Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = quinoa seeds quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5510 KB  
Article
Genome-Wide Association Analysis Identifies Agronomic Trait Loci in Quinoa
by Zhike Xu, Fucai Ma, Jiedong Li, Jiansheng Yu, Chengkai Liu, Yun Li, Baolong Liu, Xu Su, Dong Cao and Yunlong Liang
Agronomy 2026, 16(2), 175; https://doi.org/10.3390/agronomy16020175 - 10 Jan 2026
Viewed by 226
Abstract
Understanding the genetic basis of agronomic traits in quinoa adapted to the Qinghai–Tibet Plateau is essential for developing high-yield cultivars, as conventional breeding is constrained by limited molecular tools. In this study, 300 cultivated accessions were evaluated for five quantitative traits, and whole-genome [...] Read more.
Understanding the genetic basis of agronomic traits in quinoa adapted to the Qinghai–Tibet Plateau is essential for developing high-yield cultivars, as conventional breeding is constrained by limited molecular tools. In this study, 300 cultivated accessions were evaluated for five quantitative traits, and whole-genome resequencing generated 3.69 million high-quality SNPs. Population structure analysis and genome-wide association study (GWAS) were conducted, with integration of seed developmental transcriptomes to refine trait-associated loci. A highly admixed genetic background (K = 7) was revealed, and 11 significant QTLs across seven chromosomes were identified, involving genes related to metabolism, transport, and cell-wall formation. Among these, CesA4 (CQ042210) showed a strong association with thousand grain weight (TGW) and a distinct expression maximum at the early seed-filling stage. These results provide a genomic framework for understanding trait variation in plateau-adapted quinoa and highlight promising targets for marker-assisted breeding. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

26 pages, 7174 KB  
Article
Analysis of Protein Inhibitors of Trypsin in Quinoa, Amaranth and Lupine Seeds. Selection and Deep Structure–Function Characterization of the Amaranthus caudatus Species
by Martha Hernández de la Torre, Giovanni Covaleda-Cortés, Laura Montesinos, Daniela Covaleda, Juan C. Ortiz, Jaume Piñol, José M. Bautista, J. Patricio Castillo, David Reverter and Francesc Xavier Avilés
Int. J. Mol. Sci. 2025, 26(3), 1150; https://doi.org/10.3390/ijms26031150 - 28 Jan 2025
Viewed by 1922
Abstract
Protease inhibitors are biomolecules with growing biotechnological and biomedical relevance, including those derived from plants. This study investigated strong trypsin inhibitors in quinoa, amaranth, and lupine seeds, plant grains traditionally used in Andean South America. Amaranth seeds displayed the highest trypsin inhibitory activity, [...] Read more.
Protease inhibitors are biomolecules with growing biotechnological and biomedical relevance, including those derived from plants. This study investigated strong trypsin inhibitors in quinoa, amaranth, and lupine seeds, plant grains traditionally used in Andean South America. Amaranth seeds displayed the highest trypsin inhibitory activity, despite having the lowest content of aqueous soluble and thermostable protein material. This activity, directly identified by enzymatic assay, HPLC, intensity-fading mass spectrometry (IF-MS), and MS/MS, was attributed to a single protein of 7889.1 Da, identified as identical in Amaranthus caudatus and A. hybridus, with a Ki of 1.2 nM for the canonical bovine trypsin. This form of the inhibitor, which is highly homogeneous and scalable, was selected, purified, and structurally–functionally characterized due to the high nutritional quality of amaranth seeds as well as its promising agriculture–biotech–biomed applicability. The protein was crystallized in complex with bovine trypsin, and its 3D crystal structure resolved at 2.85 Å, revealing a substrate-like transition state interaction. This verified its classification within the potato I inhibitor family. It also evidenced that the single disulfide bond of the inhibitor constrains its binding loop, which is a key feature. Cell culture assays showed that the inhibitor did not affect the growth of distinct plant microbial pathogen models, including diverse bacteria, fungi, and parasite models, such as Mycoplasma genitalium and Plasmodium falciparum. These findings disfavour the notion that the inhibitor plays an antimicrobial role, favouring its potential as an agricultural insect deterrent and prompting a redirection of its functional research. Full article
Show Figures

Graphical abstract

14 pages, 269 KB  
Article
Influence of Plant Additives on Changes in the Composition of Fatty Acids, Lipid Quality Indices and Minerals of Fermented Dairy Products from Cow’s Milk
by Beata Paszczyk and Elżbieta Tońska
Molecules 2025, 30(2), 235; https://doi.org/10.3390/molecules30020235 - 9 Jan 2025
Cited by 2 | Viewed by 1510
Abstract
The aim of this study was to assess the effect of selected plant additives on changes in the content of fatty acids, lipid quality indicators and mineral composition of yogurts produced from cow’s milk. The analysis included natural yogurts and yogurts enriched with [...] Read more.
The aim of this study was to assess the effect of selected plant additives on changes in the content of fatty acids, lipid quality indicators and mineral composition of yogurts produced from cow’s milk. The analysis included natural yogurts and yogurts enriched with 10% of chia seeds, hulled hemp seeds, quinoa seeds and oat bran. The fatty acid composition, the content of lipid quality indicators and the content of mineral components was varied in all analyzed yogurts. The plant additives used caused significant (p ≤ 0.05) changes in their fatty acid content, i.e., a significant decrease in the content of saturated fatty acids (SFAs) and short-chain fatty acids (SCFAs), and a significant increase in the content of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). The plant additives used caused significant (p ≤ 0.05) changes in the content of fatty acids, i.e., a significant decrease in the content of saturated fatty acids (SFAs) and short-chain fatty acids (SCFAs), and a significant increase in the content of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). It was shown that additives such as chia seeds and peeled hemp seeds caused the greatest changes in the analyzed yogurts. Yogurts with these additives were characterized by a significant increase in the content of polyunsaturated fatty acids (PUFAs), including n-3 acids, and a more favorable n-6/n-3 ratio. Yogurts with these additives were also characterized by significantly (p ≤ 0.05) lower atherogenic (AI) and thrombogenic (TI) indices and a higher hypocholesterolemia-to-hypercholesterolemia ratio (H/H). The addition of peeled hemp seeds caused the greatest changes in the content of minerals. Yogurts with hemp seeds were characterized by the highest content of all measured macroelements, as well as copper, iron and zinc. In turn, the highest manganese content was determined in the yogurts with the addition of chia seeds. Full article
24 pages, 6615 KB  
Article
The Identification of AMT Family Genes and Their Expression, Function, and Regulation in Chenopodium quinoa
by Xiangxiang Wang, He Wu, Nazer Manzoor, Wenhua Dongcheng, Youbo Su, Zhengjie Liu, Chun Lin and Zichao Mao
Plants 2024, 13(24), 3524; https://doi.org/10.3390/plants13243524 - 17 Dec 2024
Cited by 2 | Viewed by 1649
Abstract
Quinoa (Chenopodium quinoa) is an Andean allotetraploid pseudocereal crop with higher protein content and balanced amino acid composition in the seeds. Ammonium (NH4+), a direct source of organic nitrogen assimilation, mainly transported by specific transmembrane ammonium transporters ( [...] Read more.
Quinoa (Chenopodium quinoa) is an Andean allotetraploid pseudocereal crop with higher protein content and balanced amino acid composition in the seeds. Ammonium (NH4+), a direct source of organic nitrogen assimilation, mainly transported by specific transmembrane ammonium transporters (AMTs), plays important roles in the development, yield, and quality of crops. Many AMTs and their functions have been identified in major crops; however, no systematic analyses of AMTs and their regulatory networks, which is important to increase the yield and protein accumulation in the seeds of quinoa, have been performed to date. In this study, the CqAMTs were identified, followed by the quantification of the gene expression, while the regulatory networks were predicted based on weighted gene co-expression network analysis (WGCNA), with the putative transcriptional factors (TFs) having binding sites on the promoters of CqAMTs, nitrate transporters (CqNRTs), and glutamine-synthases (CqGSs), as well as the putative TF expression being correlated with the phenotypes and activities of GSs, glutamate synthase (GOGAT), nitrite reductase (NiR), and nitrate reductase (NR) of quinoa roots. The results showed a total of 12 members of the CqAMT family with varying expressions in different organs and in the same organs at different developmental stages. Complementation expression analyses in the triple mep1/2/3 mutant of yeast showed that except for CqAMT2.2b, 11/12 CqAMTs restored the uptake of NH4+ in the host yeast. CqAMT1.2a was found to mainly locate on the cell membrane, while TFs (e.g., CqNLPs, CqG2Ls, B3 TFs, CqbHLHs, CqZFs, CqMYBs, CqNF-YA/YB/YC, CqNACs, and CqWRKY) were predicted to be predominantly involved in the regulation, transportation, and assimilation of nitrogen. These results provide the functions of CqAMTs and their possible regulatory networks, which will lead to improved nitrogen use efficiency (NUE) in quinoa as well as other major crops. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

25 pages, 4418 KB  
Article
Exploring the Correlation Between Salt Tolerance and Seed Nutritional Value of Different Quinoa Genotypes Grown Under Saharan Climatic Conditions
by Rahma Goussi, Hatem Ben Jouira, Ouiza Djerroudi Zidane, Jemaa Essemine, Halima Khaled, Salma Nait Mohamed, Malek Smida, Salim Azib, Alia Telli and Arafet Manaa
Plants 2024, 13(22), 3180; https://doi.org/10.3390/plants13223180 - 13 Nov 2024
Viewed by 2489
Abstract
Quinoa is an annual pseudocereal highly adapted to extreme environments and has become, at this point in time, an extremely popular food due to its exceptional and high nutritional quality. This study aims to investigate the association of quinoa salt tolerance at an [...] Read more.
Quinoa is an annual pseudocereal highly adapted to extreme environments and has become, at this point in time, an extremely popular food due to its exceptional and high nutritional quality. This study aims to investigate the association of quinoa salt tolerance at an early developmental stage with its grain nutritional value under the effect of severe climatic hurdles. The current findings revealed a significant variability between genotypes in salt response attributes at the first development stage, where genotypes Amarilla Sacaca (thereafter, A. Sacaca) and QQ57 exhibited high salt tolerance thresholds with a low salt sensitivity index (SI), and a high capacity for Na+ sequestration into vacuoles. A significant positive association was detected between salt tolerance degree and yield parameters, saponins (SAPs), and minerals contents, where genotype A. Sacaca exhibited the highest SAP content with 3.84 mg.g−1 and the highest amounts of K, Ca, P, and Fe. The analysis of fatty acid composition demonstrated a high significant negative correlation between crude fat content and salt SI, and between yield parameters. Despite its low harvest index (HI) and low seed oil content, the salt-tolerant genotype A. Sacaca showed a high nutritional quality for seed oil according to its lowest ω6/ω3 ratio (5.6/1) and lowest level of atherogenicity index (AI). The genotype 115R, defined as the most sensitive to salt stress, exhibited a high seed oil quality due to its low lipid peroxidation susceptibility as reflected by its oxidative susceptibility and peroxidizability indexes. The significance of this study includes the identification of valuable quinoa genotypes showing high efficiency in growth and yield under severe stress accompanied by a high nutritional value satisfying the market requirements for healthy, nutritious, and safe food products. Full article
Show Figures

Figure 1

15 pages, 886 KB  
Article
Early Flowering and Maturity Promote the Successful Adaptation and High Yield of Quinoa (Chenopodium quinoa Willd.) in Temperate Regions
by Nazgol Emrani, Nathaly Maldonado-Taipe, Mario Hasler, Dilan S. R. Patiranage and Christian Jung
Plants 2024, 13(20), 2919; https://doi.org/10.3390/plants13202919 - 18 Oct 2024
Cited by 2 | Viewed by 1785
Abstract
Quinoa (Chenopodium quinoa Willd.) can offer an alternative for staple food considering its tolerance to abiotic stresses and high seed quality. However, its cultivation in temperate regions has not been successful due to its photoperiod sensitivity and low seed yield. This study [...] Read more.
Quinoa (Chenopodium quinoa Willd.) can offer an alternative for staple food considering its tolerance to abiotic stresses and high seed quality. However, its cultivation in temperate regions has not been successful due to its photoperiod sensitivity and low seed yield. This study investigated the agronomical performance and quality traits of 48 accessions for cultivation in northern Europe. We conducted two-year field trials and phenotyped traits related to phenological development, plant architecture, yield components, seed quality, and disease resistance. The major determinants of seed yield in this study were days to flowering, days to maturity, thousand-kernel weight, and panicle density, while downy mildew susceptibility and stem lodging showed a negative correlation with seed yield. We developed a selection index to enable simultaneous selection based on different important agronomical traits. We evaluated the stability of different accessions over the two years of the experiment. Finally, we provided a list of 10 selected accessions that can be directly integrated and serve as new crossing parents in quinoa breeding programs for temperate regions. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

25 pages, 4117 KB  
Article
Modeling the Effects of Irrigation and Its Interaction with Silicon on Quinoa Seed Yield and Water Use Efficiency in Arid Regions
by Amira M. El-Tahan, Mohamed Emran, Fatmah A. Safhi, Asal M. Wali, Sherien E. Sobhy and Omar M. Ibrahim
Agronomy 2024, 14(9), 2088; https://doi.org/10.3390/agronomy14092088 - 12 Sep 2024
Cited by 2 | Viewed by 2009
Abstract
Despite quinoa (Chenopodium quinoa Willd.) gaining international popularity in the early 21st century for its nutritional benefits, there remains a critical need to optimize its cultivation practices in arid regions. Current research often overlooks the combined effects of supplemental irrigation and foliar [...] Read more.
Despite quinoa (Chenopodium quinoa Willd.) gaining international popularity in the early 21st century for its nutritional benefits, there remains a critical need to optimize its cultivation practices in arid regions. Current research often overlooks the combined effects of supplemental irrigation and foliar treatments on quinoa’s yield and water efficiency, particularly under challenging environmental conditions like those in Borg El-Arab, Egypt. Field studies were conducted in Borg El-Arab, Alexandria, Egypt, during the winter seasons of 2021/2022 and 2022/2023 to determine the influence of supplemental irrigation (rainfed, 2000, and 4000 m3/hectare, respectively) and foliar spraying of sodium silicate (control, 200, and 400 ppm) on yield, yield components, seed quality, and water usage efficiency in quinoa cv. Chibaya grown in arid lands. Three replications were used in a split-plot design. The main plots were designated for irrigation, while the subplots were designated for foliar spraying. The results indicate that applying irrigation at a rate of 4000 m3/hectare significantly increased leaf dry weight per plant by 23.5%, stem dry weight per plant by 18.7%, total dry weight per 25 plants by 21.4%, leaf area per plant by 19.2%, and straw yield by 26.8% compared to the control treatment. There were no significant differences between irrigation with the rate of 4000 m3 or 2000 m3/hectare on biological yield kg/hectare, N (%), P (mg/100 g), and protein (%). The utilization of sodium silicate had no significance on all studied features except for straw yield kg ha−1 at the rate of 200 or 400 ppm. The results regarding the RAPD1 primer revealed that the 2000+0 silicon treatment was the only treatment that resemble the control with no up- or downregulated fragment. Moreover, 20 upregulated fragments were observed in all treatments, while 19 DNA fragments were downregulated. Furthermore, the results obtained regarding the RAPD2 primer revealed that 53 fragments were upregulated and 19 downregulated. Additionally, the RAPD3 primer demonstrated that 40 DNA fragments were upregulated, whereas 18 downregulated DNA fragments were detected. It may be inferred that the application of irrigation at a rate of 4000 m3 ha−1 might serve as a supplemental irrigation method. Spraying sodium silicate at a 400 mg L−1 concentration could alleviate the dry climate on the Egyptian shore. Full article
Show Figures

Figure 1

15 pages, 2168 KB  
Article
Effects of Nitrogen Accumulation, Transportation, and Grain Nutritional Quality and Advances in Fungal Endophyte Research in Quinoa (Chenopodium quinoa Willd.) Plants
by Linghong Li, Zhijun Jiang, Xinhui Yang, Yulai Zhang, Jianxun Huang, Jing Dai, Hafeez Noor, Xiangyun Wu, Aixia Ren, Zhiqiang Gao and Min Sun
J. Fungi 2024, 10(7), 504; https://doi.org/10.3390/jof10070504 - 21 Jul 2024
Viewed by 1984
Abstract
This study aims to understand the influence of nitrogen accumulation, fungal endophyte, yield, nitrogen use efficiency, and grain nutritional quality parameters on the yield of quinoa in some areas of China. The endophytic microbial community in plants plays a crucial role in plant [...] Read more.
This study aims to understand the influence of nitrogen accumulation, fungal endophyte, yield, nitrogen use efficiency, and grain nutritional quality parameters on the yield of quinoa in some areas of China. The endophytic microbial community in plants plays a crucial role in plant growth, development, and health, especially in quinoa plants under different nitrogen fertilizer levels. The results from the present study indicated that appropriate nitrogen application significantly enhanced the nitrogen accumulation and yield of quinoa grains during maturity, increasing by 34.54–42.18% and 14.59–30.71%, respectively. Concurrently, protein content, amylose, total starch, ash, and fat content also increased, with respective growth rates of 1.15–18.18%, 30.74–42.53%, 6.40–12.40%, 1.94–21.94%, and 5.32–22.22%. Our constructed interaction network of bacterial and fungal communities revealed that bacteria outnumbered fungi significantly, and most of them exhibited synergistic interactions. The moderate increase in N150 was beneficial for increasing quinoa yield, achieving nitrogen use efficiency (NUE) of over 20%. The N210 was increased, and both the yield and NUE significantly decreased. This study provides novel insights into the impact of nitrogen fertilizer on quinoa growth and microbial communities, which are crucial for achieving agricultural sustainable development. Full article
(This article belongs to the Special Issue Advances in Fungal Endophyte Research)
Show Figures

Figure 1

14 pages, 1505 KB  
Communication
Optimizing Soil Health and Sorghum Productivity through Crop Rotation with Quinoa
by Guang Li, Aixia Ren, Sumera Anwar, Lijuan Shi, Wenbin Bai, Yali Zhang and Zhiqiang Gao
Life 2024, 14(6), 745; https://doi.org/10.3390/life14060745 - 12 Jun 2024
Cited by 4 | Viewed by 3168 | Correction
Abstract
Crop rotation has been considered a potential solution to mitigate the negative effects of the continuous cropping of sorghum, including soil quality issues, inadequate plant development, and diminished yield and quality. A two-year field experiment was conducted to compare the effects of sorghum–sorghum [...] Read more.
Crop rotation has been considered a potential solution to mitigate the negative effects of the continuous cropping of sorghum, including soil quality issues, inadequate plant development, and diminished yield and quality. A two-year field experiment was conducted to compare the effects of sorghum–sorghum continuous cropping and quinoa–sorghum rotation on soil properties and sorghum yield. The treatments were arranged in a randomized complete block design with three replicates. Sorghum seeds (Jinza 22) and quinoa seeds (‘Jiaqi 1’ variety) were used. Soil samples were collected before and during the experiment for the analysis of physicochemical properties. The yield traits of sorghum were measured at maturity. The results showed that soil nutrients and organic matter were higher in the top 0–20 cm soil depth compared to 20–40 cm depth, with significant differences observed between cropping systems. Sorghum–quinoa cropping increased soil total N and organic matter, particularly at the jointing and maturity stages of sorghum. However, the available phosphorus was higher under continuous cropping at all growth stages. Crop rotation significantly improved sorghum yield traits, including spike fresh weight, spike dry weight, grain weight per spike, and grain yield per hectare. A correlation analysis revealed positive relationships between soil total N, organic matter, and sorghum yield. Overall, sorghum–quinoa rotation demonstrated potential for improving soil fertility and enhancing crop productivity compared to continuous cropping, although further studies are needed to explore the long-term effects and optimize management practices. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

18 pages, 13836 KB  
Article
The Performance of Agronomic and Quality Traits of Quinoa under Different Altitudes in Northwest of China
by Hongliang Cui, Qing Yao, Bao Xing, Bangwei Zhou, Syed Sadaqat Shah and Peiyou Qin
Agronomy 2024, 14(6), 1194; https://doi.org/10.3390/agronomy14061194 - 1 Jun 2024
Cited by 7 | Viewed by 2143
Abstract
Quinoa is a resilient crop known for its adaptability to diverse environmental conditions. This study examined the agronomic performance and ecological adaptability of quinoa across four distinct altitudes in the northwestern regions of China. Six quinoa genotypes were assessed for agronomic traits, phenology [...] Read more.
Quinoa is a resilient crop known for its adaptability to diverse environmental conditions. This study examined the agronomic performance and ecological adaptability of quinoa across four distinct altitudes in the northwestern regions of China. Six quinoa genotypes were assessed for agronomic traits, phenology and yield performances, and nutritional quality characteristics in Yining city, Nilka County, Tekes County and Zhaosu County under varied environmental conditions. Our findings demonstrate significant variations in all measured traits, including agronomic and nutritional quality traits, across the various altitudes and genotypes. In Yining city, a warmer and lower altitude area, genotypes exhibit superior traits for fodder production, including increased branches, longer panicles, robust stems, and high seed protein content. Genotypes Jinli 1 and Beijing 2 achieve yields exceeding 3 tons per hectare (t/ha), highlighting the region’s productivity. The Nilka and Tekes counties boasted the shortest quinoa crop cycles, with Jinli 1 yielding 4.05 t/ha seeds in Tekes County, exhibiting high protein and fat content alongside low saponins, making it a prime location for yield production. Zhaosu County, with its cooler climate and fertile chernozem soil, elicited high 1000 seed weight and more robust protein response than Nilka and Tekes counties, illustrating the impact of soil fertility on nutritional composition. Correlation analyses further elucidated that the plants characterized by shorter flowering times, crop cycles, compact inflorescence, and taller heights exhibited superior seed yields. Our study contributes significant insights into the ecological adaptability and nutritional dynamics of quinoa, with implications for sustainable crop production and food security in diverse agroecosystems. Full article
Show Figures

Figure 1

24 pages, 7508 KB  
Article
Metabolome and Transcriptome Association Analysis Reveals Mechanism of Synthesis of Nutrient Composition in Quinoa (Chenopodium quinoa Willd.) Seeds
by Jindan Yang, Yiyun Wang, Jiayi Sun, Yuzhe Li, Renbin Zhu, Yongjie Yin, Chuangyun Wang, Xuebin Yin and Lixia Qin
Foods 2024, 13(9), 1325; https://doi.org/10.3390/foods13091325 - 26 Apr 2024
Cited by 3 | Viewed by 2687
Abstract
Quinoa (Chenopodium quinoa Willd.) seeds are rich in nutrition, superior to other grains, and have a high market value. However, the biosynthesis mechanisms of protein, starch, and lipid in quinoa grain are still unclear. The objective of this study was to ascertain [...] Read more.
Quinoa (Chenopodium quinoa Willd.) seeds are rich in nutrition, superior to other grains, and have a high market value. However, the biosynthesis mechanisms of protein, starch, and lipid in quinoa grain are still unclear. The objective of this study was to ascertain the nutritional constituents of white, yellow, red, and black quinoa seeds and to employ a multi-omics approach to analyze the synthesis mechanisms of these nutrients. The findings are intended to furnish a theoretical foundation and technical support for the biological breeding of quinoa in China. In this study, the nutritional analysis of white, yellow, red, and black quinoa seeds from the same area showed that the nutritional contents of the quinoa seeds were significantly different, and the protein content increased with the deepening of color. The protein content of black quinoa was the highest (16.1 g/100 g) and the lipid content was the lowest (2.7 g/100 g), among which, linoleic acid was the main fatty acid. A combined transcriptome and metabolome analysis exhibited that differentially expressed genes were enriched in “linoleic acid metabolism”, “unsaturated fatty acid biosynthesis”, and “amino acid biosynthesis”. We mainly identified seven genes involved in starch synthesis (LOC110716805, LOC110722789, LOC110738785, LOC110720405, LOC110730081, LOC110692055, and LOC110732328); five genes involved in lipid synthesis (LOC110701563, LOC110699636, LOC110709273, LOC110715590, and LOC110728838); and nine genes involved in protein synthesis (LOC110710842, LOC110720003, LOC110687170, LOC110716004, LOC110702086, LOC110724454 LOC110724577, LOC110704171, and LOC110686607). The data presented in this study based on nutrient, transcriptome, and metabolome analyses contribute to an enhanced understanding of the genetic regulation of seed quality traits in quinoa, and provide candidate genes for further genetic improvements to improve the nutritional value of quinoa seeds. Full article
Show Figures

Figure 1

18 pages, 1262 KB  
Article
Evaluating Yield, Nutritional Quality, and Environmental Impact of Quinoa Straws across Mediterranean Water Environments
by Javier Matías, Verónica Cruz, María José Rodríguez, Patricia Calvo, Isaac Maestro-Gaitán and María Reguera
Plants 2024, 13(6), 751; https://doi.org/10.3390/plants13060751 - 7 Mar 2024
Cited by 4 | Viewed by 2014
Abstract
Quinoa (Chenopodium quinoa Willd.) is a promising and versatile crop due to its remarkable adaptability to diverse environments and the exceptional nutritional value of its seeds. Nevertheless, despite the recent extensive research on quinoa seeds, the straw associated with this crop has [...] Read more.
Quinoa (Chenopodium quinoa Willd.) is a promising and versatile crop due to its remarkable adaptability to diverse environments and the exceptional nutritional value of its seeds. Nevertheless, despite the recent extensive research on quinoa seeds, the straw associated with this crop has received comparatively little attention. The valorisation of this by-product provides an opportunity to improve the overall outcomes of quinoa cultivation. In this work, three quinoa varieties were evaluated for two years (2019 and 2020) under three different Mediterranean water environments (irrigation, fresh rainfed, and hard rainfed), aiming to assess the straw yield and nutritional quality and to study the changes in the crop nutritional uptake associated with different water environmental conditions. The nutritional analysis included the quantification of the ash, crude protein, crude fat, minerals (P, K, Ca, Mg), and fibre (gross fibre (GF), acid detergent fibre (ADF), neutral detergent fibre (NDF), acid detergent lignin (ADL), hemicellulose, cellulose) contents. As the results reveal, most of the parameters evaluated were susceptible to change mainly with the water environment but also with the genotype (or their interaction), including the yield, crude protein, relative feed value (RFV), and mineral content, which generally decreased under water-limiting conditions. Moreover, a comparative analysis revealed that straw Ca, Mg, and K contents were generally higher than in seeds. Overall, this study demonstrates that quinoa straw quality is genotypic and environmentally dependent, and these factors should be considered when aiming at improving straw feed value for livestock nutrition. Full article
(This article belongs to the Special Issue Plant Cultivation in Recent Stresses)
Show Figures

Figure 1

23 pages, 2868 KB  
Article
Quinoa–Olive Agroforestry System Assessment in Semi-Arid Environments: Performance of an Innovative System
by Ilham Abidi, Khalid Daoui, Aziz Abouabdillah, Loubna Belqadi, Hamid Mahyou, Didier Bazile, Ahmed Douaik, Fatima Gaboun, Abdel Aziz Hassane Sidikou and Si Bennasseur Alaoui
Agronomy 2024, 14(3), 495; https://doi.org/10.3390/agronomy14030495 - 28 Feb 2024
Cited by 5 | Viewed by 2723
Abstract
Agroforestry is a promising way to sustain land use efficiency in semi-arid areas. In this study, we introduce quinoa as a drought- and salinity-tolerant crop in olive-based agroforestry. We investigated how the microclimate created by olive trees affects agronomic and biochemical traits in [...] Read more.
Agroforestry is a promising way to sustain land use efficiency in semi-arid areas. In this study, we introduce quinoa as a drought- and salinity-tolerant crop in olive-based agroforestry. We investigated how the microclimate created by olive trees affects agronomic and biochemical traits in quinoa and evaluated the performance of this new olive-based agroforestry system in terms of land equivalent ratio (LER). Field experiments were carried out under two pedoclimatic conditions (S1) and (S2) using a randomized complete block design with two cropping systems (sole crop (SCS) and agroforestry (AFS) systems), four quinoa cultivars (Puno, Titicaca, ICBA-Q5, and ICBA-Q4) and one olive orchard as a control (OR) in each block. Our results show that AFS had lower grain yield (−45%), dry biomass (−49%), and crop water productivity (−44%), but higher plant height (12%), grain protein (4%), saponin (26%), total polyphenol (12%), and DPPH (9%) contents compared to SCS. The highest grain yield was recorded for Titicaca and ICBA-Q5 (1.6 t ha−1). The LER ranged from 1.57 to 2.07, indicating that the overall productivity was 57% to 107% higher in the agroforestry system compared with the monoculture. We suggest that quinoa–olive tree intercropping could be a promising agroecological practice under semi-arid conditions. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

5 pages, 243 KB  
Proceeding Paper
Global Trends in the Worldwide Expansion of Quinoa Cultivation
by Didier Bazile
Biol. Life Sci. Forum 2023, 25(1), 13; https://doi.org/10.3390/blsf2023025013 - 28 Sep 2023
Cited by 16 | Viewed by 6616
Abstract
For centuries, quinoa cultivation was centered only in the Andean countries, and recently it has spread to all regions of the world. Although the number of exporting countries has increased, Bolivia and Peru remain the world’s leading producers and exporters. Today, more than [...] Read more.
For centuries, quinoa cultivation was centered only in the Andean countries, and recently it has spread to all regions of the world. Although the number of exporting countries has increased, Bolivia and Peru remain the world’s leading producers and exporters. Today, more than 125 countries are experimenting with or cultivating quinoa. The expansion of the crop has only been possible due to the genetic diversity of seeds maintained by generations of farmers in the Andes. As access to quinoa genetic resources in Andean countries remains limited, this implies that the development of new varieties relies on a narrow genetic base relative to the theoretical potential of the species. The use of improved varieties has increased, especially with the emergence of new countries sourcing seed from commercial varieties to start cultivation. To cope with the increasing effects of climate change, it is essential to increase the resilience of crop by taking advantage of their genetic diversity. The current global crisis can only be overcome in the North or in the South by establishing new partnerships for access to genetic resources and the fair and equitable sharing of the benefits of their use. In the last 30 years, quinoa from the Andean countries gained a position in global markets and improved the quality of life of producers. However, at the end of 2015, producer prices collapsed. Quinoa development is dynamic, and now Andean producers face different scenarios with new competitors and new concerns. Being aware of the new reality is essential to face the new challenges responsibly. Analysis at different scales is fundamental, as is promoting local diversity and cooperating towards innovative production systems and inclusive processes that benefit everyone. Full article
(This article belongs to the Proceedings of V International Conference la ValSe-Food and VIII Symposium Chia-Link)
27 pages, 2439 KB  
Article
Compost and Phosphorus/Potassium-Solubilizing Fungus Effectively Boosted Quinoa’s Physio-Biochemical Traits, Nutrient Acquisition, Soil Microbial Community, and Yield and Quality in Normal and Calcareous Soils
by Samah M. Youssef, Ahmed Shaaban, Abdelsattar Abdelkhalik, Ahmed R. Abd El Tawwab, Laila R. Abd Al Halim, Laila A. Rabee, Khairiah Mubarak Alwutayd, Reda M. M. Ahmed, Rahaf Alwutayd and Khaulood A. Hemida
Plants 2023, 12(17), 3071; https://doi.org/10.3390/plants12173071 - 27 Aug 2023
Cited by 8 | Viewed by 3894
Abstract
Calcareous soil had sufficient phosphorus and potassium (PK) in different forms due to the high contents of PK-bearing minerals; however, the available PK state was reduced due to its PK-fixation capacity. Compost, coupled with high PK solubilization capacity microbes, is a sustainable solution [...] Read more.
Calcareous soil had sufficient phosphorus and potassium (PK) in different forms due to the high contents of PK-bearing minerals; however, the available PK state was reduced due to its PK-fixation capacity. Compost, coupled with high PK solubilization capacity microbes, is a sustainable solution for bioorganic fertilization of plants grown in calcareous soil. A 2-year field experiment was conducted to investigate the effect of compost (20 t ha−1) with Aspergillus niger through soil drenching (C-AN) along with partial substitution of PK fertilization on quinoa performance in normal and calcareous soils. Treatments included PK100% (72 kg P2O5 ha−1 + 60 kg K2O ha−1 as conventional rate), PK100%+C-AN, PK75%+C-AN, PK50%+C-AN, PK25%+C-AN, and only C-AN in normal and calcareous soils. Results showed that C-AN and reduced PK fertilization (up to 75 or 50%) increased photosynthetic pigments and promoted nutrient acquisition in quinoa grown in calcareous soil. Reduced PK fertilization to 75 or 50% plus C-AN in calcareous soil increased osmoprotectants, nonenzymatic antioxidants, and DPPH scavenging activity of quinoa’s leaves compared to the PK0%+C-AN treatment. The integrative application of high PK levels and C-AN enhanced the quinoa’s seed nutritional quality (i.e., lipids, carbohydrates, mineral contents, total phenolics, total flavonoids, half maximal inhibitory concentration, and antiradical power) in calcareous soil. At reduced PK fertilization (up to 75 or 50%), application of compost with Aspergillus niger through soil drenching increased plant dry weight by 38.7 or 53.2%, hectoliter weight by 3.0 or 2.4%, seed yield by 49.1 or 39.5%, and biological yield by 43.4 or 33.6%, respectively, compared to PK0%+C-AN in calcareous soil. The highest P-solubilizing microorganism’s population was found at PK0%+C-AN in calcareous soil, while the highest Azotobacter sp. population was observed under high PK levels + C-AN in normal soil. Our study recommends that compost with Aspergillus niger as a bioorganic fertilization treatment can partially substitute PK fertilization and boost quinoa’s tolerance to salt calcareous-affected soil. Full article
(This article belongs to the Special Issue Soil-Beneficial Microorganisms and Plant Growth)
Show Figures

Figure 1

Back to TopTop