Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Shrimp Waste-Derived Biochar (SWB)
2.2. Experimental Setup and Treatments
2.3. Soil and Plant Samples Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil Quality and Nutrients Uptake
3.2. Growth and Forage Quality of Pearl Millet
3.3. Activities of Antioxidant Enzymes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadivala, V.H.; Ramani, V.P.; Patel, P.K. Effects of multi-micronutrient mixture on growth, yield and quality of the summer pearl millet (Pennisetum glaucum L.). Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 783–790. [Google Scholar] [CrossRef]
- Taylor, J.R. Sorghum and millets: Taxonomy, history, distribution, and production. In Sorghum and Millets; AACC International Press: Washington, DC, USA, 2019; pp. 1–21. [Google Scholar]
- Singh, M.; Hari, D.U. Genetic and Genomic Resources for Grain Cereals Improvement; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar] [CrossRef]
- Ding, Z.; Majrashi, M.A.; Ghoneim, A.M.; Ali, E.F.; Eissa, M.A.; Shal, R.E. Irrigation and biochar effects on pearl millet and kinetics of ammonia volatilization from saline sandy soils. J. Soil Sci. Plant Nutr. 2022, 22, 12–13. [Google Scholar] [CrossRef]
- Gupta, S.K.; Patil, K.S.; Rathore, A.; Yadav, D.V.; Sharma, L.D.; Mungra, K.D.; Patil, H.T.; Gupta, S.K.; Kumar, R.; Chaudhary, V.; et al. Identification of heterotic groups in South-Asian-bred hybrid parents of pearl millet. Theor. Appl. Genet. 2020, 133, 873–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Z.; Alharbi, S.; Almaroai, Y.A.; Eissa, M.A. Improving quality of metal-contaminated soils by some halophyte and non-halophyte forage plants. Sci. Total Environ. 2021, 764, 142885. [Google Scholar] [CrossRef] [PubMed]
- Shankar, V.; Evelin, H. Strategies for reclamation of saline soils. In Microorganisms in Saline Environments: Strategies and Functions; Giri, B., Varma, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 439–449. [Google Scholar] [CrossRef]
- Pulido-Bosch, A.; Rigol-Sanchez, J.P.; Vallejos, A.; Andreu, J.M.; Ceron, J.C.; Molina-Sanchez, L.; Sola, F. Impacts of agricultural irrigation on groundwater salinity. Environ. Earth Sci. 2018, 77, 197. [Google Scholar] [CrossRef] [Green Version]
- Ali, E.F.; Al-Yasi, H.M.; Kheir, A.M.S.; Eissa, M.A. Effect of biochar on CO2 sequestration and productivity of pearl millet plants grown in saline sodic soils. J. Soil Sci. Plant Nutr. 2021, 21, 897–907. [Google Scholar] [CrossRef]
- Shahzad, B.; Fahad, S.; Tanveer, M.; Saud, S.; Khan, I.A. Plant responses and tolerance to salt stress. In Approaches for Enhancing Abiotic Stress Tolerance in Plants; CRC Press: Boca Raton, FL, USA, 2019; pp. 61–78. [Google Scholar]
- Zeeshan, M.; Lu, M.; Sehar, S.; Holford, P.; Wu, F. Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy 2020, 10, 127. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.C.; Moumita; Fujita, M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Rekaby, S.A.; Awad, M.Y.; Hegab, S.A.; Eissa, M.A. Effect of some organic amendments on barley plants under saline condition. J. Plant Nutr. 2020, 43, 1840–1851. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Heydarpour, E. Sequestration of organic carbon influenced by the application of straw residue and farmyard manure in two different soils. Int. Agrophys. 2014, 28, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Leogrande, R.; Vitti, C. Use of organic amendments to reclaim saline and sodic soils: A review. Arid. Land Res. Manag. 2019, 33, 1–21. [Google Scholar] [CrossRef]
- Ding, Z.; Zhou, Z.; Lin, X.; Zhao, F.; Wang, B.; Lin, F.; Ge, Y.; Eissa, M.A. Biochar impacts on NH3-volatilization kinetics and growth of sweet basil (Ocimum basilicum L.) under saline conditions. Ind. Crop Prod. 2020, 157, 112903. [Google Scholar] [CrossRef]
- Liu, D.; Ding, Z.; Ali, E.F.; Kheir, A.M.; Eissa, M.A.; Ibrahim, O.H. Biochar and compost enhance soil quality and growth of roselle (Hibiscus sabdariffa L.) under saline conditions. Sci. Rep. 2021, 11, 8739. [Google Scholar] [CrossRef] [PubMed]
- Gomah, H.H.; Ahmed, M.M.; Abdalla, R.M.; Farghly, K.A.; Eissa, M.A. Utilization of some organic wastes as growing media for lettuce (Lactuca sativa L.) plants. J. Plant Nutr. 2020, 43, 2092–2105. [Google Scholar] [CrossRef]
- Kazemi, R.; Ronaghi, A.; Yasrebi, J.; Ghasemi-Fasaei, R.; Zarei, M. Effect of Shrimp Waste–Derived Biochar and Arbuscular Mycorrhizal Fungus on Yield, Antioxidant Enzymes, and Chemical Composition of Corn Under Salinity Stress. J. Soil Sci. Plant Nutr. 2019, 19, 758–770. [Google Scholar] [CrossRef]
- Prakash, D.; Nawani, N.N.; Kapadris, B.P. Microbial mining of value added products from seafood waste and their applications. In Microorganisms in Environmental Management; Satyanarayana, T., Johri, B.N., Prakash, A., Eds.; Springer: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Whittington, J.; Smith, F.A. Calcium-Salinity İnteractions Affect İon Transport in Chara Corallina. Plant Cell Environ. 1992, 15, 727–733. [Google Scholar] [CrossRef]
- Burt, R. Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report, No. 42, Version 4.0; Natural Resources Conservation Service, United States Department of Agriculture: Washington, DC, USA, 2004.
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological materials. Commun. Soil Sci. Plan. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA-Natural Resources Conservation Services: Washington, DC, USA, 2016.
- Jenkinson, D.S.; Brookes, P.C.; Powlson, D.S. Measuring soil microbial biomass. Soil Biol. Biochem. 2004, 36, 5–7. [Google Scholar] [CrossRef]
- Serra-Wittling, C.; Houot, S.; Barriuso, E. Soil enzymatic response to addition of municipal solid-waste compost. Biol. Fertil. Soils 1995, 20, 226–236. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Chen, G.X.; Asada, K. Inactivation of ascorbate peroxidase by thiols requires hydrogen peroxide. Plant Cell Physiol. 1992, 33, 117–123. [Google Scholar] [CrossRef]
- Sheyhakinia, S.; Bamary, Z.; Einali, A.; Valizadeh, J. The induction of salt stress tolerance by jasmonic acid treatment in roselle (Hibiscus sabdariffa L.) seedlings through enhancing antioxidant enzymes activity and metabolic changes. Biologia 2020, 75, 681–692. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madhava Rao, K.V.; Sresty, T.V.S. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 2000, 157, 113–128. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Ghassemi-Golezani, K. Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. Ecotox. Environ. Saf. 2021, 211, 111904. [Google Scholar] [CrossRef]
- Ding, Z.; Kheir, A.M.; Ali, M.G.; Ali, O.A.; Abdelaal, A.I.; Zhou, Z.; Wang, B.; Liu, B.; He, Z. The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 2020, 10, 2736. [Google Scholar] [CrossRef] [Green Version]
- Shabala, S.; Demidchik, V.; Shabala, L.; Cuin, T.A.; Smith, S.J.; Miller, A.J.; Davies, J.M.; Newman, I.A. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol. 2006, 141, 1653–1665. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, R.; Tufariello, J.; Bisson, M.A. Effect of Divalent Cations on Na+ Permeability of Chara Corallina and Freshwater Grown Chara Buckellii, J. Experim. Botany 1989, 40, 875–881. [Google Scholar] [CrossRef]
- Alam, R.; Das, D.K.; Islam, M.R.; Murata, Y.; Hoque, M.A. Exogenous proline enhances nutrient uptake and confers tolerance to salt stress in maize (Zea mays L.). Prog. Agric. 2016, 27, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Nigussie, A.; Kissi, E.; Misganaw, M.; Ambaw, G. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am. Eur. J. Agric. Environ. Sci. 2012, 12, 369–376. [Google Scholar]
- Yao, T.; Zhang, W.; Gulaqa, A.; Cui, Y.; Zhou, Y.; Weng, W.; Wang, X.; Liu, Q.; Jin, F. Effects of peanut shell biochar on soil nutrients, soil enzyme activity, and rice yield in heavily saline-sodic paddy field. J. Soil Sci Plant Nutr. 2021, 21, 655–664. [Google Scholar] [CrossRef]
- Shi, S.H.; Tian, L.; Nasir, F.; Bahadur, A.; Batool, A.; Luo, S.S.; Yang, F.; Wang, Z.C.; Tian, C.J. Response of microbial communities and enzyme activities to amendments in saline-alkaline soils. Appl. Soil Ecol. 2019, 135, 16–24. [Google Scholar] [CrossRef]
- Ameloot, N.; Neve, S.D.; Jegajeevagan, K.; Yildiz, G.; Buchan, D.; Funkuin, Y.N.; Prins, W.; Bouckaert, L.; Sleutel, S. Shortterm CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol. Biochem. 2013, 57, 401–410. [Google Scholar] [CrossRef]
- Beheshti, M.; Etesami, H.; Alikhani, H.A. Effect of different biochars amendment on soil biological indicators in a calcareous soil. Environ. Sci. Pollut. Res. 2018, 25, 14752–14761. [Google Scholar] [CrossRef] [PubMed]
- Mierzwa-Hersztek, M.; Wolny-Koładka, K.; Gondek, K.; Gałązka, A.; Gawryjołek, K. Effect of coapplication of biochar and nutrients on microbiocenotic composition, dehydrogenase activity index and chemical properties of sandy soil. Waste Biomass Valor. 2020, 11, 3911–3923. [Google Scholar] [CrossRef] [Green Version]
- Farhangi-Abriz, S.; Torabian, S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol. Environ. Saf. 2017, 137, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.C.; Frye, S.; Gale, N.; Garmon, M.; Launchbury, R.; Machado, N.; Melamed, S.; Murray, J.; Petroff, A.; Winsborough, C. Biochar mitigates negative effects of salt additions on two herbaceous plant species. J. Environ. Manag. 2013, 129, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Eissa, M.A. Effect of sugarcane vinasse and EDTA on cadmium phytoextraction by two saltbush plants. Environ. Sci. Pollut. Res. 2016, 23, 10247–10254. [Google Scholar] [CrossRef]
- Alam, M.Z.; Carpenter-Boggs, L.; Hoque, M.A.; Ahammed, G.J. Effect of soil amendments on antioxidant activity and photosynthetic pigments in pea crops grown in arsenic contaminated soil. Heliyon 2020, 6, e05475. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Wu, G.; Shen, H.; Fu, G.; Wang, Y. Combined effects of biochar and chicken manure on maize (Zea mays L.) growth, lead uptake and soil enzyme activities under lead stress. Peer J. 2021, 9, e11754. [Google Scholar] [CrossRef] [PubMed]
- Eissa, M.A.; Nafady, M.; Ragheb, H.; Attia, K. Effect of soil moisture and forms of phosphorus fertilizers on corn production under sandy calcareous soil. World Appl. Sci. J. 2013, 26, 540–547. [Google Scholar]
- Tian, C.; Zhou, X.; Ding, Z.; Liu, Q.; Xie, G.; Peng, J.; Eissa, M.A. Controlled-release N fertilizer to mitigate ammonia volati-lization from double-cropping rice. Nutr. Cycl. Agroecos. 2021, 119, 123–137. [Google Scholar] [CrossRef]
- Youssef, M.A.; Eissa, M.A. Comparison between organic and inorganic nutrition for tomato. J. Plant Nutr. 2017, 40, 1900–1907. [Google Scholar] [CrossRef]
- Eissa, M.A. Phosphate and organic amendments for safe production of okra from metal-contaminated soils. Agron. J. 2016, 108, 540–547. [Google Scholar] [CrossRef]
N (%) | P (%) | K (%) | Ca (%) | Organic-C (%) | pH1:5 | EC1:5 (dS m−1) | Yield (%) |
---|---|---|---|---|---|---|---|
6.4 ± 0.1 | 5.2 ± 0.2 | 3.2 ± 0.1 | 30 ± 2 | 40 ± 3 | 6.20 ± 0.07 | 3.50 ± 0.05 | 87 |
Soil Properties | Value |
---|---|
Clay (g kg−1) | 20 ± 2 |
Silt (g kg−1) | 80 ± 5 |
Sand (g kg−1) | 900 ± 23 |
Texture | Sandy |
CaCO3 (g kg−1) | 70 ± 6 |
CEC (cmol kg−1) | 15 ± 0 |
pH (1:2) | 8.00± 0.05 |
Salinity (dS m−1) | 10.0 ± 0.4 |
Organic carbon (g kg−1) | 11.8 ± 0.1 |
Total N (mg kg−1) | 350 ± 8 |
Total P (mg kg−1) | 1780 ± 35 |
Total K (mg kg−1) | 880 ± 20 |
Available N (mg kg−1) | 40 ± 4 |
Available P (mg kg−1) | 5.8 ± 0.2 |
Available K (mg kg−1) | 200 ± 12 |
SWB Rates (g kg−1) | pH | Organic-C (g kg−1) | Available-N (mg kg−1) | Available-P (mg kg−1) | Available-K (mg kg−1) | MBC (mg C kg−1) | DHS (μg TPF g−1 h) |
---|---|---|---|---|---|---|---|
0 | 8.02 ± 0.1 a | 6.2 ± 0.2 b | 48 ± 0.1 b | 5.6 ± 0.1 b | 250 ± 0.07 b | 300 ± 8 d | 150 ± 16 d |
5 | 8.00 ± 0.1 a | 6.3 ± 0.2 b | 55 ± 0.2 a | 6.8 ± 0.2 a | 260 ± 0.03 a | 350 ± 17 c | 170 ± 16 c |
10 | 7.73 ± 0.2 b | 6.5 ± 0.2 ab | 56 ± 0.1 a | 7.0 ± 0.3 a | 265 ± 0.01 a | 380 ± 8 b | 200 ± 16 b |
15 | 7.64 ± 0.1 b | 6.6 ± 0.1 a | 55 ± 0.2 a | 7.1 ± 0.3 a | 268 ± 0.04 a | 390 ± 15 b | 205 ± 16 b |
20 | 7.48 ± 0.2 c | 6.7 ± 0.2 a | 57 ± 0.1 a | 7.5 ± 0.2 a | 270 ± 0.01 a | 400 ± 12 b | 215 ± 16 a |
25 | 7.52 ± 0.2 c | 6.8 ± 0.1 a | 60 ± 0.1 a | 7.4 ± 0.3 a | 268 ± 0.05 a | 430 ± 16 a | 220 ± 16 a |
Biochar Rates (g kg−1) | N (%) | P (%) | K (%) | Ca (%) | Na (%) | Cl (%) | K/Na |
---|---|---|---|---|---|---|---|
0 | 1.5 ± 0.1 b | 0.18 ± 0.04 b | 1.7 ± 0.1 b | 1.0 ± 0.1 b | 1.38 ± 0.07 a | 0.21 ± 0.07 a | 1.23 ± 0.07 b |
5 | 3.1 ± 0.1 a | 0.31 ± 0.05 a | 2.7 ± 0.2 a | 2.3 ± 0.2 a | 1.25 ± 0.03 b | 0.15 ± 0.03 b | 2.16 ± 0.07 a |
10 | 3.3 ± 0.2 a | 0.35 ± 0.06 a | 2.8 ± 0.1 a | 2.5 ± 0.3 a | 1.22 ± 0.01 c | 0.12 ± 0.01 c | 2.30 ± 0.07 a |
15 | 3.4 ± 0.1 a | 0.34 ± 0.07 a | 2.8 ± 0.2 a | 2.7 ± 0.3 a | 1.11 ± 0.04 c | 0.13 ± 0.04 c | 2.52 ± 0.07 a |
20 | 3.7 ± 0.2 a | 0.38 ± 0.09 a | 3.0 ± 0.1 a | 2.8 ± 0.2 a | 1.10 ± 0.01 c | 0.09 ± 0.01 c | 2.73 ± 0.07 a |
25 | 3.5 ± 0.2 a | 0.39 ± 0.05 a | 3.3 ± 0.1 a | 2.8 ± 0.3 a | 1.00 ± 0.05 c | 0.07 ± 0.05 c | 3.30 ± 0.07 a |
Biochar Rates (g kg−1) | Chlorophyll-a (mg g plant−1) | Chlorophyll-b (mg g plant−1) | Plant Height (cm) | Leaf Area Index (m2 m–2) | Shoot Fresh Weight | Shoot Dry Weight |
---|---|---|---|---|---|---|
0 | 2.70 ± 0.09 b | 1.55 ± 0.10 c | 68 ± 2 c | 5.5 ± 0.3 c | 200 ± 12 d | 100 ± 6 d |
5 | 3.10 ± 0.10 a | 1.85 ± 0.05 b | 75 ± 2 b | 6.7 ± 0.5 b | 220 ± 8 c | 123 ± 5 c |
10 | 3.20 ± 0.10 a | 1.90 ± 0.12 b | 80 ± 4 a | 7.0 ± 0.6 ab | 235 ± 15 b | 130 ± 6 b |
15 | 3.15 ± 0.14 a | 2.00 ± 0.14 a | 82 ± 3 a | 7.2 ± 0.5 a | 250 ± 22 a | 150 ± 8 a |
20 | 3.20 ± 0.09 a | 2.10 ± 0.17 a | 83 ± 2 a | 7.1 ± 0.4 ab | 255 ± 20 a | 154 ± 4 a |
25 | 3.30 ± 0.11 a | 2.05 ± 0.11 a | 85 ± 2 a | 7.3 ± 0.4 a | 260 ± 18 a | 152 ± 5 a |
Biochar Rates (g kg−1) | Leaves/Stems | Crude Protein (%) | Ash (%) | Crude Fiber (%) |
---|---|---|---|---|
0 | 0.49 ± 0.2 b | 17 ± 1 c | 8.0 ± 0.2 d | 35 ± 2 a |
5 | 0.55 ± 0.3 a | 19 ± 1 b | 10.0 ± 0.4 c | 32 ± 2 b |
10 | 0.54 ± 0.1 a | 21 ± 2 ab | 11.0 ± 0.3 b | 31 ± 2 b |
15 | 0.56 ± 0.2 a | 21 ± 2 ab | 11.6 ± 0.1 ab | 32 ± 2 b |
20 | 0.57 ± 0.2 a | 23 ± 2 a | 12.0 ± 0.2 a | 30 ± 2 b |
25 | 0.55 ± 0.2 a | 22 ± 2 a | 12.1 ± 0.2 a | 30 ± 2 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abo-Elyousr, K.A.M.; Mousa, M.A.A.; Ibrahim, O.H.M.; Alshareef, N.O.; Eissa, M.A. Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense. Plants 2022, 11, 1301. https://doi.org/10.3390/plants11101301
Abo-Elyousr KAM, Mousa MAA, Ibrahim OHM, Alshareef NO, Eissa MA. Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense. Plants. 2022; 11(10):1301. https://doi.org/10.3390/plants11101301
Chicago/Turabian StyleAbo-Elyousr, Kamal A. M., Magdi A. A. Mousa, Omer H. M. Ibrahim, Nouf Owdah Alshareef, and Mamdouh A. Eissa. 2022. "Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense" Plants 11, no. 10: 1301. https://doi.org/10.3390/plants11101301
APA StyleAbo-Elyousr, K. A. M., Mousa, M. A. A., Ibrahim, O. H. M., Alshareef, N. O., & Eissa, M. A. (2022). Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense. Plants, 11(10), 1301. https://doi.org/10.3390/plants11101301