Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (367)

Search Parameters:
Keywords = pyrolysis bio-oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 714 KiB  
Article
Thermodynamic Analysis of Biomass Pyrolysis in an Auger Reactor Coupled with a Fluidized-Bed Reactor for Catalytic Deoxygenation
by Balkydia Campusano, Michael Jabbour, Lokmane Abdelouahed and Bechara Taouk
Processes 2025, 13(8), 2496; https://doi.org/10.3390/pr13082496 (registering DOI) - 7 Aug 2025
Abstract
This research contributes to advance the sustainable production of biofuels and provides insights into the energy and exergy assessment of bio-oil, which is essential for developing environmentally friendly energy production solutions. Energy and exergy analyses were performed to evaluate the pyrolysis of beech [...] Read more.
This research contributes to advance the sustainable production of biofuels and provides insights into the energy and exergy assessment of bio-oil, which is essential for developing environmentally friendly energy production solutions. Energy and exergy analyses were performed to evaluate the pyrolysis of beech wood biomass at 500 °C in an Auger reactor. To improve the quality of the obtained bio-oil, its catalytic deoxygenation was performed within an in-line fluidized catalytic bed reactor using a catalyst based on HZSM5 zeolite modified with 5 wt.% Iron (5%FeHZSM-5). A thermodynamic analysis of the catalytic and non-catalytic pyrolysis system was carried out, as well as a comparative study of the calculation methods for the energy and exergy evaluation for bio-oil. The required heat for pyrolysis was found to be 1.2 MJ/kgbiomass in the case of non-catalytic treatment and 3.46 MJ/kgbiomass in the presence of the zeolite-based catalyst. The exergy efficiency in the Auger reactor was 90.3%. Using the catalytic system coupled to the Auger reactor, this efficiency increased to 91.6%, leading to less energy degradation. Calculating the total energy and total exergy of the bio-oil using two different methods showed a difference of 6%. In the first method, only the energy contributions of the model compounds, corresponding to the major compounds of each chemical family of bio-oil, were considered. In contrast, in the second method, all molecules identified in the bio-oil were considered for the calculation. The second method proved to be more suitable for thermodynamic analysis. The novelties of this work concern the thermodynamic analysis of a coupled system of an Auger biomass pyrolysis reactor and a fluidized bed catalytic deoxygenation reactor on the one hand, and the use of all the molecules identified in the oily phase for the evaluation of energy and exergy on the other hand. Full article
(This article belongs to the Section Chemical Processes and Systems)
16 pages, 1504 KiB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 - 2 Aug 2025
Viewed by 172
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
Show Figures

Figure 1

31 pages, 2773 KiB  
Review
Actualized Scope of Forestry Biomass Valorization in Chile: Fostering the Bioeconomy
by Cecilia Fuentalba, Victor Ferrer, Luis E. Arteaga-Perez, Jorge Santos, Nacarid Delgado, Yannay Casas-Ledón, Gastón Bravo-Arrepol, Miguel Pereira, Andrea Andrade, Danilo Escobar-Avello and Gustavo Cabrera-Barjas
Forests 2025, 16(8), 1208; https://doi.org/10.3390/f16081208 - 23 Jul 2025
Viewed by 529
Abstract
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It [...] Read more.
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It highlights advances in lignin utilization, nanocellulose production, hemicellulose processing, and tannin extraction, as well as developments in thermochemical conversion technologies, including torrefaction, pyrolysis, and gasification. Special attention is given to non-timber forest products and essential oils due to their potential bioactivity. Sustainability perspectives, including Life Cycle Assessments, national policy instruments such as the Circular Economy Roadmap and Extended Producer Responsibility (REP) Law, are integrated to provide context. Barriers to technology transfer and industrial implementation are also discussed. This work contributes to understanding how forestry biomass can support Chile’s transition toward a circular bioeconomy. Full article
Show Figures

Figure 1

19 pages, 4374 KiB  
Article
Characterization of the Aqueous Phase from Pyrolysis of Açaí Seeds and Fibers (Euterpe oleracea Mart.)
by Erick Monteiro de Sousa, Kelly Christina Alves Bezerra, Renan Marcelo Pereira Silva, Gabriel Arthur da Costa Martins, Gabriel Xavier de Assis, Raise Brenda Pinheiro Ferreira, Lucas Pinto Bernar, Neyson Martins Mendonça, Carmen Gilda Barroso Tavares Dias, Douglas Alberto Rocha de Castro, Gabriel de Oliveira Rodrigues, Sergio Duvoisin Junior, Marta Chagas Monteiro and Nélio Teixeira Machado
Energies 2025, 18(14), 3820; https://doi.org/10.3390/en18143820 - 18 Jul 2025
Viewed by 346
Abstract
Açaí (Euterpe oleracea Mart.) is a native fruit of the Amazon, and its production chain is centered in the state of Pará. The processing of açaí fruits generates large amounts of solid waste, which can pose serious risks to the environment if not [...] Read more.
Açaí (Euterpe oleracea Mart.) is a native fruit of the Amazon, and its production chain is centered in the state of Pará. The processing of açaí fruits generates large amounts of solid waste, which can pose serious risks to the environment if not used and managed properly. The novelty of this research lies in the fact that until this moment, no research had been reported in the literature on the pyrolysis of açaí fibers and the chemical composition of the aqueous phase, making possible a broad set of applications including biogas production. The present research proposes a study of the pyrolysis of açaí seeds and fibers and the physicochemical and compositional characterization of the aqueous phase products. In this way, açaí processing residues were collected in the city of Belém, PA. The seeds and fibers were dried and impregnated with NaOH solutions, and subsequently subjected to pyrolysis on a laboratory scale. The liquid products from pyrolysis were characterized through acidity index analysis, FT-IR, and gas chromatography. The increase in the concentration of the impregnating agent led to an increase in bio-oil yield from both the seeds (ranging from 3.3% to 6.6%) and the fibers (ranging from 1.2% to 3.7%). The yield in the aqueous phase showed an inverse behavior, decreasing as the concentration of NaOH increased, both in the seeds (ranging from 41% to 37.5%) and the fibers (ranging from 33.7% to 21.2%). High acidity levels were found in the liquid products studied, which decreased as the concentration of the impregnating agent increased. The increase in the concentration of the impregnating agent (NaOH) influenced the chemical composition of the obtained liquid products, leading to a decrease in oxygenated compounds and an increase in nitrogenous compounds in both experimental matrices, which was also evidenced by the reduction in acidity. Full article
(This article belongs to the Special Issue Advanced Bioenergy, Biomass and Waste Conversion Technologies)
Show Figures

Figure 1

24 pages, 6684 KiB  
Article
Solvolysis and Mild Hydrogenolysis of Lignin Pyrolysis Bio-Oils for Bunker Fuel Blends
by Antigoni G. Margellou, Fanny Langschwager, Christina P. Pappa, Ana C. C. Araujo, Axel Funke and Konstantinos S. Triantafyllidis
Energies 2025, 18(14), 3683; https://doi.org/10.3390/en18143683 - 12 Jul 2025
Viewed by 434
Abstract
The projected depletion of fossil resources has initiated research on new and sustainable fuels which can be utilized in combination with conventional fuels. Lignocellulosic biomass, and more specifically lignin, can be depolymerized towards phenolic and aromatic bio-oils which can be converted downstream into [...] Read more.
The projected depletion of fossil resources has initiated research on new and sustainable fuels which can be utilized in combination with conventional fuels. Lignocellulosic biomass, and more specifically lignin, can be depolymerized towards phenolic and aromatic bio-oils which can be converted downstream into bunker fuel blending components. Within this study, solvolysis under critical ethanol conditions and mild catalytic hydrotreatment were applied to heavy fractions of lignin pyrolysis bio-oils with the aim of recovering bio-oils with improved properties, such as a lower viscosity, that would allow their use as bunker fuel blending components. The mild reaction conditions, i.e., low temperature (250 °C), short reaction time (1 h) and low hydrogen pressure (30–50 bar), led to up 65 wt.% recovery of upgraded bio-oil, which exhibited a high carbon content (63–73 wt.%), similar to that of the parent bio-oil (68.9 wt.%), but a lower oxygen content and viscosity, which decreased from ~298,000 cP in the parent lignin pyrolysis oil to 526 cP in the hydrotreated oil, with a 10%Ni/Beta catalyst in methanol, and which was also sulfur-free. These properties permit the potential utilization of the oils as blending components in conventional bunker fuels. Full article
(This article belongs to the Special Issue New Challenges in Lignocellulosic Biomass Conversion)
Show Figures

Figure 1

18 pages, 6422 KiB  
Article
Sugarcane Bagasse Fast Pyrolysis: Pilot Plant Challenges
by Sophya de Andrade Dias, Nahieh Toscano Miranda, Rubens Maciel Filho, Leandro Alcoforado Sphaier and York Castillo Santiago
Processes 2025, 13(7), 2116; https://doi.org/10.3390/pr13072116 - 3 Jul 2025
Viewed by 1028
Abstract
The world’s energy demand increases daily, fostering the search for renewable fuels to reconcile production needs with environmental sustainability. To prevent the severe atmospheric impact of fossil fuels, reducing greenhouse gas emissions is both essential and urgent, reinforcing the necessity of developing and [...] Read more.
The world’s energy demand increases daily, fostering the search for renewable fuels to reconcile production needs with environmental sustainability. To prevent the severe atmospheric impact of fossil fuels, reducing greenhouse gas emissions is both essential and urgent, reinforcing the necessity of developing and adopting renewable fuel alternatives. Therefore, this work aimed to produce bio-oil through sugarcane bagasse fast pyrolysis. The methodology is based on fast pyrolysis operation in a fluidized bed reactor (pilot plant) as a thermochemical method for bio-oil production. This research required the conditioning of the raw material for system feeding, along with optimizing key variables, operating temperature, airflow, and sugarcane bagasse feed rate, to achieve improved yields compared to previous studies conducted in this pilot plant. The sugarcane bagasse was conditioned through drying and milling, followed by characterization using various analytical methods, including calorific value, thermogravimetric analysis (TGA), particle size analysis by laser diffraction (Mastersizer—MS), and ultimate analysis (determining carbon, hydrogen, nitrogen, sulfur, and oxygen by difference). The bio-oil produced showed promising yield results, with a maximum estimated value of 61.64%. Fourier Transform Infrared Spectroscopy (FT-IR) analysis confirmed the presence of aromatic compounds, as well as ester, ether, carboxylic acid, ketone, and alcohol functional groups. Full article
(This article belongs to the Special Issue Advances in Gasification and Pyrolysis of Wastes)
Show Figures

Figure 1

14 pages, 969 KiB  
Article
The Influence of the Use of Pyrolysis Oil as a Binder on the Physicochemical Properties of Pellets
by Bryan Romankiewicz and Błażej Gaze
Materials 2025, 18(13), 2935; https://doi.org/10.3390/ma18132935 - 20 Jun 2025
Viewed by 676
Abstract
The article presents the results of research on the effect of pyrolysis oil used as a binder in the pelletization process. The materials used to produce pyrolysis bio-oil were municipal organic waste and residues from greenhouse tomato production. The research assessed the mechanical [...] Read more.
The article presents the results of research on the effect of pyrolysis oil used as a binder in the pelletization process. The materials used to produce pyrolysis bio-oil were municipal organic waste and residues from greenhouse tomato production. The research assessed the mechanical strength, physicochemical properties, and modifications of the energy and emission parameters of the produced pellets. As a result, formed fuels were obtained, whose physicochemical properties, among others, were improved in terms of combustion heat (the value increased by up to 15.7%). After selected binders were used, the mechanical strength of the fuels also increased, which in the best variant increased by 2.87%. In all research cycles, valuable data was obtained that can be used, for example, in companies producing formed fuels, as well as in the agri-food industry, where a large amount of waste is generated, the properties of which have not previously allowed their use for energy purposes. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

27 pages, 870 KiB  
Review
Thermochemical Conversion of Sewage Sludge: Progress in Pyrolysis and Gasification
by Yibo Hu and Ziwei Chen
Water 2025, 17(12), 1833; https://doi.org/10.3390/w17121833 - 19 Jun 2025
Cited by 1 | Viewed by 733
Abstract
Sewage sludge, as a by-product of wastewater treatment, poses severe environmental challenges due to its high moisture, ash, and heavy metal content. Thermochemical conversion technologies, including pyrolysis and gasification, offer promising pathways for transforming sludge into valuable products such as bio-oil, biochar, and [...] Read more.
Sewage sludge, as a by-product of wastewater treatment, poses severe environmental challenges due to its high moisture, ash, and heavy metal content. Thermochemical conversion technologies, including pyrolysis and gasification, offer promising pathways for transforming sludge into valuable products such as bio-oil, biochar, and syngas. This paper systematically reviews recent advancements in pyrolysis and gasification, focusing on process optimization and catalyst development to enhance product quality and energy recovery. In pyrolysis, factors such as temperature, residence time, and heating rate significantly influence product yields and properties, while catalytic and co-pyrolysis approaches further improve product structure and reduce environmental risks. In gasification, parameters like the equivalence ratio, steam-to-sludge ratio, and catalyst application are key to enhancing syngas yield and quality, with biomass co-gasification offering additional benefits. Despite substantial progress, commercialization remains challenged by high operational costs, catalyst durability, and environmental impacts. Future research should emphasize improving sludge pretreatment, optimizing thermochemical processes, developing efficient and cost-effective catalysts, and addressing critical issues such as bio-oil quality, tar management, and syngas purification to promote the industrial application of these technologies. Full article
Show Figures

Figure 1

32 pages, 2378 KiB  
Review
Pyrolysis Process, Reactors, Products, and Applications: A Review
by Prakhar Talwar, Mariana Alzate Agudelo and Sonil Nanda
Energies 2025, 18(11), 2979; https://doi.org/10.3390/en18112979 - 5 Jun 2025
Cited by 3 | Viewed by 1838
Abstract
With the rapid growth of the global population, increasing per capita energy demands, and waste generation, the need for innovative strategies to mitigate greenhouse gas emissions and effective waste management has become paramount. Pyrolysis, a thermochemical conversion process, facilitates the transformation of diverse [...] Read more.
With the rapid growth of the global population, increasing per capita energy demands, and waste generation, the need for innovative strategies to mitigate greenhouse gas emissions and effective waste management has become paramount. Pyrolysis, a thermochemical conversion process, facilitates the transformation of diverse biomass feedstocks, including agricultural biomass, forestry waste, and other carbonaceous wastes, into valuable biofuels such as bio-oil, biochar, and producer gas. The article reviews the benefits of pyrolysis as an effective and scalable technique for biofuel production from waste biomass. The review describes the different types of pyrolysis processes, such as slow, intermediate, fast, and catalytic, focusing on the effects of process parameters like temperature, heating rate, and residence time on biofuel yields and properties. The review also highlights the configurations and operating principles of different reactors used for pyrolysis, such as fixed bed, fluidized bed, entrained flow, plasma system, and microwaves. The review examines the factors affecting reactor performance, including energy consumption and feedstock attributes while highlighting the necessity of optimizing these systems to improve sustainability and economic feasibility in pyrolysis processes. The diverse value-added applications of biochar, bio-oil, and producer gas obtained from biomass pyrolysis are also discussed. Full article
(This article belongs to the Collection Bio-Energy Reviews)
Show Figures

Figure 1

16 pages, 3075 KiB  
Article
Softwood-Based Biochar in the Design of Cement-Blended Binders with Advanced Properties
by Jaroslav Pokorný, Radek Ševčík, Lucie Zárybnická, Jiří Šál and Luboš Podolka
Buildings 2025, 15(11), 1949; https://doi.org/10.3390/buildings15111949 - 4 Jun 2025
Viewed by 405
Abstract
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need [...] Read more.
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need is constantly growing. Biochar, the porous carbon-based lightweight product, often ends up as a soil fertilizer. However, it can be applied in other industrial sectors, e.g., in plastics production or in modifying cementitious materials intended for construction needs. This work dealt with the application of small amounts of softwood-based biochar up to 2.0 wt.% on hydration kinetics and a wide range of physical and mechanical properties, such as water transport characteristics and flexural and compressive strengths of modified cement pastes. In the comparison with reference specimens, the biochar incorporation into cement pastes brought benefits like the reduction of open porosity, improvement of strength properties, and decreased capillary water absorption of 7-day and 28-day-cured cement pastes. Moreover, biochar-dosed cement pastes showed an increase in heat evolution during the hydration process, accompanied by higher consumption of clinker minerals. Considering all examined characteristics, the optimal dosage of softwood-derived biochar of 1.0 wt.% of Portland cement can be recommended. Full article
Show Figures

Figure 1

13 pages, 844 KiB  
Article
The Influential Mechanism of Absorbers and Active Metal on Microwave-Assisted Pyrolysis of Sargassum
by Kai Chen, Qing Xu and Shenwei Zhang
Energies 2025, 18(11), 2723; https://doi.org/10.3390/en18112723 - 23 May 2025
Viewed by 333
Abstract
Composite catalysts combining absorbers and active metal hold significant potential for improving the efficiency of biomass microwave-assisted pyrolysis (MAP). Compatibility optimization of composite catalysts can be facilitated through comparative analysis for the influential mechanisms of absorbers and catalysts. Therefore, decoupling experiments about the [...] Read more.
Composite catalysts combining absorbers and active metal hold significant potential for improving the efficiency of biomass microwave-assisted pyrolysis (MAP). Compatibility optimization of composite catalysts can be facilitated through comparative analysis for the influential mechanisms of absorbers and catalysts. Therefore, decoupling experiments about the MAP of Sargassum and calculations based on density functional theory (DFT) were conducted in this research, to investigate the influential mechanisms of absorbers and active metal. The results show the introduction of both the absorbers (SiC) and active metal (MgO) increase the yields of high-value components, such as hydrogen and hydrocarbons. However, their influential mechanisms are different. The introduction of SiC enhances the heating rate within the reaction zone, shortening the duration of MAP and inhibiting the condensation of bio-oil and the interaction between bio-oil and bio-char, and thereby increasing the bio-oil yield by 4%. The introduction of MgO lowers the energy barriers for macromolecular decomposition and gas generation, promoting the decomposition of bio-char and bio-oil, and thus leading to a 12% increase in the yield of bio-gas. This research conclusion provides a theoretical basis for the optimization and design of composite catalysts. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

14 pages, 3084 KiB  
Article
Catalytic Hydrodeoxygenation of Pyrolysis Volatiles from Pine Nut Shell over Ni-V Bimetallic Catalysts Supported on Zeolites
by Yujian Wu, Xiwei Xu, Xudong Fan, Yan Sun, Ren Tu, Enchen Jiang, Qing Xu and Chunbao Charles Xu
Catalysts 2025, 15(5), 498; https://doi.org/10.3390/catal15050498 - 20 May 2025
Viewed by 491
Abstract
Bio-oil is a potential source for the production of alternative fuels and chemicals. In this work, Ni-V bimetallic zeolite catalysts were synthesized and evaluated in in situ catalytic hydrodeoxygenation (HDO) of pyrolysis volatiles of pine nut shell for upgraded bio-oil products. The pH [...] Read more.
Bio-oil is a potential source for the production of alternative fuels and chemicals. In this work, Ni-V bimetallic zeolite catalysts were synthesized and evaluated in in situ catalytic hydrodeoxygenation (HDO) of pyrolysis volatiles of pine nut shell for upgraded bio-oil products. The pH and lower heating value (LHV) of the upgraded bio-oil products were improved by in situ catalytic HDO, while the moisture content and density of the oil decreased. The O/C ratio of the upgraded bio-oil products decreased significantly, and the oxygenated compounds in the pyrolysis volatiles were converted efficiently via deoxygenation over Ni-V zeolite catalysts. The highest HDO activity was obtained with NiV/MesoY, where the obtained bio-oil had the lowest O/C atomic ratio (0.27), a higher LHV (27.03 MJ/kg) and the highest selectivity (19.6%) towards target arenes. Owing to the more appropriate pore size distribution and better dispersion of metal active sites, NiV/MesoY enhanced the transformation of reacting intermediates, obtaining the dominant products of phenols and arenes. A higher HDO temperature improved the catalytic activity of pyrolysis volatiles to form more deoxygenated arenes. Higher Ni loading could generate more metal active sites, thus promoting the catalyst’s HDO activity for pyrolysis volatiles. This study contributes to the development of cost-efficient and eco-friendly HDO catalysts, which are required for producing high-quality biofuel products. Full article
(This article belongs to the Topic Advanced Bioenergy and Biofuel Technologies)
Show Figures

Figure 1

12 pages, 1896 KiB  
Article
GIS and Spatial Analysis in the Utilization of Residual Biomass for Biofuel Production
by Sotiris Lycourghiotis
J 2025, 8(2), 17; https://doi.org/10.3390/j8020017 - 16 May 2025
Viewed by 851
Abstract
The main goal of this study is to investigate the possibility of using residual materials (biomass derived from used cooking oils and lignocellulosic biomass from plant waste) on a large scale for producing renewable fuels and, in particular, the best way to collect [...] Read more.
The main goal of this study is to investigate the possibility of using residual materials (biomass derived from used cooking oils and lignocellulosic biomass from plant waste) on a large scale for producing renewable fuels and, in particular, the best way to collect them. The methodology of Geographic Information Systems (GIS) as well as spatial analysis (SA) techniques were used to investigate the Greek case for this. The data recorded in the geographic database were quantities of waste cooking and household oils as well as quantities of lignocellulosic biomass. The most common global and local indices of spatial autocorrelation were used. Concerning the biomass derived from used cooking oils, it was found that their quantities were important (163.17 million L/year), and these can be used to produce green diesel in the context of the circular economy. Although the dispersion of the used cooking oils was wide, there is no doubt that their concentration in large cities and tourist areas is higher. This finding suggests a collection process that could be carried out mainly in these areas through the development of small autonomous collection units in each neighborhood and central processing plants in small regional units. The investigation of the geographical–spatial distribution of residual lignocellulosic biomass showed the geographical fragmentation and heterogeneity of the distributions. The quantities recorded were significant (4.5 million tons/year) but widely dispersed, such that the cost of collecting and transporting the biomass to central processing plants could be prohibitive. The “geography” of the problem itself suggests solutions of small mobile collection units in every part of the country. The lignocellulosic biomass would be collected and converted in situ into bio-oil by rapid pyrolysis carried out in a tanker vehicle. This would transport the produced bio-oil to the nearest oil refineries for the conversion of bio-oil into biofuels through deoxygenation processes. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

20 pages, 5188 KiB  
Article
Investigation of Bio-Oil and Biochar Derived from Cotton Stalk Pyrolysis: Effect of Different Reaction Conditions
by Hussien Elshareef, Obid Tursunov, Sihao Ren, Katarzyna Śpiewak, Alina Rahayu Mohamed, Yongkun Fu, Renjie Dong and Yuguang Zhou
Resources 2025, 14(5), 75; https://doi.org/10.3390/resources14050075 - 28 Apr 2025
Viewed by 1036
Abstract
This work aimed to conduct a kinetic study of cotton stalks (CSs) through TGA to examine the impact of reaction conditions on bio-oil yield derived from CS slow pyrolysis using a tube furnace lab-scale reactor, as well as a characterization of bio-oil and [...] Read more.
This work aimed to conduct a kinetic study of cotton stalks (CSs) through TGA to examine the impact of reaction conditions on bio-oil yield derived from CS slow pyrolysis using a tube furnace lab-scale reactor, as well as a characterization of bio-oil and biochar products. The iso-conversional approaches of Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) were applied to estimate kinetic parameter activation energy (Ea) for the range of conversion degrees (α = 0.1–0.9). The kinetic results demonstrated that the average values of Ea for secondary pyrolysis were lower compared to those of primary pyrolysis; this could be explained by the fact that mainly cellulose degrades during primary pyrolysis, which requires more energy to be degraded. The pyrolysis findings indicated that the highest yield of bio-oil was 38.5%, which occurred at conditions of 500 °C and 0.5–1 mm size, while retention time showed an insignificant effect on pyrolysis oil. GC–MS analysis demonstrated that bio-oil is dominated by phenol compounds, which account for more than 40% of its components. SEM and XRD analyses emphasized that biochar is porous and has an amorphous shape, respectively. It can be concluded that these outcomes confirm that CSs have the potential to be a good candidate for a feedstock material for bioenergy production via the pyrolysis process. Full article
Show Figures

Figure 1

17 pages, 2532 KiB  
Article
Characterization of South African Woody and Non-Woody Invasive Alien Plant Species for Sustainable Bio-Oil Production
by Bongiwe Mtshali, Alaika Kassim, Sipho Sibanda and Tilahun Workneh
Energies 2025, 18(8), 1919; https://doi.org/10.3390/en18081919 - 9 Apr 2025
Cited by 1 | Viewed by 538
Abstract
Bio-oil energy use in agricultural systems provides sustainable solutions for powering machinery operations and heating and cooling environments in facilities. However, its potential in South Africa is constrained by the limited availability of energy substrate that does not compromise food production, land use, [...] Read more.
Bio-oil energy use in agricultural systems provides sustainable solutions for powering machinery operations and heating and cooling environments in facilities. However, its potential in South Africa is constrained by the limited availability of energy substrate that does not compromise food production, land use, and water resources. This study investigated the physical and chemical properties of six invasive alien plant species (IAPs), three woody species (Acacia mearnsii, Eucalyptus grandis, and Pinus patula), and three nonwoody species (Lantana camara, Chromolaena odorata, and Solanum mauritianum) to assess their suitability for bio-oil production. Key analyses included structural, elemental, proximate, atomic ratio, higher heating value (HHV), and thermogravimetric analysis (TGA) analyses. The results showed that woody IAPs had a significantly higher structural composition (p < 0.05), improving bio-oil yield. The bio-oil can be blended with diesel for agricultural use, while lignin-derived biochar serves as a soil amendment. Higher carbon and hydrogen contents enhanced HHV and combustion, while lower nitrogen and sulfur levels reduced emissions. Despite oxygen hindering pyrolysis, its bioactive properties support crop protection. Compared to South African coal, IAP-derived bio-oil shares similarities with peat coal and could be used for greenhouse heating. This study promotes energy efficiency in agriculture, reduces fossil fuel dependence, and supports environmental sustainability by repurposing IAPs. Additional studies should focus on lignin pretreatment and bio-oil upgrading to reduce oxygenated compounds. Full article
(This article belongs to the Special Issue Renewable Energy Integration into Agricultural and Food Engineering)
Show Figures

Figure 1

Back to TopTop