Optimization of Heat Treatment Process and Strengthening–Toughening and Mechanism for H13 Steel
Abstract
1. Introduction
1.1. Existing Problems
1.2. Research Contents
2. Experimental Materials and Methods
2.1. Existing Problems
2.2. Protocol
3. Results and Discussion
3.1. Microstructure Under Different Heat Treatment Processes
3.2. Performance Analysis Under Different Processes
3.3. Hardness Analysis Under Different Processes
4. Strengthening and Toughening Mechanism of H13 Steel
5. Conclusions
- (1)
- Quenching temperature elevation induces martensite coarsening and carbide dissolution, while higher tempering temperatures promote carbide aggregation and retained austenite decomposition.
- (2)
- At 1020 °C quenching + 530 °C tempering, as well as at 1020 °C quenching + 560 °C tempering, H13 steel has good toughness and hardness matching and tensile properties. In actual processing, the choice between the two should be made according to the requirements.
- (3)
- Both quenching and tempering temperature increases enhance hardness, with tempering exhibiting a more pronounced effect. To mitigate tool shank embrittlement while maintaining mechanical performance, lower heat treatment temperatures are recommended.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhondapure, P.; Mha, P.T.; Nayak, S.; Ebacher, L.; Dourandish, S.; Champliaud, H.; Morin, J.-B.; Jahazi, M. Influence of deformation path on the stress state and damage evolution along the central axis of a large size forged ingot of AISI H13 steel. J. Mater. Res. Technol. 2023, 27, 8244–8257. [Google Scholar] [CrossRef]
- Wang, Y.; Song, K.; Zhang, Y.; Wang, G. Microstructure evolution and fracture mechanism of H13 steel during high temperature tensile deformation. Mater. Sci. Eng. A 2019, 746, 127–133. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, Q.; Lin, P.; Zhang, W.; Zhang, X.-L.; Ren, L.-Q. Influence of H13 steel unit on wear behavior of vermicular cast iron. Appl. Surf. Sci. 2008, 255, 3394–3399. [Google Scholar] [CrossRef]
- Li, T.; Wang, F.; Li, C.; Zhang, G.-Q.; Meng, Q.-Y. Carbide evolution in high molybdenum Nb-microalloyed H13 steel during annealing process. J. Iron Steel Res. Int. 2015, 22, 330–336. [Google Scholar] [CrossRef]
- Madhankumar, S.; Narayanan, K.H.; Harini, V.; Gokulraj, K.; Selvakumar, S.; Dharshini, R.; Dharshini, K.; Harikrishnan, T. Study and selection of hot forging die materials and hardness. Mater. Today Proc. 2021, 45, 6563–6566. [Google Scholar] [CrossRef]
- Yuan, M.; Cao, Y.; Karamchedu, S.; Hosseini, S.; Yao, Y.; Berglund, J.; Liu, L.; Nyborg, L. Characteristics of a modified H13 hot-work tool steel fabricated by means of laser beam powder bed fusion. Mater. Sci. Eng. A 2022, 831, 142322. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.J.; Li, G.Q.; Liu, Y. Investigation on Band Segregate Formation during the Electroslag Remelting of H13 Die Steel. IOP Conf. Ser. Mater. Sci. Eng. 2019, 529, 012064. [Google Scholar] [CrossRef]
- Li, S.; Wu, X.; Chen, S.; Li, J. Wear Resistance of H13 and a New Hot-Work Die Steel at High temperature. J. Mater. Eng. Perform. 2016, 25, 2993–3006. [Google Scholar] [CrossRef]
- Matlock, D.K.; Bräutigam, V.E.; Speer, J.G. Application of the Quenching and Partitioning (Q&P) Process to a Medium-Carbon, High-Si Microalloyed Bar Steel. Mater. Sci. Forum 2003, 426, 1089–1094. [Google Scholar] [CrossRef]
- Speer, J.; Matlock, D.K.; De Cooman, B.C.; Schroth, J.G. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003, 51, 2611–2622. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Z.; He, J.; Zhu, F.; Li, C. Effects of Rare Earth Elements on Microstructure and Mechanical Properties of H13 Die Steel. Metals 2020, 10, 918. [Google Scholar] [CrossRef]
- Zheng, H.; Li, W.; Gong, Y.; Wang, L.; Jin, X.-J. Microstructure-based finite element modeling of effect of metastable austenite on mechanical properties of quenching and partitioning (Q&P) 980 steel. J. Iron Steel Res. Int. 2018, 25, 1140–1148. [Google Scholar] [CrossRef]
- Eser, A.; Broeckmann, C.; Simsir, C. Multiscale modeling of tempering of AISI H13 hot-work tool steel—Part 1: Prediction of microstructure evolution and coupling with mechanical properties. Comput. Mater. Sci. 2016, 113, 280–291. [Google Scholar] [CrossRef]
- Zhao, L.; Qian, L.; Zhou, Q.; Li, D.; Wang, T.; Jia, Z.; Zhang, F.; Meng, J. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel. Mater. Des. 2019, 183, 108123. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, X.; Dong, C.; Zhao, X.; Kang, S. Effect of bainitic transformation combined with hot forming on the microstructure and mechanical properties of bainite-martensite multiphase steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2018, 731, 102–106. [Google Scholar] [CrossRef]
- Ning, A.; Gao, R.; Yue, S.; Guo, H.; Li, L. Effects of cooling rate on the mechanical properties and precipitation behavior of carbides in H13 steel during quenching process. Mater. Res. Express 2020, 8, 016503. [Google Scholar] [CrossRef]
- Mao, M.; Guo, H.; Wang, F.; Sun, X. Effect of Cooling Rate on the Solidification Microstructure and Characteristics of Primary Carbides in H13 Steel. ISIJ Int. 2019, 59, 848–857. [Google Scholar] [CrossRef]
- Lin, M.; Zhao, X.; Han, L.; Liu, Q.; Gu, J. Microstructural Evolution and Carbide Precipitation in a Heat-Treated H13 Hot Work Mold Steel. Metallogr. Microstruct. Anal. 2016, 5, 520–527. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Z.; Qi, L.; Zhong, L.; Guan, R.; He, J.; Hu, X. The carbides, tensile properties, and work-hardening behavior of annealed H13 die steels with varied yttrium contents. Mater. Sci. Eng. A 2021, 806, 140856. [Google Scholar] [CrossRef]
- Fonseca, E.B.; Gabriel, A.H.; Ávila, J.A.; Vaz, R.F.; Valim, D.B.; Cano, I.G.; Lopes, É.S. Fracture toughness and wear resistance of heat-treated H13 tool steel processed by laser powder bed fusion. Addit. Manuf. 2023, 78, 103862. [Google Scholar] [CrossRef]
Component | C | Si | Mn | Cr | Mo | V | S | P |
---|---|---|---|---|---|---|---|---|
content | 0.32~0.45 | 0.80~1.20 | 0.20~0.50 | 4.75~5.50 | 1.10~1.75 | 0.80~1.20 | ≤0.03 | ≤0.03 |
Quenching Temperature/°C | Tempering Temperature /°C | Tensile Strength /MPa | Yield Strength /MPa | Elongation After Fracture /% | Reduction in Area /% | |
---|---|---|---|---|---|---|
1 | 1000 | 500 | 759 | 483 | 6.42 | 26.35 |
2 | 1000 | 530 | 811 | 458 | 6.32 | 24.81 |
3 | 1000 | 560 | 820 | 491 | 6.06 | 25.30 |
4 | 1020 | 500 | 782 | 494 | 7.23 | 23.33 |
5 | 1020 | 530 | 792 | 468 | 6.75 | 27.27 |
6 | 1020 | 560 | 804 | 505 | 6.20 | 25.60 |
7 | 1040 | 500 | 777 | 481 | 6.73 | 22.29 |
8 | 1040 | 530 | 782 | 506 | 6.58 | 25.80 |
9 | 1040 | 560 | 723 | 515 | 6.16 | 29.20 |
Sum of Squared Deviations (SS) | Statistic (F) | Significance Probability (P) | F Critical Value | |
---|---|---|---|---|
Quenching temperature (°C) | 14.77 | 89.24 | 0.00048 | 6.94427 |
Tempering temperature (°C) | 6.96 | 42.05 | 0.00206 | 6.94427 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ren, X.; Hou, Z.; Jiang, A.; Zhao, J.; Liu, Z. Optimization of Heat Treatment Process and Strengthening–Toughening and Mechanism for H13 Steel. Metals 2025, 15, 1101. https://doi.org/10.3390/met15101101
Wang Y, Ren X, Hou Z, Jiang A, Zhao J, Liu Z. Optimization of Heat Treatment Process and Strengthening–Toughening and Mechanism for H13 Steel. Metals. 2025; 15(10):1101. https://doi.org/10.3390/met15101101
Chicago/Turabian StyleWang, Yuzhong, Xiaoping Ren, Zhiheng Hou, Aisheng Jiang, Jinfu Zhao, and Zhanqiang Liu. 2025. "Optimization of Heat Treatment Process and Strengthening–Toughening and Mechanism for H13 Steel" Metals 15, no. 10: 1101. https://doi.org/10.3390/met15101101
APA StyleWang, Y., Ren, X., Hou, Z., Jiang, A., Zhao, J., & Liu, Z. (2025). Optimization of Heat Treatment Process and Strengthening–Toughening and Mechanism for H13 Steel. Metals, 15(10), 1101. https://doi.org/10.3390/met15101101