Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = quantity–quality preservation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3167 KiB  
Article
Global Population, Carrying Capacity, and High-Quality, High-Pressure Processed Foods in the Industrial Revolution Era
by Agata Angelika Sojecka, Aleksandra Drozd-Rzoska and Sylwester J. Rzoska
Sustainability 2025, 17(15), 6827; https://doi.org/10.3390/su17156827 - 27 Jul 2025
Viewed by 179
Abstract
The report examines food availability and demand in the Anthropocene era, exploring the connections between global population growth and carrying capacity through an extended version of Cohen’s Condorcet concept. It recalls the super-Malthus and Verhulst-type scalings, matched with the recently introduced analytic relative [...] Read more.
The report examines food availability and demand in the Anthropocene era, exploring the connections between global population growth and carrying capacity through an extended version of Cohen’s Condorcet concept. It recalls the super-Malthus and Verhulst-type scalings, matched with the recently introduced analytic relative growth rate. It focuses particularly on the ongoing Fifth Industrial Revolution (IR) and its interaction with the concept of a sustainable civilization. In this context, the significance of innovative food preservation technologies that can yield high-quality foods with health-promoting features, while simultaneously increasing food quantities and reducing adverse environmental impacts, is discussed. To achieve this, high-pressure preservation and processing (HPP) can play a dominant role. High-pressure ‘cold pasteurization’, related to room-temperature processing, has already achieved a global scale. Its superior features are notable and are fairly correlated with social expectations of a sustainable society and the technological tasks of the Fifth Industrial Revolution. The discussion is based on the authors’ experiences in HPP-related research and applications. The next breakthrough could be HPP-related sterilization. The innovative HPP path, supported by the colossal barocaloric effect, is presented. The mass implementation of pressure-related sterilization could lead to milestone societal, pro-health, environmental, and economic benefits. Full article
Show Figures

Figure 1

18 pages, 352 KiB  
Review
Bone Type Selection for Human Molecular Genetic Identification of Skeletal Remains
by Jezerka Inkret and Irena Zupanič Pajnič
Genes 2025, 16(8), 872; https://doi.org/10.3390/genes16080872 - 24 Jul 2025
Viewed by 193
Abstract
This review paper presents a comprehensive overview of DNA preservation in hard tissues (bones and teeth) for applications in forensic and archaeogenetic analyses. It presents bone structure, DNA location in bones and teeth, and extensive information about postmortem DNA location and preservation. Aged [...] Read more.
This review paper presents a comprehensive overview of DNA preservation in hard tissues (bones and teeth) for applications in forensic and archaeogenetic analyses. It presents bone structure, DNA location in bones and teeth, and extensive information about postmortem DNA location and preservation. Aged bones are a challenging biological material for DNA isolation due to their low DNA content, degraded DNA, and the potential presence of PCR inhibitors. In addition, the binding of DNA to the mineral matrix necessitates the inclusion of a demineralization process in extraction, and its contribution to the resulting increase in both DNA quality and quantity is explained. Guidelines and recommendations on bone sample selection to obtain higher DNA yields are discussed in terms of past, recent, and possible future recommendations. Interskeletal and intraskeletal differences in DNA yield are also explained. Recent studies have shown that current recommendations for the genetic identification of skeletal remains, including femurs, tibias, and teeth, may not be the most effective sampling approach. Moreover, when mass disasters and mass graves with commingled skeletal remains are considered, there is a greater possibility that the recommended set of skeletal elements will not be available for sampling and subsequent genetic testing. This review highlights interskeletal and intraskeletal variability in DNA yield, with a focus on studies conducted on poorly preserved skeletal remains, including both postwar (1945) victims from Slovenia and ancient human skeletons. Special emphasis is placed on anatomical differences and potential mechanisms influencing DNA preservation, as demonstrated in research on both modern and historical skeletons. Finally, the petrous part of the temporal bone and tooth cementum were reviewed in greater detail because they have been recognized as an optimal sampling type in both ancient DNA studies and routine forensic case analyses. Our experiences with the Second World War and archaeological petrous bones are discussed and compared to those of other bone types. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
17 pages, 598 KiB  
Review
Management Strategies for Dry Eye Syndrome in Patients with Obesity—A Literature Review
by Cosmin Victor Ganea, Călina Anda Sandu, Corina Georgiana Bogdănici and Camelia Margareta Bogdănici
Life 2025, 15(7), 1102; https://doi.org/10.3390/life15071102 - 14 Jul 2025
Viewed by 370
Abstract
Tear film alterations are commonly associated with ocular pathology. The tear film plays a vital role in maintaining the optical properties of the cornea and contains essential elements required for healing and preserving the integrity of the ocular surface. As a biological fluid, [...] Read more.
Tear film alterations are commonly associated with ocular pathology. The tear film plays a vital role in maintaining the optical properties of the cornea and contains essential elements required for healing and preserving the integrity of the ocular surface. As a biological fluid, the tear film is easily collected using non-invasive techniques, making it a promising candidate for analysis and often referred to as an ideal biofluid. Several studies have attempted to identify biomarkers in the tear film that could be linked to systemic or ocular disorders, with the goal of developing tools for diagnosis or even early prevention. The quality and quantity of the tear film are influenced by hormonal status, emotional experiences related to social and familial events, and the work environment. Systemic disorders are often reflected at the ocular level through alterations in the tear film. Obesity is a well-recognized public health concern, extensively studied and investigated, much like other common systemic conditions. The presence of low-grade, chronic inflammation associated with excess body weight has been validated in several studies. The strategies for preventing obesity induced dry eye disease are based on regular physical activity, maintaining adequate hydration through sufficient fluid intake, weight loss, and the supplementation of essential fatty acids. This narrative literature review aims to highlight the tear film alterations associated with obesity. The article is intended for ophthalmologists, general practitioners, nutritionists, and researchers. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

28 pages, 1265 KiB  
Review
Polyphenols in Foods and Their Use in the Food Industry: Enhancing the Quality and Nutritional Value of Functional Foods
by Nurten Coşkun, Sümeyye Sarıtaş, Mikhael Bechelany and Sercan Karav
Int. J. Mol. Sci. 2025, 26(12), 5803; https://doi.org/10.3390/ijms26125803 - 17 Jun 2025
Viewed by 824
Abstract
Polyphenols are known as secondary metabolites, which are crucial bioactive compounds that play a significant role in enhancing human health. Chromatographic methods are typically used to identify polyphenols after food extraction. The extraction methods are fundamental, however, they are implemented with some differences, [...] Read more.
Polyphenols are known as secondary metabolites, which are crucial bioactive compounds that play a significant role in enhancing human health. Chromatographic methods are typically used to identify polyphenols after food extraction. The extraction methods are fundamental, however, they are implemented with some differences, including extractant type, according to the food. Polyphenols are mostly found in some foods, including grapes, olives, cherries, and apples. Foods have diverse polyphenols, which differ according to the food type. Moreover, they have flavonols, flavanols, flavones, flavanones, isoflavones, and anthocyanins as various subgroups of polyphenols, which can change in terms of quantity and quality along with several factors, including the type, growing region, germination time, and harvest season of the food. The consumption of polyphenols is crucial for human health due to their anti-cancer, anti-tumor, anti-inflammatory, cardiometabolic risk management, antimicrobial, immunomodulatory, and antioxidant effects. In the valorization of polyphenols, the consumption dose is also important to effectively benefit from the polyphenols of plant-based foods. Several in vitro and in vivo studies have tested the polyphenols’ digestion ability and preservation ability in gut microbiota and their effect on the microbiota to determine the benefits and effects of polyphenols in several areas. According to these studies, polyphenols can be used to fight against disease. In addition, diverse applications, including encapsulation and polyphenol coating, are used to stabilize, preserve, and improve the bioaccessibility of polyphenols. Even though polyphenol-rich foods are consumed for nutrition in daily life, they are also used as nutritional ingredients in the food industry to produce functional foods, and functional foods are enriched with food by-products to enhance their nutritional value, especially in terms of polyphenols. Particularly, food by-products are used to enrich functional foods, which are preferred in healthy life diets due to the diversity and amount of bioactive ingredients, including the polyphenol types of the food by-products. Furthermore, polyphenols also provide the preservation ability of storage and improve the bioaccessibility of bioactive ingredients during the digestion of functional foods. This review article examines the polyphenol ingredients of several types of food used in the food industry. It explains the effective factors that affect the amount and type of food and determines the impact of polyphenols on polyphenol-enriched products and functional foods. The article also provides a brief exemplification of the value of polyphenol-rich food by-products in the context of functional food production. Several studies presented in this review article demonstrate the value of polyphenols, particularly in the food industry and functional food production. Full article
Show Figures

Figure 1

21 pages, 1412 KiB  
Review
Multi-Omics Perspectives on Testicular Aging: Unraveling Germline Dysregulation, Niche Dysfunction, and Epigenetic Remodeling
by Aris Kaltsas
Cells 2025, 14(12), 899; https://doi.org/10.3390/cells14120899 - 13 Jun 2025
Viewed by 888
Abstract
Male reproductive aging proceeds gradually and involves complex alterations across germ cells, somatic cells, and the testicular niche. Multi-omics analyses highlight shifts in spermatogonial stem cell dynamics, diminished sperm quantity and quality, and reconfigured support from Sertoli and Leydig cells. These somatic cells [...] Read more.
Male reproductive aging proceeds gradually and involves complex alterations across germ cells, somatic cells, and the testicular niche. Multi-omics analyses highlight shifts in spermatogonial stem cell dynamics, diminished sperm quantity and quality, and reconfigured support from Sertoli and Leydig cells. These somatic cells show numerical declines and exhibit senescence-associated changes that amplify inflammatory signals and compromise blood–testis barrier integrity. Concurrently, fibrosis and heightened immune cell infiltration disrupt intercellular communication, contributing to further deterioration of spermatogenesis. Epigenetic remodeling—including DNA methylation drift, histone modification imbalances, and altered small non-coding RNA profiles—adds another dimension, reducing sperm integrity and potentially exerting transgenerational effects on offspring health. Observed hormonal changes, such as reduced testosterone and INSL3 production by aging Leydig cells, reflect the additional weakening of testicular function. These multifactorial processes collectively underlie the drop in male fertility and the increased incidence of adverse outcomes, such as miscarriages and developmental anomalies in the offspring of older fathers. Research into mitigation strategies, including interventions targeting senescent cells, oxidative stress, and inflammatory pathways, may slow or reverse key mechanisms of testicular aging. These findings underscore the importance of understanding the molecular hallmarks of male reproductive aging for preserving fertility and safeguarding offspring well-being. Full article
Show Figures

Figure 1

19 pages, 6599 KiB  
Article
Hydrogeological Assessment of Urban Springs in Warsaw and Their Role in Green Space Management
by Ewa Krogulec, Dorota Porowska, Katarzyna Sawicka and Sebastian Zabłocki
Sustainability 2025, 17(12), 5432; https://doi.org/10.3390/su17125432 - 12 Jun 2025
Viewed by 514
Abstract
Springs located in urban historic areas are important for groundwater management, the protection of green spaces, and the preservation of park functions and urban structure. This article presents the results of a study of selected Warsaw springs in the city center under conservation [...] Read more.
Springs located in urban historic areas are important for groundwater management, the protection of green spaces, and the preservation of park functions and urban structure. This article presents the results of a study of selected Warsaw springs in the city center under conservation protection, focusing on their hydrogeological characteristics, hydrogeochemical analysis, and pressures associated with urban development. Field and laboratory analyses, as well as hydrodynamic modeling, made it possible to assess the quantity and quality of water from the springs. Hydrodynamic studies showed that the area of the spring recharge zone of 13.77 ha is characterized by an average time of water exchange of approx. 26 years and a low infiltration recharge, an average of 18 mm/year. Hydrogeochemical analyses showed that spring water has a complex, multi-ion hydrogeochemical type: Cl-SO4-HCO3-Ca-Na, Cl-HCO3-SO4-Ca-Na, Cl-HCO3-Na-Ca, and NO3-Cl-HCO3-Ca-Na, including the occurrence of hazardous substances such as PAH and BTEX, PCBs, non-ionic detergents, and heavy metals. The results indicate that urbanization significantly affects groundwater levels and spring recharge areas, which can limit the availability of water in green and recreational areas. The results of the study indicate the need for action to increase groundwater resources through managed aquifer recharge for rainwater management in densely built-up areas. In terms of water quality measures, due to the unsatisfactory chemical water status, the use of spring water for irrigation of urban vegetation or its incorporation into the active recreational infrastructure of the park currently appears to be fraught with considerable risk, hence the need to take protective action in the spring recharge zone through the regular monitoring of groundwater quality, the legal designation of protection zones, and the implementation of policies that support urban water retention. It is necessary to implement pre-treatment solutions (aeration, desalination) or introduce appropriately resistant vegetation. Any type of activity that allows the use of water after treatment will certainly contribute to making the park more attractive as a place of recreation and leisure for residents. Findings from the research can support decisions on protecting green spaces and adapting cities to climate change. Full article
Show Figures

Figure 1

12 pages, 1674 KiB  
Article
Long-Term DNA Storage of Challenging Forensic Casework Samples at Room Temperature
by Chloé Scherer, Jean-Marc Josse, Naura Ikadoumène, Joséphine Gibert, Sylvain Hubac and Francis Hermitte
DNA 2025, 5(2), 29; https://doi.org/10.3390/dna5020029 - 9 Jun 2025
Viewed by 498
Abstract
Background: The success of forensic genetics has led to considerable numbers of DNA samples that must be stored. For example, the genetic casework unit of the forensic institute of the French gendarmerie analyzes more than 70,000 casework samples per year mainly from swabs [...] Read more.
Background: The success of forensic genetics has led to considerable numbers of DNA samples that must be stored. For example, the genetic casework unit of the forensic institute of the French gendarmerie analyzes more than 70,000 casework samples per year mainly from swabs that are fully consumed during DNA extraction. The only way to process further analyses is to preserve DNA. Currently, the most common technique used for the long-term preservation of DNA is to freeze the extracted DNA at −20 °C or −80 °C. However, this preservation method involves significant constraints (large equipment), risks (equipment failure), and is not ecologically sustainable due to its high energy consumption. Many solutions for DNA preservation at room temperature exist based either on fibrous supports or on anhydrobiosis. However, few studies have examined the efficiency of these systems in preserving very-low DNA amounts, such as those in forensic samples (≤1 ng), while ensuring full recovery and the ability to retest the samples many years later. Methods: We choose to evaluate the ability of the anhydrobiosis technology from GenTegra® LLC to preserve DNA extracts from one month to one accelerated year from different DNA quantities (from 1 ng to 0.2 ng) and sources (NIST, mocked samples, and true casework mixtures). We studied the quantity, integrity of DNA, and also the quality of the STR genetic profiles obtained. Results and Conclusions: Our results prove the high potential of this technology to preserve and to allow an effective recovery of the DNA extracts for forensic purposes. Full article
Show Figures

Figure 1

24 pages, 1096 KiB  
Review
Edible Coatings to Prolong the Shelf Life and Improve the Quality of Subtropical Fresh/Fresh-Cut Fruits: A Review
by Farid Moradinezhad, Atman Adiba, Azam Ranjbar and Maryam Dorostkar
Horticulturae 2025, 11(6), 577; https://doi.org/10.3390/horticulturae11060577 - 23 May 2025
Viewed by 2291
Abstract
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of [...] Read more.
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of fruits postharvest. Edible coatings have emerged as a sustainable solution to extending the shelf life of fruits and decreasing postharvest losses. The precise composition and application of these coatings are crucial in determining their effectiveness in preventing microbial growth and preserving the sensory attributes of fruits. Furthermore, the integration of nanotechnology into edible coatings has the potential to enhance their functionalities, including improved barrier properties, the controlled release of active substances, and increased antimicrobial capabilities. Recent advancements highlighting the impact of edible coatings are underscored in this review, showcasing how they help in prolonging shelf life, preserving quality, and minimizing postharvest losses of subtropical fresh fruits worldwide. The utilization of edible coatings presents challenges in terms of production, storage, and large-scale application, all while ensuring consumer acceptance, food safety, nutritional value, and extended shelf life. Edible coatings based on polysaccharides and proteins encounter difficulties due to inadequate water and gas barrier properties, necessitating the incorporation of plasticizers, emulsifiers, and other additives to enhance their mechanical and thermal durability. Moreover, high levels of biopolymers and active components like essential oils and plant extracts could potentially impact the taste of the produce, directly influencing consumer satisfaction. Therefore, ongoing research and innovation in this field show great potential for reducing postharvest losses and strengthening food security. This paper presents a comprehensive overview of the latest advancements in the application of edible coatings and their influence on extending the postharvest longevity of main subtropical fruits, emphasizing the importance of maintaining the quality of fresh and fresh-cut subtropical fruits, prolonging their shelf life, and protecting them from deterioration through innovative techniques. Full article
Show Figures

Figure 1

17 pages, 10566 KiB  
Article
Unveiling the Transformative Effects of Forest Restoration on the Soil Chemistry and Biology of Sandy Soils in Southern Nyírség, Hungary
by István Attila Kocsis, Magdolna Tállai, Ágnes Zsuposné Oláh, Zoltán László, Béla Mokos, Ida Kincses, Evelin Kármen Juhász, Daniel A. Lowy and Zsolt Sándor
Agriculture 2025, 15(10), 1030; https://doi.org/10.3390/agriculture15101030 - 9 May 2025
Viewed by 487
Abstract
Protecting humankind’s natural resources and soils, including forestry, represents a top priority in agriculture. Addressing climate change should prioritize preserving and enhancing organic carbon, specifically humus, in soils. In this paper, we examine the impact of soil preparation on soil humus and microbial [...] Read more.
Protecting humankind’s natural resources and soils, including forestry, represents a top priority in agriculture. Addressing climate change should prioritize preserving and enhancing organic carbon, specifically humus, in soils. In this paper, we examine the impact of soil preparation on soil humus and microbial life during the reforestation of Southern Nyírség, Hungary. We determined soil plasticity, pH in distilled water solution, the quantity and quality of humus content, the total number of bacteria and microbial fungi, as well as CO2 production. In addition to stump removal and plowing, the wealthiest layer of organic matter was detached from the surface. A significant decrease in humus content (HU%) was observed at the five experimental sites (loss of 19.20–40.14 HU% at 0–30 cm depth). Soil organic matter is concentrated in the stump depositions. According to the results, the quantity of humus content is strongly correlated with the measured parameters of soil life, specifically with the number of microbial fungi (r = 0.806 **) and the total number of bacteria (r = 0.648 **). Another correlation (r = 0.607 **) was assessed between the humus content and CO2 production. This study helps to understand the importance of the no-tillage methods used in reforestation. Full article
Show Figures

Figure 1

16 pages, 1886 KiB  
Article
Enhancing Single-Cell Protein Yield Through Grass-Based Substrates: A Study of Lolium perenne and Kluyveromyces marxianus
by Tianyi Guo, Joshua Bode, Katrin Kuka and Nils Tippkötter
Fermentation 2025, 11(5), 266; https://doi.org/10.3390/fermentation11050266 - 7 May 2025
Viewed by 668
Abstract
This study evaluated Lolium perenne press juice as a sustainable substrate for Single-Cell Protein (SCP) production using Kluyveromyces marxianus. Key fermentation parameters were systematically optimized, including microbial reduction, dilution ratios, temperature, and nutrient supplementation. Pasteurization at 75 °C preserved essential nutrients better [...] Read more.
This study evaluated Lolium perenne press juice as a sustainable substrate for Single-Cell Protein (SCP) production using Kluyveromyces marxianus. Key fermentation parameters were systematically optimized, including microbial reduction, dilution ratios, temperature, and nutrient supplementation. Pasteurization at 75 °C preserved essential nutrients better than autoclaving, resulting in a 27.8% increase in biomass yield. A 1:2 dilution of press juice enhanced fermentation efficiency, achieving 20.2% higher biomass despite a lower initial sugar content. Cultivation at 30 °C enabled sustained substrate utilization and outperformed 40 °C fermentation, increasing final biomass by 43.4%. Nutrient supplementation with yeast extract, peptone, and glucose led to the highest biomass yield, with a 71% increase compared to unsupplemented juice. Press juice from the tetraploid variety, Explosion, consistently outperformed the diploid Honroso, especially when harvested early, reaching up to 16.62 g·L−1 biomass. Early harvests promoted faster growth, while late harvests exhibited higher biomass yield coefficients due to improved sugar-to-biomass conversion. Compared to a conventional YM medium, fermentation with L. perenne press juice achieved up to a threefold increase in biomass yield. These findings highlight the potential of grass-based substrates for efficient SCP production and demonstrate how agricultural parameters like variety and harvest timing influence both quantity and quality. The approach supports circular bioeconomy strategies by valorising underutilized biomass through microbial fermentation. Full article
Show Figures

Figure 1

22 pages, 1371 KiB  
Review
Iron Metabolism and Muscle Aging: Where Ferritinophagy Meets Mitochondrial Quality Control
by Rosa Di Lorenzo, Emanuele Marzetti, Helio José Coelho-Junior, Riccardo Calvani, Vito Pesce, Francesco Landi, Christiaan Leeuwenburgh and Anna Picca
Cells 2025, 14(9), 672; https://doi.org/10.3390/cells14090672 - 3 May 2025
Cited by 1 | Viewed by 1385
Abstract
In older adults with reduced physical performance, an increase in the labile iron pool within skeletal muscle is observed. This accumulation is associated with an altered expression of mitochondrial quality control (MQC) markers and increased mitochondrial DNA damage, supporting the hypothesis that impaired [...] Read more.
In older adults with reduced physical performance, an increase in the labile iron pool within skeletal muscle is observed. This accumulation is associated with an altered expression of mitochondrial quality control (MQC) markers and increased mitochondrial DNA damage, supporting the hypothesis that impaired MQC contributes to muscle dysfunction during aging. The autophagy–lysosome system plays a critical role in MQC by tagging and engulfing proteins and organelles for degradation in lysosomes. The endolysosomal system is also instrumental in transferrin recycling, which, in turn, regulates cellular iron uptake. In the neuromuscular system, the autophagy–lysosome system supports the structural integrity of neuromuscular junctions, and its dysfunction contributes to muscle atrophy. While MQC was thought to protect against iron-induced cell death, the discovery of ferroptosis, a form of iron-dependent cell death, has highlighted a complex interplay between MQC and iron-inflicted damage. Ferritinophagy, the autophagic degradation of ferritin, if overactivated, can induce ferroptosis. Alternatively, aging may impair ferritinophagy, leading to ferritin accumulation and the release of toxic labile iron under stress, exacerbating oxidative damage and cellular senescence. Physical activity supports muscle health also by preserving mitochondrial quantity and quality and enhancing bioenergetics. However, therapeutic strategies for preventing or reversing physical function decline in aging are still lacking due to the insufficient understanding of the underlying mechanisms. Unveiling how disruptions in iron homeostasis impact muscle quality in older adults may allow for the development of therapeutic strategies targeting iron handling to alleviate age-associated muscle decline. Full article
(This article belongs to the Special Issue Autophagy Meets Aging 2025)
Show Figures

Figure 1

20 pages, 4679 KiB  
Article
Exploring the Balance Between Ecosystem Services and Economic Benefits via Multi-Objective Land Use Optimization
by Xiaoyun Li and Zhaonian Lu
Land 2025, 14(5), 920; https://doi.org/10.3390/land14050920 - 23 Apr 2025
Viewed by 476
Abstract
Excessive human activities associated with rapid industrialization and urbanization have exerted tremendous pressure on limited land resources. Scientific land use planning is essential for attaining sustainable development. This study focuses on multi-objective land use optimization in Xinjiang, China’s largest arid region, targeting the [...] Read more.
Excessive human activities associated with rapid industrialization and urbanization have exerted tremendous pressure on limited land resources. Scientific land use planning is essential for attaining sustainable development. This study focuses on multi-objective land use optimization in Xinjiang, China’s largest arid region, targeting the dual goals of maximizing ecosystem services and economic benefits. The non-dominated sorting genetic algorithm II (NSGA-II) and the future land simulation (FLUS) model are integrated innovatively to explore optimal land use in terms of both quantity and spatial distribution. Four distinct development scenarios are predefined and compared: natural development, ecological preservation, economic development, and sustainable development. The main results are as follows: (1) The fragile ecosystem of Xinjiang has been under tremendous pressure during the past 40 years. The predominant pattern in land use transition was the increase in construction land (+115.66%) and cultivated land (+47.18%) at the expense of grassland (−5.48%) and forest land (−4.15%), both of which hold substantial ecological significance. (2) Among these predefined scenarios, the sustainable development scenario is considered more favorable in the future due to its ability to balance ecological preservation and economic development. All the ecologically valuable lands will have certain degrees of growth, whereas the expansion scale of construction land will be effectively controlled. (3) The lack of high-quality land and the unpredictability of water resources will be the two major obstacles to implementing this sustainable development scenario. To overcome them, the government should provide policy and financial support for restricting construction land expansion, exploiting unused land, and strengthening water conservation. This study contributes to formulating more effective land use strategies under multiple conflicting goals and ultimately achieving sustainable development of the economy and ecology in Xinjiang as well as other similar regions. Full article
(This article belongs to the Special Issue Energy-Water-Land Nexus Under Low-Carbon Globalization)
Show Figures

Figure 1

46 pages, 8252 KiB  
Article
Insights into Awareness and Perceptions of Food Waste and School Catering Practices: A Student-Centered Study in Rezekne City, Latvia
by Juta Deksne, Jelena Lonska, Sergejs Kodors, Lienite Litavniece, Anda Zvaigzne, Inese Silicka and Inta Kotane
Resources 2025, 14(4), 59; https://doi.org/10.3390/resources14040059 - 2 Apr 2025
Viewed by 1789
Abstract
A fundamental step to foster a sustainable future is enhancing students’ awareness of responsible food consumption. The present research study assessed students’ awareness of food waste (FW) issues, attitudes towards school catering and lunch management, and the reasons for plate waste (PW) in [...] Read more.
A fundamental step to foster a sustainable future is enhancing students’ awareness of responsible food consumption. The present research study assessed students’ awareness of food waste (FW) issues, attitudes towards school catering and lunch management, and the reasons for plate waste (PW) in Rezekne city schools, Latvia. A survey was conducted in April 2024 involving 944 students in grades 2 to 7 across four selected schools (S1, S2, S3, and S4), provided with state and municipality-funded free lunches. Statistical analysis methods (Mean ± SD, Kruskal–Wallis H test, Mann–Whitney U post hoc test, and Spearman’s correlation analysis) were used to analyze the results. The findings revealed limited awareness and knowledge of students about FW issues, and generally indifferent attitude towards FW and school meals. In addition, significant dissatisfaction with the sensory qualities of meals was observed, yet sensory satisfaction did not correlate with FW levels, pointing to broader issues within the catering model. The restrictive pre-served portion system was found ineffective in reducing FW and fostering responsible consumption. A sustainable catering model should empower students to independently choose the type and quantity of food, combining their abilities and motivation with practical actions. These findings provide a basis for strategies aimed at reducing FW and promoting responsible and sustainable food consumption in Latvian schools. Full article
Show Figures

Figure 1

12 pages, 10593 KiB  
Article
Organic Fertilization and Biostimulant Application to Improve Yield and Quality of Eggplant While Reducing the Environmental Impact
by Luigi Giuseppe Duri, Roberta Paradiso, Ida Di Mola, Eugenio Cozzolino, Lucia Ottaiano, Roberta Marra and Mauro Mori
Plants 2025, 14(6), 962; https://doi.org/10.3390/plants14060962 - 19 Mar 2025
Viewed by 824
Abstract
Environmental sustainability is a crucial issue in modern agriculture and special attention needs to be paid to soil health preservation. Eggplant (Solanum melongena L.) cultivation implies the supply of relevant quantities of chemical fertilizers, since the crop has high nutrient requirements. This [...] Read more.
Environmental sustainability is a crucial issue in modern agriculture and special attention needs to be paid to soil health preservation. Eggplant (Solanum melongena L.) cultivation implies the supply of relevant quantities of chemical fertilizers, since the crop has high nutrient requirements. This study investigated the combined effects of two common organic amendments—compost and digestate—and two types of biostimulant—a plant-based product and a microbe-based product—on fruit production and quality of eggplant, to highlight the potential synergistic effects of fertilization and biostimulation. The experiment was carried out in a Mediterranean greenhouse in the winter/spring period, assessing early and total marketable yield and fruit qualitative traits (firmness, color, nitrogen, ascorbic acid, carotenoid and phenol content, and antioxidant activity). Results showed that the fertilization strategy significantly influenced plant productivity, with digestate promoting the early fruitification and mineral fertilizers resulting in a higher total yield. Biostimulants, particularly the microbial type, improved the fruit quality in terms of carotenoid content and antioxidant activity. These findings highlight the potential benefits of combining organic amendments with biostimulants in eggplant cultivation, enhancing the economic value of the product through the increase in the early production and fruit nutraceutical value while realizing sustainable practices. Full article
(This article belongs to the Special Issue Strategies for Nutrient Use Efficiency Improvement in Plants)
Show Figures

Figure 1

26 pages, 9680 KiB  
Article
Development of Transient Hydrodynamic and Hydrodispesive Models in Semi-Arid Environments
by Samir Hakimi, Mohamed Abdelbaset Hessane, Mohammed Bahir, Turki Kh. Faraj and Paula M. Carreira
Hydrology 2025, 12(3), 46; https://doi.org/10.3390/hydrology12030046 - 3 Mar 2025
Viewed by 914
Abstract
The hydrogeological study of the Rharb coastal basin, located in the semi-arid northwest region of Morocco, focuses on its two aquifers: the Plio-Quaternary aquifer characterized by high-quality water with salt concentrations ranging from 0.4 to 2 g/L, and the Upper Quaternary aquifer, with [...] Read more.
The hydrogeological study of the Rharb coastal basin, located in the semi-arid northwest region of Morocco, focuses on its two aquifers: the Plio-Quaternary aquifer characterized by high-quality water with salt concentrations ranging from 0.4 to 2 g/L, and the Upper Quaternary aquifer, with lower water quality (2 to 6 g/L). The deep aquifer is overexploited for agricultural purposes. This overexploitation has led to declining piezometric levels and the worsening of the oceanic intrusion phenomenon. The study aims to develop a numerical model for a period of 15 years, from 1992/93 to 2006/07 for monitoring groundwater quantity and quality, considering recharge, exploitation, and basin characteristics. A hydrodynamic model based on storage coefficient calibration identifies overexploitation for irrigation, increasing from 93 Mm3 in 1993 to 170 Mm3 in 2007, as the primary driver of declining water levels. A hydrodispersive model highlights higher salt concentrations in the shallow aquifer (up to 6 g/L), high nitrate concentrations due to human activity, and pinpoints areas of seawater intrusion approximately 500 m from the shoreline. Although the deeper aquifer remains relatively preserved, negative hydraulic balances from −15.4 Mm3 in 1993 to −36.6 Mm3 in 2007 indicate an impending critical period. Full article
Show Figures

Figure 1

Back to TopTop