Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = quenching and partitioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2306 KB  
Article
Optimization of Heat Treatment Process and Strengthening–Toughening and Mechanism for H13 Steel
by Yuzhong Wang, Xiaoping Ren, Zhiheng Hou, Aisheng Jiang, Jinfu Zhao and Zhanqiang Liu
Metals 2025, 15(10), 1101; https://doi.org/10.3390/met15101101 - 1 Oct 2025
Abstract
This study investigates H13 steel through Q-P-T (quenching–partitioning–tempering) heat treatment experiments, focusing on the effects of quenching and tempering temperatures on its microstructure and mechanical properties. Experimental results demonstrate that elevated heat treatment temperatures induce grain coarsening and increased hardness. Under the optimized [...] Read more.
This study investigates H13 steel through Q-P-T (quenching–partitioning–tempering) heat treatment experiments, focusing on the effects of quenching and tempering temperatures on its microstructure and mechanical properties. Experimental results demonstrate that elevated heat treatment temperatures induce grain coarsening and increased hardness. Under the optimized thermal processing parameters of 1020 °C quenching followed by 530 °C tempering, H13 steel achieves an optimal balance between strength and toughness. This balanced performance effectively addresses the issue of insufficient toughness and susceptibility to fracturing when H13 steel is utilized as shank material. Full article
Show Figures

Figure 1

19 pages, 9405 KB  
Article
Gleeble-Simulated Ultra-Fast Cooling Unlocks Strength–Ductility Synergy in Fully Martensitic Ti-6Al-4V
by Yaohong Xiao, Hongling Zhou, Pengwei Liu and Lei Chen
Materials 2025, 18(19), 4572; https://doi.org/10.3390/ma18194572 - 1 Oct 2025
Abstract
In additively manufactured (AM) Ti-6Al-4V, the role of martensitic α′ in governing brittleness versus toughness remains debated, largely because complex thermal histories and other intertwined physical factors complicate interpretation. To isolate and clarify the intrinsic effect of cooling rate, we employed a Gleeble [...] Read more.
In additively manufactured (AM) Ti-6Al-4V, the role of martensitic α′ in governing brittleness versus toughness remains debated, largely because complex thermal histories and other intertwined physical factors complicate interpretation. To isolate and clarify the intrinsic effect of cooling rate, we employed a Gleeble thermal simulator, which enables precisely controllable cooling rates while simultaneously achieving ultra-fast quenching comparable to AM (up to ~7000 °C/s). By varying the cooling rate only, three distinct microstructures were obtained: α/β, αm/α′, and fully α′. Compression tests revealed that the ultra-fast-cooled fully martensitic Ti-6Al-4V attained both higher strength and larger fracture strain, with densely distributed elongated dimples indicative of ductile failure. Three-dimensional microstructures reconstructed from microscopy, analyzed using an EVP-FFT crystal plasticity model, demonstrated that refined α′ laths and abundant high-angle boundaries promote more homogeneous strain partitioning and reduce stress triaxiality, thereby delaying fracture. These results provide potential evidence that extreme-rate martensitic transformation can overcome the conventional strength–ductility trade-off in Ti-6Al-4V, offering a new paradigm for processing titanium alloys and AM components with superior performance. Full article
Show Figures

Figure 1

15 pages, 2419 KB  
Article
Regulation of Light Absorption and Energy Dissipation in Sweet Sorghum Under Climate-Relevant CO2 and Temperature Conditions
by Jin-Jing Li, Li-Hua Liu, Zi-Piao Ye, Chao-Wei Zhang and Xiao-Long Yang
Biology 2025, 14(9), 1185; https://doi.org/10.3390/biology14091185 - 3 Sep 2025
Viewed by 418
Abstract
Understanding how environmental factors regulate photosynthetic energy partitioning is crucial for enhancing crop resilience in future climates. This study investigated the light-response dynamics of sweet sorghum (Sorghum bicolor L. Moench) leaves under combinations of CO2 concentrations (250, 410, and 550 μmol [...] Read more.
Understanding how environmental factors regulate photosynthetic energy partitioning is crucial for enhancing crop resilience in future climates. This study investigated the light-response dynamics of sweet sorghum (Sorghum bicolor L. Moench) leaves under combinations of CO2 concentrations (250, 410, and 550 μmol mol−1) and temperatures (30 °C and 35 °C), using integrated chlorophyll fluorescence measurements and mechanistic photosynthesis modeling. Our results revealed that elevating CO2 from 250 to 550 μmol mol−1 significantly increased the maximum electron transport rate (Jmax) by up to 57%, and enhanced the effective light absorption cross-section (σ′ik) by 64% under high light and elevated temperature (35 °C), indicating improved photochemical efficiency and light-harvesting capability. Concurrently, these adjustments reduced PSII down-regulation. Increased temperature stimulated thermal dissipation, reflected in a rise in non-photochemical quenching (NPQ) by 0.13–0.26 units, accompanied by a reduction in the number of excited-state pigment molecules (Nk) by 20–33%. The strongly coordinated responses between quantum yield (ΦPSII) and σ′ik highlight a dynamic balance among photochemistry, heat dissipation, and fluorescence. These findings elucidate the synergistic photoprotective and energy-partitioning strategies that sweet sorghum employs under combined CO2 enrichment and heat stress, providing mechanistic insights for optimizing photosynthetic performance in C4 crops in a changing climate. Full article
(This article belongs to the Special Issue Plant Stress Physiology: A Trait Perspective)
Show Figures

Figure 1

53 pages, 7076 KB  
Article
The Diversity of Rare-Metal Pegmatites Associated with Albite-Enriched Granite in the World-Class Madeira Sn-Nb-Ta-Cryolite Deposit, Amazonas, Brazil: A Complex Magmatic-Hydrothermal Transition
by Ingrid W. Hadlich, Artur C. Bastos Neto, Vitor P. Pereira, Harald G. Dill and Nilson F. Botelho
Minerals 2025, 15(6), 559; https://doi.org/10.3390/min15060559 - 23 May 2025
Viewed by 1131
Abstract
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched [...] Read more.
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched granite, miarolitic pegmatite, and pegmatite veins. The host rock itself has served as the source for the fluids that gave rise to all these pegmatites. Their mineral assemblages mirror the rare-metal-rich paragenesis of the host rock, including pyrochlore, cassiterite, riebeckite, polylithionite, zircon, thorite, xenotime, gagarinite-(Y), genthelvite, and cryolite. These pegmatites formed at the same crustal level as the host granite and record a progressive magmatic–hydrothermal evolution driven by various physicochemical processes, including tectonic decompressing, extreme fractionation, melt–melt immiscibility, and internal fluid exsolution. Border pegmatites crystallized early from a F-poor, K-Ca-Sr-Zr-Y-HREE-rich fluid exsolved during solidification of the pluton’s border and were emplaced in contraction fractures between the pluton and country rocks. Continued crystallization toward the pluton’s core produced a highly fractionated melt enriched in Sn, Nb, Ta, Rb, HREE, U, Th, and other HFSE, forming pegmatitic albite-enriched granite within centimetric fractures. A subsequent pressure quench—likely induced by reverse faulting—triggered the separation of a supercritical melt, further enriched in rare metals, which migrated into fractures and cavities to form amphibole-rich pegmatite veins and miarolitic pegmatites. A key process in this evolution was melt–melt immiscibility, which led to the partitioning of alkalis between two phases: a K-F-rich aluminosilicate melt (low in H2O), enriched in Y, Li, Be, and Zn; and a Na-F-rich aqueous melt (low in SiO2). These immiscible melts crystallized polylithionite-rich and cryolite-rich pegmatite veins, respectively. The magmatic–hydrothermal transition occurred independently in each pegmatite body upon H2O saturation, with the hydrothermal fluid composition controlled by the local degree of melt fractionation. These highly F-rich exsolved fluids caused intense autometasomatic alteration and secondary mineralization. The exceptional F content (up to 35 wt.% F in pegmatite veins), played a central role in concentrating strategic and critical metals such as Nb, Ta, REEs (notably HREE), Li, and Be. These findings establish the Madeira system as a reference for rare-metal magmatic–hydrothermal evolution in peralkaline granites. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

18 pages, 7500 KB  
Article
The Effect of Quenching and Partitioning (Q&P) Processing on the Microstructure, Hardness, and Corrosion Resistance of SAE 9254 Spring Steel
by Alisson Denis Carros Nizes, Silvano Leal dos Santos and Renato Altobelli Antunes
Metals 2025, 15(5), 509; https://doi.org/10.3390/met15050509 - 30 Apr 2025
Viewed by 714
Abstract
In the present work, the effect of quenching and partitioning cycles on the microstructure, hardness, and corrosion behavior of SAE 9254 spring steel was investigated. Initially, the critical phase transformation temperatures were analyzed by dilatometry. The samples were then treated by four routes [...] Read more.
In the present work, the effect of quenching and partitioning cycles on the microstructure, hardness, and corrosion behavior of SAE 9254 spring steel was investigated. Initially, the critical phase transformation temperatures were analyzed by dilatometry. The samples were then treated by four routes of quenching and partitioning in a dilatometer with quenching stop temperatures of 250 and 220 °C. The partitioning temperatures were 300 and 400 °C. The partitioning time was 480 s. Quantitative characterization of austenite and martensite volume fractions was carried out by X-ray diffraction. Qualitative characterization was carried out by optical microscopy and scanning electron microscopy in addition to quantitative assessments of the chemical composition of segregations by EDS. The formation of martensite, retained austenite, and bainite was observed. The dilatometric curves displayed the occurrence of volumetric expansion in the partitioning step, indicating the formation of secondary martensite (fresh martensite) during the final cooling process (final quenching). The mechanical properties were evaluated by Vickers microhardness and nanoindentation tests. There was heterogeneity of hardness inside and outside the banding regions. The electrochemical properties were evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in a 0.1 M H2SO4 solution. The best corrosion resistance was achieved for samples quenched at 250 °C and partitioned at 400 °C due to the higher volume fraction of retained austenite when compared to the other heat treatment conditions. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials (Third Edition))
Show Figures

Figure 1

23 pages, 9093 KB  
Article
Mechanical and Metallurgical Characterization of Advance High Strength Steel Q&P1180 Produced by Two Different Suppliers
by Michele Maria Tedesco, Pietro Licignano, Antonio Mara, Stefano Plano, Davide Gabellone, Matteo Basso and Marcello Baricco
Metals 2025, 15(3), 301; https://doi.org/10.3390/met15030301 - 10 Mar 2025
Viewed by 928
Abstract
Through mechanical analysis, a comparison of the same type of cold rolled steel produced by two steel manufacturers, supplier 1 and supplier 2, has been carried out. The considered material is a steel that has undergone a quenching and partitioning heat treatment, i.e., [...] Read more.
Through mechanical analysis, a comparison of the same type of cold rolled steel produced by two steel manufacturers, supplier 1 and supplier 2, has been carried out. The considered material is a steel that has undergone a quenching and partitioning heat treatment, i.e., a rapid cooling from the austenitizing temperature, followed by a holding treatment at a suitable temperature, so that the residual austenite is stabilized at room temperature. The following tests for mechanical properties were carried out: formability, through Nakajima test, tensile test, bending test, hole expansion test and fatigue strength analysis, through high cycle fatigue and low cycle fatigue test. In addition, to derive useful data for future simulations, tensile and Nakajima tests were analyzed by digital image correlation, which uses a monochrome camera to capture frames during the test, in order to analyze local deformations on investigated samples. Finite elements modeling has been carried out. A suitable calibration of a material card for the Abaqus Finite Element Analysis software has been performed. Through the combination of obtained results, a rational comparison of the two analyzed products has been obtained. Full article
(This article belongs to the Special Issue Design, Processing and Characterization of Metals and Alloys)
Show Figures

Figure 1

18 pages, 3816 KB  
Article
Experimental Investigation and FEM Simulation of the Tensile Behavior of Hot-Rolled Quenching and Partitioning 5Mn Steel
by Firew Tullu Kassaye, Tamiru Hailu Kori, Aleksandra Kozłowska and Adam Grajcar
Materials 2025, 18(4), 868; https://doi.org/10.3390/ma18040868 - 17 Feb 2025
Viewed by 816
Abstract
Medium manganese steels provide a good combination of tensile strength and ductility due to their multiphase microstructure produced during the multi-step heat treatment process. This study primarily focused on testing and analyzing the tensile properties of 0.17C-5Mn-0.76Al-0.9Si-Nb medium manganese quenching and partitioning (QP) [...] Read more.
Medium manganese steels provide a good combination of tensile strength and ductility due to their multiphase microstructure produced during the multi-step heat treatment process. This study primarily focused on testing and analyzing the tensile properties of 0.17C-5Mn-0.76Al-0.9Si-Nb medium manganese quenching and partitioning (QP) steel using both the experimental and finite element method (FEM) in the multilinear isotropic hardening material model. The 7 mm and 12 mm thick plates exhibited a similar microstructure of tempered primary martensite, lath-type retained austenite, and secondary martensite. The experiments measured tensile strengths of 1400 MPa for 12 mm round specimens and 1325 MPa for 7 mm flat specimens, with total elongations of 15% for round specimens and 11% for flat specimens. The results indicated that the sample’s geometry has some effect on the UTS and ductility of the studied medium-Mn QP steel. However, the more important is the complex relationship between the plate thickness and yield stress and ductility, which are affected by finishing hot rolling conditions. The FEM results showed that the von Mises stresses for flat and round specimens were 1496 MPa and 1514 MPa, respectively, and were consistent with the calculated true stresses of experimental results. This shows that numerical modeling, specifically a multilinear isotropic hardening material model, properly describes the material properties beyond the yield stress and accurately predicts the plastic deformation of the investigated multiphase QP steel. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

24 pages, 18017 KB  
Article
Microstructure and Mechanical Behaviors of Fiber-Laser-Welded QP980-QP1180 Steels
by Hafize Çelik and Onur Saray
Metals 2025, 15(2), 174; https://doi.org/10.3390/met15020174 - 9 Feb 2025
Cited by 1 | Viewed by 1136
Abstract
Advanced high-strength steels are considered the first choice when manufacturing lighter vehicles. Quench-partitioning (QP) steels are good candidates that fulfill manufacturing and performance requirements with their outstanding strength and formability. Laser welding offers a productive solution to the challenges of liquid metal embrittlement [...] Read more.
Advanced high-strength steels are considered the first choice when manufacturing lighter vehicles. Quench-partitioning (QP) steels are good candidates that fulfill manufacturing and performance requirements with their outstanding strength and formability. Laser welding offers a productive solution to the challenges of liquid metal embrittlement due to a low heat input and higher welding efficiency. This study investigated the microstructural evolution and mechanical performance of dissimilar laser-welded joints between QP980 and QP1180 steels. The microstructure of the joint mainly consisted of martensite phase in the fusion zone (FZ) and super-critical heat-affected zone (HAZ). In the mid and sub-critical HAZ, the microstructure consisted of tempered martensite along with ferrite and retained austenite on both sides. Due to these microstructural evolutions, FZ and HAZ are strengthened, and thus, laser welds can be achieved without the formation of a visible soft zone. Fracture of the joints occurred in softer base metal (BM) with ductile characteristics without any considerable strength loss. However, the ductility of the joints was lower than that of BMs because of deformation localization due to microstructure, yield strength, and thickness variations in the tensile and Erichsen test specimens. These results show that laser welding can be considered an effective alternative for joining QP steels. Full article
Show Figures

Figure 1

26 pages, 8761 KB  
Article
Superior Resistance and Ductility Through Novel Quench- and Partitioning-Path in Complex Refined Microstructure
by Mohammad Masoumi, Crispulo E. Deluque-Toro and Edwan Anderson Ariza-Echeverri
Processes 2025, 13(2), 411; https://doi.org/10.3390/pr13020411 - 4 Feb 2025
Viewed by 998
Abstract
A well-designed complex microstructure containing both soft and hard micro-constituents can enhance the mechanical properties of steel. In this study, commercial AISI 9254 steel was annealed at 900 °C, rapidly cooled to 550 °C for 500 s to promote approximately 50% fine pearlitic [...] Read more.
A well-designed complex microstructure containing both soft and hard micro-constituents can enhance the mechanical properties of steel. In this study, commercial AISI 9254 steel was annealed at 900 °C, rapidly cooled to 550 °C for 500 s to promote approximately 50% fine pearlitic transformation, quenched to 125 °C for partial martensitic transformation, and finally heated to 375 °C for 1800 s to complete the partitioning stage in a novel quench and partitioning (Q&P) process. Tensile testing revealed a yield strength (YS) of ≈1500 MPa, an ultimate tensile strength (UTS) of ≈1570 MPa, and a total elongation of ≈13.85%. This high yield strength indicates the ability of the material to support the development of lightweight, yet high-strength components for demanding applications. Additionally, the balanced total elongation helps mitigate the risk of brittle failure, enhancing fracture toughness and reducing the likelihood of premature failures in critical structural applications. These results indicate an increase of approximately 8.3% in strength and 34.5% in ductility compared to the as-received 9254 steel. X-ray analysis revealed that the complex microstructure had fewer crystallographic defect densities than the as-received sample. Secondary electron images showed ultrafine martensite laths and cementite lamellae within the body-centered cubic (BCC) matrix, with some proeutectoid ferrite found at prior austenite grains. Electron backscattered diffraction (EBSD) analysis estimated low internal distortion in martensite laths, with average crystal defect densities around 2.25 × 1014 m−2. The BCC matrix contained ferrite and martensite, with carbide particles and a small amount of retained austenite detected by transmission electron microscopy (TEM). These findings confirm the enhanced mechanical properties of commercial 9254 steel through the novel Q&P processing. Full article
(This article belongs to the Special Issue Microstructure Properties and Characterization of Metallic Material)
Show Figures

Figure 1

19 pages, 2196 KB  
Article
Physiological and Biochemical Effects of Potassium Deficiency on Apple Tree Growth
by Evangelia-Vasiliki Ladikou, Gerasimos Daras, Marco Landi, Theocharis Chatzistathis, Thomas Sotiropoulos, Stamatis Rigas and Ioannis E. Papadakis
Horticulturae 2025, 11(1), 42; https://doi.org/10.3390/horticulturae11010042 - 6 Jan 2025
Cited by 4 | Viewed by 2129
Abstract
Potassium (K) is an essential mineral element that supports numerous plant processes, including photosynthesis, enzyme activation, osmoregulation, and nutrient balance. This study investigated how K deficiency impacts growth, physiological performance, and carbohydrate metabolism in ‘Granny Smith’ apple trees grafted onto M9 rootstock. The [...] Read more.
Potassium (K) is an essential mineral element that supports numerous plant processes, including photosynthesis, enzyme activation, osmoregulation, and nutrient balance. This study investigated how K deficiency impacts growth, physiological performance, and carbohydrate metabolism in ‘Granny Smith’ apple trees grafted onto M9 rootstock. The experimental material was cultivated hydroponically in a greenhouse under four K regimes, including 0.00, 0.75, 1.50, and 3.00 mM K, over 159 days. Deficiency symptoms such as chlorosis and necrosis were observed primarily in basal leaves. A reduced net photosynthetic rate in top and basal leaves was linked to a decreased stomatal conductance, thus limiting CO2 uptake (stomatal limitations of photosynthesis). Photosynthetic pigments, including chlorophyll a, chlorophyll b, and carotenoids, were also significantly reduced in K-limited leaves. Furthermore, photochemical performance of PSII also declined under K deficiency, with lower electron transport rates, PSII efficiency, and photochemical quenching (non-stomatal limitations of photosynthesis). While the photosynthetic rate declined under K deficiency conditions, the carbohydrate metabolism remained relatively stable without significant variation in total, translocating, or non-translocating sugars. Notably, an increase in sucrose-to-hexose ratio under low K suggests changes in sugar partitioning and utilization. Biomass allocation was also affected, with a notable decrease in the shoot-to-root ratio, mainly due to increased dry weight of roots, likely reflecting an adaptive response to enhance K uptake. Our study provides valuable insights into sustainable K fertilization practices aiming to maximize photosynthetic capacity, pigment content, and biomass production. These findings emphasize the importance of considering rootstock/scion interactions in future research to enhance apple tree vigor and productivity. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

16 pages, 4750 KB  
Article
Numerical Modeling of Charpy Impact Toughness Behavior and Stress Distribution of Quenching and Partitioning Steel
by Tamiru Hailu Kori, Firew Tullu Kassaye, Aleksandra Kozłowska and Adam Grajcar
Symmetry 2025, 17(1), 53; https://doi.org/10.3390/sym17010053 - 31 Dec 2024
Viewed by 2089
Abstract
The toughness of steel is a critical material property that represents the ability to absorb energy at fracture, particularly in ultra-high-strength steels. The optimal balance between high strength and ductility depends on the complexity of the microstructure formed during heat treatment, which influences [...] Read more.
The toughness of steel is a critical material property that represents the ability to absorb energy at fracture, particularly in ultra-high-strength steels. The optimal balance between high strength and ductility depends on the complexity of the microstructure formed during heat treatment, which influences the toughness of the steel. In this study, a numerical modeling approach was used to investigate the Charpy impact behavior of medium manganese Q&P (quenching and partitioning) steel with a focus on toughness and stress distribution. ANSYS Explicit Dynamics was used for numerical modeling to simulate stress distribution and energy absorption in Charpy specimens. The Johnson–Cook model approach was used to describe the material behavior for such dynamic conditions. The results showed that ductility and toughness decreased with increasing partitioning time from 300 s to 900 s. The simulation results also showed that the stress distribution was more pronounced near the notch radius. The absorbed energy of the samples increased slightly as the notch radius increased from 0.1 mm to 0.25 mm, and it significantly increased as the plate thickness increased from 7 mm to 12 mm. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

11 pages, 7259 KB  
Article
Effect of Solution Annealing on Microstructure, Tensile and Corrosion Properties of SDSS Deposited by Directed Energy Deposition
by Pavel Salvetr, Šárka Msallamová and Michal Brázda
Crystals 2024, 14(10), 900; https://doi.org/10.3390/cryst14100900 - 17 Oct 2024
Cited by 2 | Viewed by 1669
Abstract
The super duplex stainless steel (SDSS) powder SAF2507 was deposited using directed energy deposition. In the as-built state, the microstructure consists of a nearly balanced ferrite–austenite ratio, with an austenite content of 47 vol.%, in contrast to the SDSS processed by the powder [...] Read more.
The super duplex stainless steel (SDSS) powder SAF2507 was deposited using directed energy deposition. In the as-built state, the microstructure consists of a nearly balanced ferrite–austenite ratio, with an austenite content of 47 vol.%, in contrast to the SDSS processed by the powder bed method, which produces a very low austenite content. This work investigated the differences in the microstructure, mechanical and corrosion properties of the “high-austenite” as-built state and the solution-annealed (SA) state (at 1100 °C for 60 min, followed by quenching in water). In the SA state, an increase in austenite content to 55 vol.% was observed. In addition, the partitioning of alloying elements into austenite and ferrite also occurred, the austenite grains coarsened and a ferrite grain size reduction was found. Microstructural changes were evident in the development of the mechanical properties. The increase in austenite content was accompanied by an increase in the elongation, and conversely, both the yield strength and ultimate tensile strength decreased. No secondary phases, such as carbides or sigma phase, were observed in either state. Both the as-built and solution-annealed samples exhibited a passivation zone in model seawater at 70 °C, but at the same time, the corrosion current density (icorr) of the as-built state was five times higher. Full article
(This article belongs to the Special Issue Modern Technologies in the Manufacturing of Metal Matrix Composites)
Show Figures

Figure 1

16 pages, 6383 KB  
Article
The Microstructure, Mechanical Properties, and Precipitation Behavior of 1000 MPa Grade GEN3 Steel after Various Quenching Processes
by Angang Ning, Rui Gao, Stephen Yue and Timothy Skszek
Processes 2024, 12(9), 2039; https://doi.org/10.3390/pr12092039 - 21 Sep 2024
Viewed by 1323
Abstract
This study examines the microstructure, mechanical properties, and precipitation behavior of 1000 MPa grade GEN3 steel when subjected to various quenching processes, with a focus on the quench and partition (Q&P) technique. The Q&P-treated samples achieved 1300 MPa tensile strength and demonstrated superior [...] Read more.
This study examines the microstructure, mechanical properties, and precipitation behavior of 1000 MPa grade GEN3 steel when subjected to various quenching processes, with a focus on the quench and partition (Q&P) technique. The Q&P-treated samples achieved 1300 MPa tensile strength and demonstrated superior yield strength, attributed to their refined substructure and their large amounts of precipitates. The quenched samples exhibited the thinnest martensite laths due to the highest martensite volume. Despite the as-annealed samples having the smallest grain size, the Q&P treatment resulted in optimal microstructural refinement results and a high dislocation density, reaching 1.15 × 1015 m−2. Analysis of the precipitates revealed the presence of V8C7, M7C3, M2C, and Ti(C, N) across various heat treatments. The application of the McCall–Boyd method and the Ashby–Orowan correction model indicated that quench and tempered (Q&T) samples contained the largest volume of fine precipitates, contributing to their high yield strengths. These findings offer valuable insights for optimizing heat treatment processes to develop advanced high-strength steels for industrial applications. Full article
(This article belongs to the Special Issue Metallurgical Process: Optimization and Control)
Show Figures

Figure 1

21 pages, 6790 KB  
Article
Hormetic Response of Photosystem II Function Induced by Nontoxic Calcium Hydroxide Nanoparticles
by Panagiota Tryfon, Ilektra Sperdouli, Julietta Moustaka, Ioannis-Dimosthenis S. Adamakis, Kleoniki Giannousi, Catherine Dendrinou-Samara and Michael Moustakas
Int. J. Mol. Sci. 2024, 25(15), 8350; https://doi.org/10.3390/ijms25158350 - 30 Jul 2024
Cited by 6 | Viewed by 1387
Abstract
In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L−1 oleylamine-coated calcium hydroxide [...] Read more.
In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L−1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 μmol photons m−2 s−1) and at high irradiance (HI) (1000 μmol photons m−2 s−1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv’/Fm’) of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Biostimulants)
Show Figures

Graphical abstract

18 pages, 6716 KB  
Article
Modulation of Photosystem II Function in Celery via Foliar-Applied Salicylic Acid during Gradual Water Deficit Stress
by Michael Moustakas, Emmanuel Panteris, Julietta Moustaka, Tuğba Aydın, Gülriz Bayçu and Ilektra Sperdouli
Int. J. Mol. Sci. 2024, 25(12), 6721; https://doi.org/10.3390/ijms25126721 - 18 Jun 2024
Cited by 6 | Viewed by 1543
Abstract
Water deficit is the major stress factor magnified by climate change that causes the most reductions in plant productivity. Knowledge of photosystem II (PSII) response mechanisms underlying crop vulnerability to drought is critical to better understanding the consequences of climate change on crop [...] Read more.
Water deficit is the major stress factor magnified by climate change that causes the most reductions in plant productivity. Knowledge of photosystem II (PSII) response mechanisms underlying crop vulnerability to drought is critical to better understanding the consequences of climate change on crop plants. Salicylic acid (SA) application under drought stress may stimulate PSII function, although the exact mechanism remains essentially unclear. To reveal the PSII response mechanism of celery plants sprayed with water (WA) or SA, we employed chlorophyll fluorescence imaging analysis at 48 h, 96 h, and 192 h after watering. The results showed that up to 96 h after watering, the stroma lamellae of SA-sprayed leaves appeared dilated, and the efficiency of PSII declined, compared to WA-sprayed plants, which displayed a better PSII function. However, 192 h after watering, the stroma lamellae of SA-sprayed leaves was restored, while SA boosted chlorophyll synthesis, and by ameliorating the osmotic potential of celery plants, it resulted in higher relative leaf water content compared to WA-sprayed plants. SA, by acting as an antioxidant under drought stress, suppressed phototoxicity, thereby offering PSII photoprotection, together with enhanced effective quantum yield of PSII photochemistry (ΦPSII) and decreased quantity of singlet oxygen (1O2) generation compared to WA-sprayed plants. The PSII photoprotection mechanism induced by SA under drought stress was triggered by non-photochemical quenching (NPQ), which is a strategy to protect the chloroplast from photo-oxidative damage by dissipating the excess light energy as heat. This photoprotective mechanism, triggered by NPQ under drought stress, was adequate in keeping, especially in high-light conditions, an equal fraction of open PSII reaction centers (qp) as of non-stress conditions. Thus, under water deficit stress, SA activates a regulatory network of stress and light energy partitioning signaling that can mitigate, to an extent, the water deficit stress on PSII functioning. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants in 2024)
Show Figures

Figure 1

Back to TopTop