Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = quantity of displayed products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5399 KiB  
Article
Microwave-Assisted Pyrolysis of Polyethylene and Polypropylene from End-of-Life Vehicles: Hydrogen Production and Energy Valorization
by Grigore Psenovschi, Ioan Calinescu, Alexandru Fiti, Ciprian-Gabriel Chisega-Negrila, Sorin-Lucian Ionascu and Lucica Barbes
Sustainability 2025, 17(13), 6196; https://doi.org/10.3390/su17136196 - 6 Jul 2025
Viewed by 602
Abstract
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene [...] Read more.
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene (PP) and polyethylene (PE) plastic waste through microwave-assisted pyrolysis, aiming to maximize conversion into gaseous products, particularly hydrogen-rich gas. A monomode microwave reactor was employed, using layered configurations of plastic feedstock, silicon carbide as a microwave susceptor, and activated carbon as a catalyst. The influence of catalyst loading, reactor configuration, and plastic type was assessed through systematic experiments. Results showed that technical-grade PP, under optimal conditions, yielded up to 81.4 wt.% gas with a hydrogen concentration of 45.2 vol.% and a hydrogen efficiency of 44.8 g/g. In contrast, PE and mixed PP + PE waste displayed lower hydrogen performance, particularly when containing inorganic fillers. For all types of plastics studied, the gaseous fractions obtained have a high calorific value (46,941–55,087 kJ/kg) and at the same time low specific CO2 emissions (4.4–6.1 × 10−5 kg CO2/kJ), which makes these fuels very efficient and have a low carbon footprint. Comparative tests using conventional heating revealed significantly lower hydrogen yields (4.77 vs. 19.7 mmol/g plastic). These findings highlight the potential of microwave-assisted pyrolysis as an efficient method for transforming ELV-derived plastic waste into energy carriers, offering a pathway toward low-carbon, resource-efficient waste management. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

22 pages, 2719 KiB  
Article
Itararé Group Sandstone as a Sustainable Alternative Material for Photon Radiation Shielding
by Gabrielli W. Pietralla, Isonel S. Meneguzzo and Luiz F. Pires
Appl. Sci. 2025, 15(13), 7559; https://doi.org/10.3390/app15137559 - 5 Jul 2025
Viewed by 297
Abstract
The materials typically used for radiation shielding include lead, concrete, and polymers. However, some of these materials can be toxic or very expensive to produce. This raises interest in using more readily available natural materials, such as rocks, as an alternative. In this [...] Read more.
The materials typically used for radiation shielding include lead, concrete, and polymers. However, some of these materials can be toxic or very expensive to produce. This raises interest in using more readily available natural materials, such as rocks, as an alternative. In this study, we analyzed the radiation shielding efficiency of sandstones. We evaluated different layers of rock and obtained shielding parameters based on the composition of various oxides. The analysis revealed that these layers showed a predominance of silicon and aluminum oxides. Notably, the lowest photon energies (0.015 MeV and 0.1 MeV) displayed significant differences in photon attenuation, as indicated by linear and mass attenuation coefficients. This suggests that the chemical composition of the samples had a considerable impact on their shielding performance. Samples containing higher amounts of heavier elements proved to be more effective at attenuating radiation, efficiently reducing 50% (half-value layer) and 90% (tenth-value layer) of the photons. Additionally, the presence of these heavier elements decreased the production of secondary photons (buildup factor), further enhancing the samples’ efficiency in shielding against radiation. Our results indicate that sandstones hold potential for radiation shielding, particularly when they contain higher quantities of heavier elements. Full article
(This article belongs to the Special Issue Electromagnetic Radiation and Human Environment)
Show Figures

Figure 1

21 pages, 601 KiB  
Article
Cladolosides of Groups S and T: Triterpene Glycosides from the Sea Cucumber Cladolabes schmeltzii with Unique Sulfation; Human Breast Cancer Cytotoxicity and QSAR
by Alexandra S. Silchenko, Elena A. Zelepuga, Ekaterina A. Chingizova, Ekaterina S. Menchinskaya, Kseniya M. Tabakmakher, Anatoly I. Kalinovsky, Sergey A. Avilov, Roman S. Popov, Pavel S. Dmitrenok and Vladimir I. Kalinin
Mar. Drugs 2025, 23(7), 265; https://doi.org/10.3390/md23070265 - 25 Jun 2025
Cited by 1 | Viewed by 485
Abstract
Four new minor monosulfated triterpene penta- and hexaosides, cladolosides S (1), S1 (2), T (3), and T1 (4), were isolated from the Vietnamese sea cucumber Cladolabes schmeltzii (Sclerodactylidae, Dendrochirotida). The structures of the [...] Read more.
Four new minor monosulfated triterpene penta- and hexaosides, cladolosides S (1), S1 (2), T (3), and T1 (4), were isolated from the Vietnamese sea cucumber Cladolabes schmeltzii (Sclerodactylidae, Dendrochirotida). The structures of the compounds were established based on extensive analysis of 1D and 2D NMR spectra as well as HR-ESI-MS data. Cladodosides S (1), S1 (2) and T (3), T1 (4) are two pairs of dehydrogenated/hydrogenated compounds that share identical carbohydrate chains. The oligosaccharide chain of cladolosides of the group S is new for the sea cucumber glycosides due to the presence of xylose residue attached to C-4 Xyl1 in combination with a sulfate group at C-6 MeGlc4. The oligosaccharide moiety of cladolosides of the group T is unique because of the position of the sulfate group at C-3 of the terminal sugar residue instead of the 3-O-Me group. This suggests that the enzymatic processes of sulfation and O-methylation that occur during the biosynthesis of glycosides can compete with each other. This can presumably occur due to the high level of expression or activity of the enzymes that biosynthesize glycosides. The mosaicism of glycoside biosynthesis (time shifting or dropping out of some biosynthetic stages) may indicate a lack of compartmentalization inside the cells of organism producers, leading to a certain degree of randomness in enzymatic reactions; however, this also offers the advantage of providing chemical diversity of the glycosides. Analysis of the hemolytic activity of a series of 26 glycosides from C. schmeltzii revealed some patterns of structure–activity relationships: the presence or absence of 3-O-methyl groups has no significant impact, hexaosides, which are the final products of biosynthesis and predominant compounds of the glycosidic fraction of C. schmeltzii, are more active than their precursors, pentaosides, and the minor tetraosides, cladolosides of the group A, are weak membranolytics and therefore are not synthesized in large quantities. Two glycosides from C. schmeltzii, cladolosides D (18) and H1 (26), display selectivity of cytotoxic action toward triple-negative breast cancer cells MDA-MB-231, while remaining non-toxic in relation to normal mammary cells MCF-10A. Quantitative structure–activity relationships (QSAR) were calculated based on the correlational analysis of the physicochemical properties and structural features of the glycosides and their hemolytic and cytotoxic activities against healthy MCF-10A cells and cancer MCF-7 and MDA-MB-231 cell lines. QSAR highlighted the complexity of the relationships as the cumulative effect of many minor contributions from individual descriptors can have a significant impact. Furthermore, many structural elements were found to have different effects on the activity of the glycosides against different cell lines. The opposing effects were especially pronounced in relation to hormone-dependent breast cancer cells MCF-7 and triple-negative MDA-MB-231 cells. Full article
(This article belongs to the Special Issue Novel Biomaterials and Active Compounds from Sea Cucumbers)
Show Figures

Graphical abstract

7 pages, 1161 KiB  
Communication
Reduced ΔCTE and Galvanic Corrosion Failures in Mass Production by Using a Robust Design for Medium to Large Display Panels
by Dogi Lim, Wonhee Lee, Jongcheol Park, Seongyoung Lee and Byeong-Kwon Ju
Electronics 2025, 14(12), 2438; https://doi.org/10.3390/electronics14122438 - 16 Jun 2025
Viewed by 332
Abstract
Flat panel displays for large applications (monitors and TVs) have structural weaknesses in improving the yield of mass-produced products due to large panels: the yield is defined by ratio of output quantity to input into panel fabrication process. From a panel manufacturing point [...] Read more.
Flat panel displays for large applications (monitors and TVs) have structural weaknesses in improving the yield of mass-produced products due to large panels: the yield is defined by ratio of output quantity to input into panel fabrication process. From a panel manufacturing point of view, low-cost production should be achieved through improved yield of mass production (Samsung Display’s quantum dot display backplane panel). So, we set the target yield at an extreme value, over the golden yield (90%) at the beginning of new mass products. The main factors contributing to the yield loss were “lifted insulator and etched active pattern defects”. To reach the target yield, we focused on these two main defects. The root causes of these defects (delta coefficient of thermal expansion and galvanic corrosion) are explained, and a defect generation mechanism is proposed (the size of the separated large power line in relation to the defect rate). The power lines are defined based on an Electroluminescent Voltage at the Drain (ELVDD) and Electroluminescent Voltage at the Source (ELVSS). We developed a separated large power line design to reduce defect rates. This design plays a role in preventing these two defects during the mass production of medium to large display panels for use in TVs by ensuring that the large power line area is less than the optimum value (<0.44 cm2). Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

28 pages, 4124 KiB  
Review
Thermal-Hydrologic-Mechanical Processes and Effects on Heat Transfer in Enhanced/Engineered Geothermal Systems
by Yu-Shu Wu and Philip H. Winterfeld
Energies 2025, 18(12), 3017; https://doi.org/10.3390/en18123017 - 6 Jun 2025
Viewed by 513
Abstract
Enhanced or engineered geothermal systems (EGSs), or non-hydrothermal resources, are highly notable among sustainable energy resources because of their abundance and cleanness. The EGS concept has received worldwide attention and undergone intensive studies in the last decade in the US and around the [...] Read more.
Enhanced or engineered geothermal systems (EGSs), or non-hydrothermal resources, are highly notable among sustainable energy resources because of their abundance and cleanness. The EGS concept has received worldwide attention and undergone intensive studies in the last decade in the US and around the world. In comparison, hydrothermal reservoir resources, the ‘low-hanging fruit’ of geothermal energy, are very limited in amount or availability, while EGSs are extensive and have great potential to supply the entire world with the needed energy almost permanently. The EGS, in essence, is an engineered subsurface heat mining concept, where water or another suitable heat exchange fluid is injected into hot formations to extract heat from the hot dry rock (HDR). Specifically, the EGS relies on the principle that injected water, or another working fluid, penetrates deep into reservoirs through fractures or high-permeability channels to absorb large quantities of thermal energy by contact with the host hot rock. Finally, the heated fluid is produced through production wells for electricity generation or other usages. Heat mining from fractured EGS reservoirs is subject to complex interactions within the reservoir rock, involving high-temperature heat exchange, multi-phase flow, rock deformation, and chemical reactions under thermal-hydrological-mechanical (THM) processes or thermal-hydrological-mechanical-chemical (THMC) interactions. In this paper, we will present a THM model and reservoir simulator and its application for simulation of hydrothermal geothermal systems and EGS reservoirs as well as a methodology of coupling thermal, hydrological, and mechanical processes. A numerical approach, based on discretizing the thermo-poro-elastic Navier equation using an integral finite difference method, is discussed. This method provides a rigorous, accurate, and efficient fully coupled methodology for the three (THM) strongly interacted processes. Several programs based on this methodology are demonstrated in the simulation cases of geothermal reservoirs, including fracture aperture enhancement, thermal stress impact, and tracer transport in a field-scale reservoir. Results are displayed to show geomechanics’ impact on fluid and heat flow in geothermal reservoirs. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

31 pages, 10329 KiB  
Article
Sustainable Utilization of Waste Glass Powder and Brick Dust as Cement Replacements: Effects on Mortar Performance and Environmental Benefits
by Balikis Omotola Rabiu and Mohammad Ali Mosaberpanah
Sustainability 2025, 17(3), 1298; https://doi.org/10.3390/su17031298 - 5 Feb 2025
Viewed by 1580
Abstract
With respect to sustainability, the material must maintain the quality and properties of concrete and be safe for human health, the environment, and long-time use. In recent times, the emission of CO2 from cement production processes has lessened with the passage of [...] Read more.
With respect to sustainability, the material must maintain the quality and properties of concrete and be safe for human health, the environment, and long-time use. In recent times, the emission of CO2 from cement production processes has lessened with the passage of time due to its effect on the environment. In order to lessen the emissions and reduce environmental waste, available by-products with pozzolanic properties are applied. With respect to Portland limestone cement (CEMI II-BL), i.e., cement with lower carbon dioxide emissions and better workability than CEM I, the two main materials applied in the study as substitutes are brick dust (BD) and waste glass powder (WGP) bottles. Waste glass powder and brick dust, in quantities varying from 5% to 10%, 15%, and 20%, with a water/cement ratio of 0.35 and a 1.5% superplasticizer, were utilized to observe the effectiveness of BD and WGP on the flowability, compressive strength, flexural strength, water absorption, density, drying shrinkage, and fire resistance of the specimen mortar. The output shows that a WGP of 20% increased flowability compared to the control, whereas the inclusion of brick dust decreased it. At the age of 28, glass powder of 20% increased the compressive strength, while 20% brick dust exhibited a reduction; 15% WGP with 5% BD displayed the lowest absorption of water; and the density of all the samples proved to be much lower than the traditional mix, with 20% BD being the lowest (hereby labeled as light mortar). The 10% WGP with 10% BD displayed better resistance to fire, and the drying shrinkage of the sample was relatively low after several days of air curing. The impact on the environment and cost were considered without accounting for the transportation and manufacturing energy. As to the outcome of this experiment, we concluded that the use of both brick dust and glass powder with CEM II for producing mortar has proven very promising in a variety of different respects, including the mechanical and fresh features of mortar, with the combination of 5% WGP and 15% BD exhibiting the most potential in all of the acquired parameters. Full article
Show Figures

Figure 1

19 pages, 2261 KiB  
Article
Phytochemical Composition and Antioxidant Activity of Manuka Honey and Ohia Lehua Honey
by Iulia Ioana Morar, Raluca Maria Pop, Erik Peitzner, Floricuța Ranga, Meda Sandra Orăsan, Andra Diana Cecan, Elisabeta Ioana Chera, Teodora Irina Bonci, Lia Oxana Usatiuc, Mădălina Țicolea, Anca Elena But, Florinela Adriana Cătoi, Alina Elena Pârvu and Mircea Constantin Dinu Ghergie
Nutrients 2025, 17(2), 276; https://doi.org/10.3390/nu17020276 - 13 Jan 2025
Cited by 4 | Viewed by 2368
Abstract
Honey is abundant in bioactive compounds, which demonstrate considerable therapeutic effects, particularly on oxidative stress and inflammation. Objectives: This work sought to evaluate the antioxidant mechanisms of Manuka honey (MH) and Ohia Lehua honey (OLH), correlating them with phytochemical analyses in a rat [...] Read more.
Honey is abundant in bioactive compounds, which demonstrate considerable therapeutic effects, particularly on oxidative stress and inflammation. Objectives: This work sought to evaluate the antioxidant mechanisms of Manuka honey (MH) and Ohia Lehua honey (OLH), correlating them with phytochemical analyses in a rat model of experimentally induced inflammation. Methods: The identification of polyphenolic compounds in the extracts was carried out using HPLC-ESI MS. The extracts’ antioxidant activity was evaluated in vitro through DPPH, FRAP, H2O2, and NO scavenging assays, while in vivo assessments included measurements of total oxidative status (TOS), total antioxidant capacity (TAC), oxidative stress index (OSI), advanced oxidation protein products (AOPP), malondialdehyde (MDA), nitric oxide (NO), and total thiols (SH). Results: The phytochemical analysis found a rich content of phenolic compounds in MH and lower quantities in OLH. In terms of in vitro activity, both MH and OLH exhibited strong DPPH radical scavenging abilities, effective NO and H2O2 scavenging capacities, and high FRAP-reducing power. In vivo, OLH proved highly effective in enhancing antioxidant capacity and lowering oxidative stress markers, showing significant increases in TAC and substantial reductions in TOS and OSI levels. Conversely, MH displayed limited and dose-dependent antioxidant activity, a considerable increase in TAC and SH, and a moderate decrease in TOS and OSI levels. Conclusions: To our knowledge, this is the first study to assess the phenolic content of OLH and to show its capacity to scavenge free radicals and reduce oxidative stress. The effectiveness of MH primarily relies on its increased antioxidant properties and depends on concentration. These results highlight the importance of investigating natural products in developing antioxidant strategies. Full article
(This article belongs to the Special Issue Phytonutrients in Inflammation and Metabolic Health)
Show Figures

Figure 1

17 pages, 11122 KiB  
Article
Isolation and Identification of Multi-Traits PGPR for Sustainable Crop Productivity Under Salinity Stress
by Md. Injamum-Ul-Hoque, Muhammad Imran, Nazree Zainurin, Shifa Shaffique, Sang-Mo Kang, S. M. Ahsan, Peter Odongkara and In-Jung Lee
Sustainability 2024, 16(21), 9263; https://doi.org/10.3390/su16219263 - 25 Oct 2024
Cited by 1 | Viewed by 2217
Abstract
High salinity poses a significant threat to arable land globally and contributes to desertification. Growth-promoting rhizobacteria assist plants in mitigating abiotic stresses and enhancing crop productivity through the production of siderophores, exopolysaccharides (EPS), solubilisation of phosphate, indole-3-acetic acid (IAA), and other secondary metabolites. [...] Read more.
High salinity poses a significant threat to arable land globally and contributes to desertification. Growth-promoting rhizobacteria assist plants in mitigating abiotic stresses and enhancing crop productivity through the production of siderophores, exopolysaccharides (EPS), solubilisation of phosphate, indole-3-acetic acid (IAA), and other secondary metabolites. This study aimed to isolate, identify, and characterise bacteria that exhibit robust growth-promoting properties. A total of 64 bacterial isolates from the rhizosphere of Miscanthus sinensis were evaluated for plant growth-promoting (PGP) traits, including IAA, EPS, siderophores, and solubilisation of phosphate. Among them, five isolates were selected as plant growth-promoting rhizobacteria (PGPR) based on their PGP features and identified via 16S rRNA sequencing: Enterococcus mundtii strain INJ1 (OR122486), Lysinibacillus fusiformis strain INJ2 (OR122488), Lysinibacillus sphaericus strain MIIA20 (OR122490), Pseudomonas qingdaonensis strain BD1 (OR122487), and Pseudomonas qingdaonensis strain MIA20 (OR122489), all documented in NCBI GenBank. BD1 demonstrated a higher production of superoxide dismutase (SOD) (17.93 U/mg mL), catalase (CAT) (91.17 U/mg mL), and glutathione (GSH) (0.18 U/mg mL), along with higher concentrations of IAA (31.69 µg/mL) and salicylic acid (SA) (14.08 ng/mL). These isolates also produced significant quantities of amino and organic acids. BD1 exhibited superior PGP traits compared to other isolates. Furthermore, the NaCl tolerance of these bacterial isolates was assessed by measuring their growth at concentrations ranging from 0 to 200 mM at 8-h intervals. Optical density (OD) measurements indicated that BD1 and INJ2 displayed significant tolerance to salt stress. The utilisation of these isolates, which enhances plant growth and PGP traits under salt stress, may improve plant development under saline conditions. Full article
Show Figures

Figure 1

27 pages, 5811 KiB  
Article
Advanced Study: Improving the Quality of Cooling Water Towers’ Conductivity Using a Fuzzy PID Control Model
by You-Shyang Chen, Ying-Hsun Hung, Mike Yau-Jung Lee, Jieh-Ren Chang, Chien-Ku Lin and Tai-Wen Wang
Mathematics 2024, 12(20), 3296; https://doi.org/10.3390/math12203296 - 21 Oct 2024
Cited by 2 | Viewed by 1788
Abstract
Cooling water towers are commonly used in industrial and commercial applications. Industrial sites frequently have harsh environments, with certain characteristics such as poor air quality, close proximity to the ocean, large quantities of dust, or water supplies with a high mineral content. In [...] Read more.
Cooling water towers are commonly used in industrial and commercial applications. Industrial sites frequently have harsh environments, with certain characteristics such as poor air quality, close proximity to the ocean, large quantities of dust, or water supplies with a high mineral content. In such environments, the quality of electrical conductivity in the cooling water towers can be significantly negatively affected. Once minerals (e.g., calcium and magnesium) form in the water, conductivity becomes too high, and cooling water towers can become easily clogged in a short time; this leads to a situation in which the cooling water host cannot be cooled, causing it to crash. This is a serious situation because manufacturing processes are then completely shut down, and production yield is thus severely reduced. To solve these problems, in this study, we develop a practical designation for a photovoltaic industry company called Company-L. Three control methods are proposed: the motor control method, the PID control method, and the fuzzy PID control method. These approaches are proposed as solutions for successfully controlling the forced replenishment and drainage of cooling water towers and controlling the opening of proportional control valves for water release; this will further dilute the electrical conductivity and control it, bringing it to 300 µS/cm. In the experimental processes, we first used practical data from Company-L for our case study. Second, from the experimental results of the proposed model for the motor control method, we can see that if electrical conductivity is out of control and the conductivity value exceeds 1000 µS/cm, the communication software LINE v8.5.0 (accessible via smartphone) displays a notification that the water quality of the cooling water towers requires attention. Third, although the PID control method is shown to have errors within an acceptable range, the proportional (P) controller must be precisely controlled; this control method has not yet reached this precise control in the present study. Finally, the fuzzy PID control method was found to have the greatest effect, with the lowest level of errors and the most accurate control. In conclusion, the present study proposes solutions to reduce the risk of ice-water host machines crashing; the solutions use fuzzy logic and can be used to ensure the smooth operation of manufacturing processes in industries. Practically, this study contributes an applicable technical innovation: the use of the fuzzy PID control model to control cooling water towers in industrial applications. Concurrently, we present a three-tier monitoring checkpoint that contributes to the PID control method. Full article
(This article belongs to the Special Issue Fuzzy Applications in Industrial Engineering, 3rd Edition)
Show Figures

Figure 1

28 pages, 11869 KiB  
Article
Digital Performance Management: An Evaluation of Manufacturing Performance Management and Measurement Strategies in an Industry 4.0 Context
by Nathaniel David Smith, Yuri Hovanski, Joe Tenny and Sebastian Bergner
Machines 2024, 12(8), 555; https://doi.org/10.3390/machines12080555 - 14 Aug 2024
Viewed by 2292
Abstract
Manufacturing management and operations place heavy emphasis on monitoring and improving production performance. This supervision is accomplished through strategies of manufacturing performance management, a set of measurements and methods used to monitor production conditions. Over the last 30 years, the most prevalent measurement [...] Read more.
Manufacturing management and operations place heavy emphasis on monitoring and improving production performance. This supervision is accomplished through strategies of manufacturing performance management, a set of measurements and methods used to monitor production conditions. Over the last 30 years, the most prevalent measurement of traditional performance management has been overall equipment effectiveness, a percentile summary metric of a machine’s utilization. The technologies encapsulated by Industry 4.0 have expanded the ability to gather, process, and store vast quantities of data, creating the opportunity to innovate on how performance is measured. A new method of managing manufacturing performance utilizing Industry 4.0 technologies has been proposed by McKinsey & Company (New York City, NY, USA), and software tools have been developed by PTC Inc. (Boston, MA, USA) to aid in performing what they both call digital performance management. To evaluate this new approach, the digital performance management tool was deployed on a Festo (Esslingen, Germany) Cyber-Physical Lab (FCPL), an educational mock production environment, and compared to a digitally enabled traditional performance management solution. Results from a multi-day production period displayed an increased level of detail in both the data presented to the user and the insights gained from the digital performance management solution as compared to the traditional approach. The time unit measurements presented by digital performance management paint a clear picture of what and where losses are occurring during production and the impact of those losses. This is contrasted by the single summary metric of a traditional performance management approach, which easily obfuscates the constituent data and requires further investigation to determine what and where production losses are occurring. Full article
(This article belongs to the Special Issue Smart Manufacturing and Industrial Automation)
Show Figures

Figure 1

13 pages, 2021 KiB  
Article
The Impact of the Inoculation of Different Pied de Cuve on the Chemical and Organoleptic Profiles of Wines
by Katherine Bedoya, Albert Mas, Nicolas Rozès, Carla Jara and María del Carmen Portillo
Microorganisms 2024, 12(8), 1655; https://doi.org/10.3390/microorganisms12081655 - 13 Aug 2024
Cited by 1 | Viewed by 1328
Abstract
Controlling the microorganisms involved in alcoholic fermentation during wine production can be achieved by adding a small quantity of spontaneously fermenting must to freshly crushed grapes, a technique known as pied de cuve (PdC). This method not only serves as an inoculation starter [...] Read more.
Controlling the microorganisms involved in alcoholic fermentation during wine production can be achieved by adding a small quantity of spontaneously fermenting must to freshly crushed grapes, a technique known as pied de cuve (PdC). This method not only serves as an inoculation starter but also enhances the microbial footprint unique to each wine region. Recent studies have confirmed that wines inoculated with PdC exhibit efficient fermentation kinetics comparable to those inoculated with commercial strains of Saccharomyces cerevisiae. However, further research is required to draw robust conclusions about the chemical and sensory impacts of PdC-inoculated wines. In this study, we examined the chemical and sensory effects of the PdC technique across three different harvests: Muscat of Alexandria (Spain, harvests 2022 and 2023) and Sauvignon Blanc (Chile, harvest 2023). Each PdC was prepared using various stressors (sulfur dioxide, ethanol, and temperature). Our findings revealed that wines produced with PdC exhibited similar fermentation kinetics and sensory profiles to those inoculated with commercial strains. Notably, PdC fermentations resulted in lower concentrations of acetic acid compared to both the commercial strain and spontaneous fermentations. The sensory analysis indicated that PdC wines significantly differed from those made with commercial strains, with PdC wines displaying more pronounced tropical notes. These results suggest that the PdC technique, particularly when using specific stressors, can maintain desirable fermentation characteristics while enhancing certain sensory attributes, offering a viable alternative to traditional inoculation methods. Full article
(This article belongs to the Special Issue Microbiology of the Grape-Wine System)
Show Figures

Figure 1

18 pages, 2408 KiB  
Article
Ganoderma pfeifferi Bres. and Ganoderma resinaceum Boud. as Potential Therapeutic Agents: A Comparative Study on Antiproliferative and Lipid-Lowering Properties
by Milena Rašeta, Marko Kebert, Jovana Mišković, Saša Kostić, Sonja Kaišarević, Nebojša Stilinović, Saša Vukmirović and Maja Karaman
J. Fungi 2024, 10(7), 501; https://doi.org/10.3390/jof10070501 - 19 Jul 2024
Cited by 4 | Viewed by 2000
Abstract
Medicinal mushrooms, especially Ganoderma species, hold immense promise for the production of a wide range of bioactive compounds with various effects. The biochemical potential of indigenous fungal strains, specific to a region, could play a critical role in the continuous search for novel [...] Read more.
Medicinal mushrooms, especially Ganoderma species, hold immense promise for the production of a wide range of bioactive compounds with various effects. The biochemical potential of indigenous fungal strains, specific to a region, could play a critical role in the continuous search for novel strains with superior activities on a global scale. This research focused on the ethanolic (EtOH) and hot-water (H2O) extracts of fruiting bodies of two wild-growing Ganoderma species: G. pfeifferi and G. resinaceum, with the aim of assessing their nutritional (total carbohydrate content-TCC) and mineral composition in relation to bioactive properties: antioxidant, antiproliferative and lipid-lowering. Atomic absorption spectrophotometry (AAS) revealed that G. pfeifferi is a promising source of minerals that are essential for numerous physiological functions in the human body like bone health and muscle and nerve function, with Ca (4.55 ± 0.41 mg/g d.w.) and Mg (1.33 ± 0.09 mg/g d.w.) being the most abundant macroelement present. Zn, Mn, and Cr were particularly notable, with concentrations ranging from 21.49 to 41.70 mg/kg d.w. The EtOH extract of G. pfeifferi demonstrated significantly elevated levels of TCC, essential macromolecules for energy and structural functions in the body, with higher quantities of all three standard carbohydrates detected in this type of extract. Similar to the revealed composition, the same species, G. pfeifferi, stood out as the most prominent antioxidant agent, with the H2O extract being stronger than EtOH in the ABTS assay (86.85 ± 0.67 mg TE/g d.w.), while the EtOH extract displayed the highest anti-OH scavenging ability (IC50 = 0.18 ± 0.05 μg/mL) as well as the most notable reducing potential among all. The highest antiproliferative effect against the breast cancer cell line (MCF-7), were demonstrated by the H2O extracts from G. resinaceum with the most pronounced activity after 24 h (IC50 = 4.88 ± 0.50 μg/mL), which surpasses that of the standard compound, ellagic acid (IC50 = 33.94 ± 3.69 μg/mL). Administration of both Ganoderma extracts mitigated diabetic lipid disturbances and exhibited potential renal and hepatic protection in vivo on white Wistar rats by the preservation of kidney function parameters in G. resinaceum H2O pre-treatment (urea: 6.27 ± 0.64 mmol/L, creatinine: 50.00 ± 6.45 mmol/L) and the reduction in ALT levels (17.83 ± 3.25 U/L) compared to diabetic control groups treated with saline (urea: 46.98 ± 6.01 mmol/L, creatinine: 289.25 ± 73.87 mmol/L, and ALT: 60.17 ± 9.64 U/L). These results suggest that pre-treatment with G. resinaceum H2O extracts may have potential antidiabetic properties. In summary, detected microelements are vital for maintaining overall health, supporting metabolic processes, and protecting against various chronic diseases. Further research and dietary assessments could help determine the full potential and applications of the two underexplored Ganoderma species native to Serbia in nutrition and health supplements. Full article
Show Figures

Figure 1

12 pages, 7856 KiB  
Article
The Liver Circadian Metabolic Homeostasis Influence by Combining Ketogenic Diet with Exercise
by Wenbo Xu, Zishi Wang, Cuican Zhang, Wenju Yang, Linchao Fan and Hong Sun
Nutrients 2024, 16(13), 2039; https://doi.org/10.3390/nu16132039 - 27 Jun 2024
Viewed by 2704
Abstract
The ketogenic diet (KD) and regular exercise (EX) are both capable of orchestrating circadian metabolism homeostasis during losing weight. However, the combined effects of these two factors on circadian metabolism remain poorly understood. To determine if the combined treatment yields a superimposed physiological [...] Read more.
The ketogenic diet (KD) and regular exercise (EX) are both capable of orchestrating circadian metabolism homeostasis during losing weight. However, the combined effects of these two factors on circadian metabolism remain poorly understood. To determine if the combined treatment yields a superimposed physiological phenotype, we measured weight loss, white adipose, the respiratory exchange ratio (RER), heat production, and activity parameters in individual and combined treatment groups. Surprisingly, none of these metrics displayed a cumulative effect when administered in the combined treatment approach. Additionally, we investigated the impact of combination therapy on molecular homeostasis through using high-throughput liver transcriptomic approaches. The results revealed that individual and combined treatments can reprogram the circadian rhythm; yet, the combined group exhibited a minimum quantity of cyclic transcript genes. Noteworthy, the amplitude of 24 h circadian expression genes was not significantly increased in the combination treatment, indicating that the combined approach has non-overlapping effects on maintenance peripheral metabolism homeostasis. This may be due to the liver requiring less ketogenic and gluconeogenic potential during metabolic processes. This research suggests that combined treatment may have adverse effects on the body’s homeostasis and provide crucial insights for the homeostatic health of athletes or individuals who wish to lose weight. Full article
(This article belongs to the Special Issue Adipose Tissue Metabolism and Exercise in Health and Disease)
Show Figures

Figure 1

18 pages, 6716 KiB  
Article
Modulation of Photosystem II Function in Celery via Foliar-Applied Salicylic Acid during Gradual Water Deficit Stress
by Michael Moustakas, Emmanuel Panteris, Julietta Moustaka, Tuğba Aydın, Gülriz Bayçu and Ilektra Sperdouli
Int. J. Mol. Sci. 2024, 25(12), 6721; https://doi.org/10.3390/ijms25126721 - 18 Jun 2024
Cited by 5 | Viewed by 1403
Abstract
Water deficit is the major stress factor magnified by climate change that causes the most reductions in plant productivity. Knowledge of photosystem II (PSII) response mechanisms underlying crop vulnerability to drought is critical to better understanding the consequences of climate change on crop [...] Read more.
Water deficit is the major stress factor magnified by climate change that causes the most reductions in plant productivity. Knowledge of photosystem II (PSII) response mechanisms underlying crop vulnerability to drought is critical to better understanding the consequences of climate change on crop plants. Salicylic acid (SA) application under drought stress may stimulate PSII function, although the exact mechanism remains essentially unclear. To reveal the PSII response mechanism of celery plants sprayed with water (WA) or SA, we employed chlorophyll fluorescence imaging analysis at 48 h, 96 h, and 192 h after watering. The results showed that up to 96 h after watering, the stroma lamellae of SA-sprayed leaves appeared dilated, and the efficiency of PSII declined, compared to WA-sprayed plants, which displayed a better PSII function. However, 192 h after watering, the stroma lamellae of SA-sprayed leaves was restored, while SA boosted chlorophyll synthesis, and by ameliorating the osmotic potential of celery plants, it resulted in higher relative leaf water content compared to WA-sprayed plants. SA, by acting as an antioxidant under drought stress, suppressed phototoxicity, thereby offering PSII photoprotection, together with enhanced effective quantum yield of PSII photochemistry (ΦPSII) and decreased quantity of singlet oxygen (1O2) generation compared to WA-sprayed plants. The PSII photoprotection mechanism induced by SA under drought stress was triggered by non-photochemical quenching (NPQ), which is a strategy to protect the chloroplast from photo-oxidative damage by dissipating the excess light energy as heat. This photoprotective mechanism, triggered by NPQ under drought stress, was adequate in keeping, especially in high-light conditions, an equal fraction of open PSII reaction centers (qp) as of non-stress conditions. Thus, under water deficit stress, SA activates a regulatory network of stress and light energy partitioning signaling that can mitigate, to an extent, the water deficit stress on PSII functioning. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants in 2024)
Show Figures

Figure 1

16 pages, 661 KiB  
Article
Antioxidant Activity of Aqueous Extracts Obtained from By-Products of Grape, Olive, Tomato, Lemon, Red Pepper and Pomegranate
by María Luisa Timón, Ana Isabel Andrés and María Jesús Petrón
Foods 2024, 13(12), 1802; https://doi.org/10.3390/foods13121802 - 7 Jun 2024
Cited by 7 | Viewed by 1874
Abstract
The aim of this work was to study the antioxidant potential of aqueous extracts obtained from different by-products. The effectiveness of these extracts was compared with that of rosemary extract. Total phenol carotenoid and vitamin C contents, as well as in vitro antioxidant [...] Read more.
The aim of this work was to study the antioxidant potential of aqueous extracts obtained from different by-products. The effectiveness of these extracts was compared with that of rosemary extract. Total phenol carotenoid and vitamin C contents, as well as in vitro antioxidant activity, were assessed. Phenol content was positively correlated with in vitro antioxidant activity in extracts, while carotenoids showed a less clear relationship. Vitamin C was associated with antioxidant activity in lemon and pepper pomace extracts. Extracts from olive, grape, and lemon by-products displayed the highest antioxidant activity (radical scavenging activity), this being similar to the activity of rosemary extracts. Moreover, the phenolic profile of the extracts was analyzed, revealing diverse phenolic compounds. Rosemary extracts contained the highest variety and quantity of phenolic compounds, while olive pomace extracts were rich in hydroxytyrosol and 4-hydroxybenzoic acid. Lemon and pepper extracts contained high amounts of tyrosol, and tomato extracts had abundant epicatechin. The PCA analysis distinguished extracts based on in vitro antioxidant activity, phenol, carotenoid, and vitamin C content, along with their phenolic compound profiles. This study emphasizes the capacity of aqueous extract by-products as valuable sources of antioxidants and highlights the importance of understanding their bioactive components. Full article
Show Figures

Figure 1

Back to TopTop