Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = pyrogallol peroxidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1174 KiB  
Article
Kinetics of Manganese Peroxidase Using Simple Phenolic Compounds as Substrates
by Madeline G. Gruenberg, Jonathan J. Halvorson and Michael A. Schmidt
Metabolites 2025, 15(4), 254; https://doi.org/10.3390/metabo15040254 - 9 Apr 2025
Viewed by 639
Abstract
Background/Objectives: Secondary metabolites encompass diverse groups of compounds; one such group is phenolics, which include small phenols up to larger polyphenols such as lignin and tannins. Smaller compounds such as phenolic acids can serve as substrates for soil microbes and enzymes. The specific [...] Read more.
Background/Objectives: Secondary metabolites encompass diverse groups of compounds; one such group is phenolics, which include small phenols up to larger polyphenols such as lignin and tannins. Smaller compounds such as phenolic acids can serve as substrates for soil microbes and enzymes. The specific interaction between plant secondary metabolites (PSMs) and soil enzymes determines whether the products of these reactions contribute to the formation of soil organic matter (SOM) or are degraded into small organic molecules. Methods: Here, we monitored the activity of a redox active soil enzyme, manganese peroxidase (MnP), with three small phenolic compounds. The compounds used in this study were pyrogallol, gallic acid, and benzoic acid. Results: Based on the kinetic parameters determined, pyrogallol and gallic acid are both substrates for MnP with different products and kinetics. Conclusion: Pyrogallol reacts faster and produces a more stable quinone than gallic acid. Benzoic acid is not a substrate for MnP. Full article
Show Figures

Figure 1

19 pages, 2781 KiB  
Article
The Response of Rapeseed (Brassica napus L.) Seedlings to Silver and Gold Nanoparticles
by Magdalena Tomaszewska-Sowa, Dariusz Pańka, Karol Lisiecki and Grzegorz Lemańczyk
Sustainability 2024, 16(3), 977; https://doi.org/10.3390/su16030977 - 23 Jan 2024
Cited by 3 | Viewed by 2074
Abstract
With the advancement of nanotechnology and the increasing utilization of nanoparticles (NPs), their production and release into the environment are on the rise. Consequently, it is crucial to continuously monitor the toxicity of nanoparticles for humans, animals, and plants, as well as their [...] Read more.
With the advancement of nanotechnology and the increasing utilization of nanoparticles (NPs), their production and release into the environment are on the rise. Consequently, it is crucial to continuously monitor the toxicity of nanoparticles for humans, animals, and plants, as well as their impact on the environment. This is particularly significant in relation to human health and food production, given the escalating use of nanomaterials in agriculture and horticulture. The aim of the study was to investigate the response of rapeseed seedlings to silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) over different periods of exposure. This research analyzed the impact of these nanoparticles on the biochemical response of rapeseed seedlings after 7, 14, and 21 days of growth in their presence. This study assessed the activity of guaiacol peroxidase (GPOX), pyrogallol peroxidase (PPOX), superoxide dismutase (SOD), and free protein content, as well as the interactions between key elements responsible for oxidative stress and the antioxidant response. The findings demonstrated a significant effect of AgNPs and AuNPs on stimulating the response of rapeseed seedlings, with the activity of PPOX, GPOX, and SOD being dependent on the exposure time and the type and dose of nanoparticles used. Enzyme activity increased with the length of exposure time, while the content of free protein decreased over the weeks. The most intense reaction of seedlings was observed in the case of GPOX, with the lowest activity observed in PPOX and SOD. High effects of the nanoparticle type and rate were also observed in the correlation matrix. This study suggests that a comprehensive analysis of plant reactions to nanoparticles could have a significant impact on the proper and effective use of nanoparticles in agriculture and horticulture. This could lead to the environmentally friendly production of high-quality plant material. Full article
(This article belongs to the Special Issue The Relationship between Urban Greening, Agriculture and Soil Quality)
Show Figures

Figure 1

15 pages, 1298 KiB  
Article
Seed Priming Improves Biochemical and Physiological Performance of Wheat Seedlings under Low-Temperature Conditions
by Milica Kanjevac, Biljana Bojović, Andrija Ćirić, Milan Stanković and Dragana Jakovljević
Agriculture 2023, 13(1), 2; https://doi.org/10.3390/agriculture13010002 - 20 Dec 2022
Cited by 6 | Viewed by 4251
Abstract
Wheat is a widely cultivated cereal throughout the world and stress caused by low temperatures significantly affects all stages of wheat development. Seed priming is an effective method to produce stress-resistant plants. This work was carried out to determine whether different priming methods [...] Read more.
Wheat is a widely cultivated cereal throughout the world and stress caused by low temperatures significantly affects all stages of wheat development. Seed priming is an effective method to produce stress-resistant plants. This work was carried out to determine whether different priming methods (hormo-, halo-, osmo-, and hydropriming) can increase the resistance of wheat to low-temperature conditions (10 °C). The effect of priming on growth, as well as the biochemical and physiological performance of wheat seedlings were monitored. In general, priming had a significant stimulatory effect on the monitored characteristics. Hormo- and halopriming had a positive effect on the growth, vigor index, and total soluble protein content of wheat seedlings. Additionally, hormopriming reduced the malondialdehyde (MDA) content in wheat seedlings compared to unprimed seeds. A dominant effect on antioxidant enzymes (superoxide-dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and pyrogallol peroxidase) was recorded after seed priming with KNO3. The effectiveness of priming was also confirmed through the increased content of phenolic compounds (including flavonoids), and total antioxidant activity. The HPLC analysis showed increased content of chlorogenic acid, catechin, 4-hydroxy benzoic acid, sinapic acid, rutin, naringin, and quercetin in primed wheat seedlings compared to unprimed grown seedlings under low-temperature conditions with the best effects achieved by hormo- and hydropriming. It is concluded that seed priming can be regarded as a promising approach for increasing the resistance of wheat seedlings to low-temperature stress. Full article
(This article belongs to the Special Issue Cereal Genetics, Breeding and Wide Crossing)
Show Figures

Figure 1

19 pages, 5587 KiB  
Article
Potential Allelopathic Effect of Wheat Straw Aqueous Extract on Bermudagrass Noxious Weed
by Sameera A. Alghamdi, Ashwag A. Al-Nehmi and Omer H. M. Ibrahim
Sustainability 2022, 14(23), 15989; https://doi.org/10.3390/su142315989 - 30 Nov 2022
Cited by 9 | Viewed by 2763
Abstract
Residues of several crops, including wheat, have a promising allelopathic effect on noxious weed species and thus represent eco-friendly alternatives to harmful, widely applied herbicides. The current investigation deals with the effects of wheat straw aqueous extract on the growth and biochemical aspects [...] Read more.
Residues of several crops, including wheat, have a promising allelopathic effect on noxious weed species and thus represent eco-friendly alternatives to harmful, widely applied herbicides. The current investigation deals with the effects of wheat straw aqueous extract on the growth and biochemical aspects of bermudagrass (Cynodon dactylon L.) as a model of harmful weeds for the wheat crop. The prepared aqueous extract from wheat straw was subjected to high-performance liquid chromatography (HPLC) analysis to identify and quantify phenolic and flavonoid components. In addition, the allelopathic effect of different concentrations of the extract on the germination, seedling growth, and biochemical aspects of bermudagrass was assessed. Our findings showed a significant decrease in bermudagrass seed germination percentage (ranging from 29.6 to 82.4%) and germination index (ranging from 10.07 to 32.43) in response to the extract treatments and a significant decline in all morphological growth parameters of the seedling. HPLC analysis of the extract showed the presence of seven phenolic acids and six flavonoids. The most prevalent phenolics included pyrogallol (13.75 µg/g), ferulic acid (9.82 µg/g), gallic acid (8.5 µg/g), and isoferulic acid (4.47 µg/g), while the predominant flavonoids included catechin (11.04 µg/g), luteolin (8.26 µg/g) and quercetin (7.74 µg/g). The highest extract concentrations (75% and 100%) showed a corresponding decline in the leaf content of chlorophylls a and b but a significant increase in the content of free amino acids, total protein and soluble carbohydrates. Superoxide dismutase (SOD) activity exposed a concentration-dependent reduction, while the activities of both catalase (CAT) and ascorbate peroxidase (APX) were reduced only with the highest extract concentration. The principal component analysis (PCA) showed a high correlation among the morphological growth parameters, indicating that these elements either have a common ground of variance or are inter-correlated. Accordingly, our findings suggest the possibility of combating bermudagrass weeds using the aqueous extract of wheat straw. Full article
(This article belongs to the Special Issue Biological Invasion and Biodiversity)
Show Figures

Figure 1

11 pages, 11167 KiB  
Article
Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense
by Kamal A. M. Abo-Elyousr, Magdi A. A. Mousa, Omer H. M. Ibrahim, Nouf Owdah Alshareef and Mamdouh A. Eissa
Plants 2022, 11(10), 1301; https://doi.org/10.3390/plants11101301 - 13 May 2022
Cited by 30 | Viewed by 3501
Abstract
Shrimp waste is rich in organic compounds and essential plant nutrients, e.g., calcium (Ca), and converting these wastes to organic fertilizer is important for environmental preservation and to achieve sustainable agricultural management. In the current study, Ca-rich biochar was prepared from shrimp wastes [...] Read more.
Shrimp waste is rich in organic compounds and essential plant nutrients, e.g., calcium (Ca), and converting these wastes to organic fertilizer is important for environmental preservation and to achieve sustainable agricultural management. In the current study, Ca-rich biochar was prepared from shrimp wastes (SWB) by pyrolysis at 300 °C. We hypothesized that the Ca-rich biochar will help in solving the problem of plant growth in saline soil by reducing sodium (Na) uptake and mitigating oxidative stress. The current study aimed to investigate the effect of SWB on the quality of saline sandy soil and the mechanism of salt resistance in pearl millet (Pennisetum glaucum L.). Pearl millet plants were planted in saline sandy soil (10 dS m−1) in wooden boxes (1.3 × 0.8 m size and 0.4 m height), and 5 doses (0, 1.0, 1.5, 2.0, and 2.5% (w/w)) of SWB were added. SWB application increased the soil quality and nutrient uptake by pearl millet plants. The highest rate of SWB increased the soil microbial biomass carbon and the activity of dehydrogenase enzyme by 43 and 47% compared to the control soil. SWB application reduced the uptake of sodium (Na+) and chloride (Cl) and increased the K/Na ratio in the leaf tissues. SWB addition significantly increased the activity of antioxidant enzymes, e.g., ascorbate peroxidase (APX), polyphenol oxidase (PPO), and pyrogallol peroxidases (PPX). The application of 2.5% SWB to the saline soil increased the soluble carbohydrates and proline in plant leaves by 75 and 60%, respectively, and reduced the malondialdehyde (MDA) by 32% compared to the control. SWB enhanced the antioxidant defense and mitigated oxidative stress by improving the synthesis of osmoprotectants, e.g., soluble carbohydrates and proline. Sandy saline soils in arid and semiarid areas suffer greatly from low organic matter contents, which reduces the soil quality and increases the risk of salt during plant growth. The high organic matter and calcium content (30%) in the shrimp waste-derived biochar improved the quality of the saline sandy soil, reduced the uptake of toxic salts, and increased the quality of the forage material. The addition of recycled shrimp waste to saline low-fertility soils improves soil productivity and is safe for soil health. Full article
Show Figures

Graphical abstract

17 pages, 4495 KiB  
Article
Effect of Silver Nitrate (AgNO3) and Nano-Silver (Ag-NPs) on Physiological Characteristics of Grapes and Quality during Storage Period
by Essam Elatafi and Jinggui Fang
Horticulturae 2022, 8(5), 419; https://doi.org/10.3390/horticulturae8050419 - 7 May 2022
Cited by 22 | Viewed by 4581
Abstract
The aim of this study was to evaluate the effects of silver nitrate (AgNO3) and nano-silver (Ag-NPs) on the physiological and biochemical characteristics, and quality of grape bunches during a cold storage period. For investigations, two varieties of grapes were used, [...] Read more.
The aim of this study was to evaluate the effects of silver nitrate (AgNO3) and nano-silver (Ag-NPs) on the physiological and biochemical characteristics, and quality of grape bunches during a cold storage period. For investigations, two varieties of grapes were used, Shine Muscat and Kyoho, with different concentrations of AgNO3 and Ag-NPs on post-harvest dipping. The data indicated that AgNO3 and Ag-NPs enhanced the fruits’ longevity and quality. Depending on the data analysis, it was found that the lowest weight loss value was obtained from Ag-NP treated grapes, followed by AgNO3 treated grapes, while the highest loss occurred in the control grapes. Immersion of grape bunches in Ag-NPs was the best application for maintenance of overall storage quality for both cultivars. In the same trend, treatment with Ag-NPs produced the best results for soluble solids content (SSC), titratable acidity (TA), malondialdehyde (MDA) content, polyphenol oxidase (PPO), pyrogallol peroxidase (POD), and pectin methylestraese activity (PME). It was concluded that Ag-NPs and AgNO3 were helpful in maintaining the quality of grape bunches up to 30 days, while grape bunches under control conditions were spoiled with 30 days of cold storage. Full article
Show Figures

Figure 1

14 pages, 3485 KiB  
Article
Comparison of the Impact of Different Types of nZVI on Lolium westerwoldicum
by Lidia Mielcarz-Skalska, Beata Smolińska and Małgorzata Szynkowska-Jóźwik
Agronomy 2021, 11(3), 467; https://doi.org/10.3390/agronomy11030467 - 3 Mar 2021
Cited by 2 | Viewed by 2490
Abstract
Increasing environmental pollution causes the search for new methods of purification. Currently, the remediation potential of nanoparticles is increasingly being studied. Unfortunately, there is still a lack of data on the impact of these compounds on living organisms, including plants. This study was [...] Read more.
Increasing environmental pollution causes the search for new methods of purification. Currently, the remediation potential of nanoparticles is increasingly being studied. Unfortunately, there is still a lack of data on the impact of these compounds on living organisms, including plants. This study was designed to test the effects of nanoFER 25 and nanoFER 25S iron on Lolium westerwoldicum Breakw. After cultivation of plants in a soil contaminated with nanoparticles, the biometric parameters, content of polyphenols, flavonoids, chlorophyll changes, carotenoids, anthocyanins, superoxide dismutase, catalase and pyrogallol peroxidase were studied. The conducted experiment showed that nano zero-valent iron (nZVI) is slightly taken from the soil to the plants. The iron passes to the root but there is no further transport up the plant. The content of polyphenols and flavonoids in aboveground parts of plants decreases with a simultaneous increase in roots compared to the control sample. The chlorophyll content in the leaves is strongly related to the concentration of the contaminant. Similarly, the enzyme activity of the antioxidant system in the whole plant is strongly related to the concentration of the pollutant. The amount of vegetable pigments in the leaves increases for low concentrations of contamination and then decreases at higher levels of contamination. The study has shown that both types of nanoFER are not indifferent to the plants’ growth. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 4153 KiB  
Article
Enhancing the Potentiality of Trichoderma harzianum against Pythium Pathogen of Beans Using Chamomile (Matricaria chamomilla, L.) Flower Extract
by Abeer Abdulkhalek Ghoniem, Kamar M. Abd El-Hai, Ayman Y. El-khateeb, Noha M. Eldadamony, Samy F. Mahmoud and Ashraf Elsayed
Molecules 2021, 26(4), 1178; https://doi.org/10.3390/molecules26041178 - 22 Feb 2021
Cited by 20 | Viewed by 3878
Abstract
Our present study was designed to investigate the role of both Trichoderma harzianum and chamomile (Matricaria chamomilla L.) flower extract in mutual reaction against growth of Pythium ultimum. In vitro, the activity of chamomile extract was found to reduce the radial [...] Read more.
Our present study was designed to investigate the role of both Trichoderma harzianum and chamomile (Matricaria chamomilla L.) flower extract in mutual reaction against growth of Pythium ultimum. In vitro, the activity of chamomile extract was found to reduce the radial growth of Pythium ultimum up to 30% compared to the control. Whereas, the radial growth reduction effect of T. harzianum against P. ultimum reached 81.6% after 120 h. Data also showed the productivity of total phenolics and total flavonoids by T. harzianum, was 12.18 and 6.33 mg QE/100 mL culture filtrate, respectively. However, these compounds were determined in chamomile flower extract at concentrations of 75.33 and 24.29 mg QE/100 mL, respectively. The fractionation of aqueous extract of chamomile flower using HPLC provided several polyphenolic compounds such as pyrogallol, myricetin, rosemarinic acid, catechol, p-coumaric acid, benzoic acid, chlorogenic acid and other minor compounds. In vivo, the potentiality of T. harzianum with chamomile flower extract against Pythium pathogen of bean was investigated. Data obtained showed a reduction in the percentage of rotted seed and infected seedling up to 28 and 8%, respectively. Whereas, the survival increased up to 64% compared to other ones. There was also a significant promotion in growth features, total chlorophyll, carotenoids, total polyphenols and flavonoids, polyphenol-oxidase and peroxidase enzymes compared to other ones. To the best of our knowledge, there are no reported studies that included the mutual association of fungus, T. harzianum with the extract taken from the chamomile flower against P. ultimum, either in vitro or in vivo. In conclusion, the application of both T. harzianum and/or M. chamomilla extracts in the control of bean Pythium pathogen showed significant results. Full article
Show Figures

Figure 1

14 pages, 1265 KiB  
Article
Comparison of In Vitro and In Vivo Antioxidant Activities of Six Flavonoids with Similar Structures
by Yixiu Zeng, Jiajia Song, Meimei Zhang, Hongwei Wang, Yu Zhang and Huayi Suo
Antioxidants 2020, 9(8), 732; https://doi.org/10.3390/antiox9080732 - 11 Aug 2020
Cited by 113 | Viewed by 6342
Abstract
The in vitro and in vivo antioxidant activities of six flavonoids with similar structures, including epicatechin (EC), epigallocatechin (EGC), procyanidin B2 (P), quercetin (Q), taxifolin (T), and rutin (R) were compared. The structures of the six flavonoids and their scavenging activities for 2,2-diphenyl-1-picrylhydrazyl [...] Read more.
The in vitro and in vivo antioxidant activities of six flavonoids with similar structures, including epicatechin (EC), epigallocatechin (EGC), procyanidin B2 (P), quercetin (Q), taxifolin (T), and rutin (R) were compared. The structures of the six flavonoids and their scavenging activities for 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radicals were closely related. The flavonoids decreased serum contents of malondialdehyde (MDA) and nitric oxide (NO), and increased serum total antioxidative capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels to different degrees in d-galactose-treated mice. The changes in mRNA expression of liver GSH-Px1, CAT, SOD1, and SOD2 by d-galactose were dissimilarly restored by the six flavonoids. Moreover, the six flavonoids differentially prevented the inflammatory response caused by oxidative stress by inhibiting interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels, and restoring IL-10 levels. These six flavonoids from two subclasses revealed the following antioxidant capability: P > EC, EGC > EC, Q > T, Q > R. Our results indicate that (1) the pyrogallol, dimerization, and C2=C3 double bonds of flavonoids enhanced antioxidant activity and (2) the C3 glycosylation of flavonoids attenuated antioxidant capacity. Full article
(This article belongs to the Special Issue Antioxidant Activity of “Polyphenolic Food” and Human Health)
Show Figures

Figure 1

14 pages, 2534 KiB  
Article
Co-immobilization of an Enzyme System on a Metal-Organic Framework to Produce a More Effective Biocatalyst
by Raneem Ahmad, Jordan Shanahan, Sydnie Rizaldo, Daniel S. Kissel and Kari L. Stone
Catalysts 2020, 10(5), 499; https://doi.org/10.3390/catal10050499 - 2 May 2020
Cited by 43 | Viewed by 5954
Abstract
In many respects, enzymes offer advantages over traditional chemical processes due to their decreased energy requirements for function and inherent greener processing. However, significant barriers exist for the utilization of enzymes in industrial processes due to their limited stabilities and inability to operate [...] Read more.
In many respects, enzymes offer advantages over traditional chemical processes due to their decreased energy requirements for function and inherent greener processing. However, significant barriers exist for the utilization of enzymes in industrial processes due to their limited stabilities and inability to operate over larger temperature and pH ranges. Immobilization of enzymes onto solid supports has gained attention as an alternative to traditional chemical processes due to enhanced enzymatic performance and stability. This study demonstrates the co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP) as an enzyme system on Metal-Organic Frameworks (MOFs), UiO-66 and UiO-66-NH2, that produces a more effective biocatalyst as shown by the oxidation of pyrogallol. The two MOFs utilized as solid supports for immobilization were chosen to investigate how modifications of the MOF linker affect stability at the enzyme/MOF interface and subsequent activity of the enzyme system. The enzymes work in concert with activation of HRP through the addition of glucose as a substrate for GOx. Enzyme immobilization and leaching studies showed HRP/GOx@UiO-66-NH2 immobilized 6% more than HRP/GOx@UiO-66, and leached only 36% of the immobilized enzymes over three days in the solution. The enzyme/MOF composites also showed increased enzyme activity in comparison with the free enzyme system: the composite HRP/GOx@UiO-66-NH2 displayed 189 U/mg activity and HRP/GOx@UiO-66 showed 143 U/mg while the free enzyme showed 100 U/mg enzyme activity. This increase in stability and activity is due to the amine group of the MOF linker in HRP/GOx@UiO-66-NH2 enhancing electrostatic interactions at the enzyme/MOF interface, thereby producing the most stable biocatalyst material in solution. The HRP/GOx@UiO-66-NH2 also showed long-term stability in the solid state for over a month at room temperature. Full article
(This article belongs to the Special Issue Multienzymatic Catalysis and/or Enzyme Co-immobilization)
Show Figures

Graphical abstract

Back to TopTop