. Reversal of resistance by N-acetyltyramine or N-acetyl-2-phenylethylamine in doxorubicin-resistant leukemia P388 cells. J. Antibiot. 1987, 40, 1651–1652. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Peng, T.; Yang, Y.; Li, W.; Xiong, J.; Zhao, L.; Ding, Z. Antimicrobial and antioxidant activities of a new benzamide from endophytic Streptomyces sp. YIM 67086. Nat. Prod. Res. 2015, 29, 331–335. [Google Scholar] [CrossRef]
- Jovanović, D.Z.; Nešić, M.S.; Dekić, M.S.; Ristić, N.R.; Radulović, N.S. Resolving unresolvable multiplets: 1H NMR spectral simulation of selected sesquiterpenoids from the acorenone-rich rhizome essential oil of sweet flag, Acorus calamus L. J. Mol. Struct. 2025, 1321, 140205. [Google Scholar] [CrossRef]
- Priscilla, S.; Sivaramakrishna, D.; Anbazhagan, V. Differential scanning calorimetric studies on the thermotropic phase behavior of dry and hydrated forms of N-acyltyramines. Thermochim. Acta 2014, 586, 25–29. [Google Scholar] [CrossRef]
- Schmidt, F.; Le Douaron, G.; Champy, P.; Amar, M.; Séon-Méniel, B.; Raisman-Vozari, R.; Figadère, B. Tryptamine-derived alkaloids from Annonaceae exerting neurotrophin-like properties on primary dopaminergic neurons. Bioorg. Med. Chem. 2010, 18, 5103–5113. [Google Scholar] [CrossRef] [PubMed]
- Ilayaraja, N.; Noel, M. A comparative study of anodic fluorination of N-alkyl and N,N-dialkyl phenylacetamides in Et3N·4HF medium. J. Electroanal. Chem. 2009, 632, 45–54. [Google Scholar] [CrossRef]
- Aksić, J.M.; Genčić, M.S.; Radulović, N.S.; Dimitrijević, M.V.; Stojanović-Radić, Z.Z.; Tomic, T.I.; Rodić, M.V. Bioisosteric ferrocenyl 1,3-thiazolidine-4-carboxylic acid derivatives: In vitro antiproliferative and antimicrobial evaluations. Bioorg. Chem. 2023, 139, 106708. [Google Scholar] [CrossRef]
- Pantelic, L.; Skaro Bogojevic, S.; Andrejević, T.P.; Pantović, B.V.; Marković, V.R.; Ašanin, D.P.; Milanović, Ž.; Ilic-Tomic, T.; Nikodinovic-Runic, J.; Glišić, B.Đ.; et al. Copper (II) and zinc (II) complexes with bacterial prodigiosin are targeting site III of bovine serum albumin and acting as DNA minor groove binders. Int. J. Mol. Sci. 2024, 25, 8395. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.T.; O’Cleirigh, C.; Walsh, P.K.; O’Shea, D.G. Development of a robust microtiter plate-based assay method for assessment of bioactivity. J. Microbiol. Methods 2004, 58, 327–334. [Google Scholar] [CrossRef]
- Pantović, B.V.; Ašanin, D.P.; Milanović, Ž.; Perdih, F.; Ilic-Tomic, T.; Radanović, D.D.; Turel, I.; Djuran, M.I.; Glišić, B.Đ. Dinuclear gallium(III) complex with 1,3-propanediamine-N,N′-diacetate: Structural characterization, antimicrobial activity, and DNA/BSA interactions. Bioinorg. Chem. Appl. 2025, 2025, 8097589. [Google Scholar] [CrossRef]
- Aleksic, I.; Jeremic, J.; Milivojevic, D.; Ilic-Tomic, T.; Šegan, S.; Zlatović, M.; Opsenica, D.M.; Senerovic, L. N-benzyl derivatives of long-chained 4-amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa. ACS Chem. Biol. 2019, 14, 2800–2809. [Google Scholar] [CrossRef] [PubMed]
- Savić, N.D.; Milivojevic, D.R.; Glišić, B.Đ.; Ilic-Tomic, T.; Veselinovic, J.; Pavic, A.; Vasiljevic, B.; Nikodinovic-Runic, J.; Djuran, M.I. A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: Synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture. RSC Adv. 2016, 6, 13193–13206. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Genčić, M.S.; Ilic-Tomic, T.; Mladenović, M.Z.; Živković Stošić, M.Z.; Nikodinovic-Runic, J.; Radulović, N.S. Biogenic Quorum-Sensing Amides from Streptomyces sp. NP10. Molecules 2026, 31, 155. https://doi.org/10.3390/molecules31010155
Genčić MS, Ilic-Tomic T, Mladenović MZ, Živković Stošić MZ, Nikodinovic-Runic J, Radulović NS. Biogenic Quorum-Sensing Amides from Streptomyces sp. NP10. Molecules. 2026; 31(1):155. https://doi.org/10.3390/molecules31010155
Chicago/Turabian StyleGenčić, Marija S., Tatjana Ilic-Tomic, Marko Z. Mladenović, Milena Z. Živković Stošić, Jasmina Nikodinovic-Runic, and Niko S. Radulović. 2026. "Biogenic Quorum-Sensing Amides from Streptomyces sp. NP10" Molecules 31, no. 1: 155. https://doi.org/10.3390/molecules31010155
APA StyleGenčić, M. S., Ilic-Tomic, T., Mladenović, M. Z., Živković Stošić, M. Z., Nikodinovic-Runic, J., & Radulović, N. S. (2026). Biogenic Quorum-Sensing Amides from Streptomyces sp. NP10. Molecules, 31(1), 155. https://doi.org/10.3390/molecules31010155

