Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = pyridine–quinoline ligands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2026 KB  
Article
Bis-Homoleptic Metal Complexes of a Tridentate Ligand with a Central Anionic Sulfonamide Donor
by Mathias L. Skavenborg and Christine J. McKenzie
Molecules 2025, 30(16), 3378; https://doi.org/10.3390/molecules30163378 - 14 Aug 2025
Viewed by 529
Abstract
Redox-active manganese, iron, and nickel complexes of pyridin-2-ylsulfonyl-quinolin-8-yl-amide (psq) provide information for assessing the electronic and structural properties of this new tridentate ligand. Single-crystal X-ray structures show that psq coordinates in a meridional mode with a trigonal geometry for the central deprotonated sulfonamide [...] Read more.
Redox-active manganese, iron, and nickel complexes of pyridin-2-ylsulfonyl-quinolin-8-yl-amide (psq) provide information for assessing the electronic and structural properties of this new tridentate ligand. Single-crystal X-ray structures show that psq coordinates in a meridional mode with a trigonal geometry for the central deprotonated sulfonamide N donor. With the structures described here, there are now five structures known for hexacoordinated bis-homoleptic complexes of psq. All show the same geometry. No fac isomer, although feasible, has been structurally characterized. The geometrical parameters for [M(psq)2]0/+ are surprisingly close to those for archetypical [M(terpy)2]2+/3+ (terpy =2,2′:6′,2″-terpyridine) complexes, with octahedral distortion parameters indicating a geometry that is slightly closer to a regular octahedral. The Fe(II) complex, however, bucks this trend, consistent with the magnetic susceptibility measurements indicating a high-spin S = 5/2 state, which stands in contrast to low-spin [Fe(terpy)2]2+. This is rationalized by the trans secondary sulfonamide donors being weaker π acceptors compared to central terpy pyridine donors. An overall two-integer reduced charge for the complexes is consistent with the CoII/CoI, MIII/MII M = Mn, Fe, Co, and MnIV/MnIII redox events being ca. 600–900 mV more cathodic compared to the corresponding events for [M(terpy)2]2+. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

19 pages, 4231 KB  
Article
Design and Synthesis of a New Photoluminescent 2D Coordination Polymer Employing a Ligand Derived from Quinoline and Pyridine
by Andrzej Kochel, Małgorzata Hołyńska, Aneta Jezierska and Jarosław J. Panek
Crystals 2025, 15(8), 691; https://doi.org/10.3390/cryst15080691 - 30 Jul 2025
Viewed by 821
Abstract
Application of organic ligand 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate with N/O donor atoms enabled solvothermal synthesis of a 2D Cu(II) coordination polymer, {Cu(L)BF4}n (L = deprotonated 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate). Both the ligand and its coordination polymer have been characterized. The condensed ring system of the applied [...] Read more.
Application of organic ligand 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate with N/O donor atoms enabled solvothermal synthesis of a 2D Cu(II) coordination polymer, {Cu(L)BF4}n (L = deprotonated 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate). Both the ligand and its coordination polymer have been characterized. The condensed ring system of the applied ligand promotes the formation of coordination polymers rather than mononuclear species. The obtained 2D coordination polymer is photoluminescent with bathochromic/hypsochromic shifts in ligand absorption bands leading to a single absorption band at 465 nm. Density Functional Theory was employed to provide a theoretical description of the possible conformational changes within the ligand, with emphasis on the difference between the ligand conformation in its hydrochloride salt and in the polymer. Two models of polymer fragments were constructed to describe the electronic structure and non-covalent interactions. The Quantum Theory of Atoms in Molecules (QTAIM) was applied for this purpose. Using the obtained results, we were able to develop potential energy profiles for various conformations of the ligand. For the set of the studied systems, we detected non-covalent interactions, which are responsible for the spatial conformation. Concerning the models of polymers, electron spin density distribution has been visualized and discussed. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

26 pages, 5873 KB  
Article
Pyridine–Quinoline and Biquinoline-Based Ruthenium p-Cymene Complexes as Efficient Catalysts for Transfer Hydrogenation Studies: Synthesis and Structural Characterization
by Nikolaos Zacharopoulos, Gregor Schnakenburg, Eleni I. Panagopoulou, Nikolaos S. Thomaidis and Athanassios I. Philippopoulos
Molecules 2025, 30(14), 2945; https://doi.org/10.3390/molecules30142945 - 11 Jul 2025
Viewed by 898
Abstract
Searching for new and efficient transfer hydrogenation catalysts, a series of new organometallic ruthenium(II)-arene complexes of the formulae [Ru(η6-p-cymene)(L)Cl][PF6] (18) and [Ru(η6-p-cymene)(L)Cl][Ru(η6-p-cymene)Cl3] ( [...] Read more.
Searching for new and efficient transfer hydrogenation catalysts, a series of new organometallic ruthenium(II)-arene complexes of the formulae [Ru(η6-p-cymene)(L)Cl][PF6] (18) and [Ru(η6-p-cymene)(L)Cl][Ru(η6-p-cymene)Cl3] (911) were synthesized and fully characterized. These were prepared from the reaction of pyridine–quinoline and biquinoline-based ligands (L) with [Ru(η6-p-cymene)(μ-Cl)Cl]2, in 1:2 and 1:1, metal (M) to ligand (L) molar ratios. Characterization includes a combination of spectroscopic methods (FT-IR, UV-Vis, multi nuclear NMR), elemental analysis and single-crystal X-ray crystallography. The pyridine–quinoline organic entities encountered, were prepared in high yield either via the thermal decarboxylation of the carboxylic acid congeners, namely 2,2′-pyridyl-quinoline-4-carboxylic acid (pqca), 8-methyl-2,2′-pyridyl-quinoline-4-carboxylic acid (8-Mepqca), 6′-methyl-2,2′-pyridyl-quinoline-4-carboxylic acid (6′-Mepqca) and 8,6′-dimethyl-2,2′-pyridyl-quinoline-4-carboxylic acid (8,6′-Me2pqca), affording the desired ligands pq, 8-Mepq, 6′-Mepq and 8,6′-Me2pq, or by the classical Friedländer condensation, to yield 4,6′-dimethyl-2,2′-pyridyl-quinoline (4,6′-Me2pq) and 4-methyl-2,2′-pyridyl-quinoline (4-Mepq), respectively. The solid-state structures of complexes 14, 6, 8 and 9 were determined showing a distorted octahedral coordination geometry. The unit cell of 3 contains two independent molecules (Ru-3), (Ru′-3) in a 1:1 ratio, due to a slight rotation of the arene ring. All complexes catalyze the transfer hydrogenation of acetophenone, using 2-propanol as a hydrogen donor in the presence of KOiPr. Among them, complexes 1 and 5 bearing methyl groups at the 8 and 4 position of the quinoline moiety, convert acetophenone to 1-phenylethanol quantitatively, within approximately 10 min with final TOFs of 1600 h−1. The catalytic performance of complexes 111, towards the transfer hydrogenation of p-substituted acetophenone derivatives and benzophenone, ranges from moderate to excellent. An inner-sphere mechanism has been suggested based on the detection of ruthenium(II) hydride species. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Graphical abstract

14 pages, 3489 KB  
Article
Luminescent Iridium–Terpyridine Complexes with Various Bis-Cyclometalated Ligands
by Ko Ikeda, Natsumi Yano, Makoto Handa and Yusuke Kataoka
Molecules 2025, 30(1), 193; https://doi.org/10.3390/molecules30010193 - 6 Jan 2025
Cited by 1 | Viewed by 1470
Abstract
A series of luminescent bis-cyclometalated iridium complexes with 2,2′:6′,2″-terpyridine (tpy), [Ir(C^N)2(tpy)]PF6 (C^N = 2-phenylpyridinate (ppy) for 1; benzo[h]quinolinate (bzq) for 2; 1-phenylisoquinolinate (piq) for 3; and 2-phenylbenzothiazolate (pbt) for 4), have been synthesized [...] Read more.
A series of luminescent bis-cyclometalated iridium complexes with 2,2′:6′,2″-terpyridine (tpy), [Ir(C^N)2(tpy)]PF6 (C^N = 2-phenylpyridinate (ppy) for 1; benzo[h]quinolinate (bzq) for 2; 1-phenylisoquinolinate (piq) for 3; and 2-phenylbenzothiazolate (pbt) for 4), have been synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that the tpy ligands of 14 are coordinated to the iridium center in a bidentate fashion, and the uncoordinated pendant pyridine rings in the tpy ligands of 14 form intramolecular π-π stacking interactions with a phenyl moiety of C^N ligands. In addition, the pendant pyridine ring in the tpy ligand of 1 forms an intramolecular hydrogen bonding interaction, unlike in 24. Of interest, the photophysical properties of 14 are strongly influenced by the C^N ligands; 1 shows a luminescence band at 572 nm, with a short lifetime (τ) value of 80 nsec and a lower absolute luminescence quantum yield (Φ) of 3.72%, whereas 3 exhibits an intense luminescence band at 588 nm with a long τ value of 1965 nsec and a moderate Φ value of 9.57%. The density functional theory calculations revealed that the luminescence originates from the triplet metal–ligand to ligand charge transfer (3MLL′CT) excited state. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

21 pages, 5007 KB  
Article
Ruthenium-p-Cymene Complexes Incorporating Substituted Pyridine–Quinoline Ligands with –Br (Br-Qpy) and –Phenoxy (OH-Ph-Qpy) Groups for Cytotoxicity and Catalytic Transfer Hydrogenation Studies: Synthesis and Characterization
by Alexandros Dritsopoulos, Nikolaos Zacharopoulos, Aigli-Eleonora Peyret, Eftychia Karampella, Nikolaos Tsoureas, Antigoni Cheilari, Christina Machalia, Evangelia Emmanouilidou, Aikaterini K. Andreopoulou, Joannis K. Kallitsis and Athanassios I. Philippopoulos
Chemistry 2024, 6(4), 773-793; https://doi.org/10.3390/chemistry6040046 - 21 Aug 2024
Cited by 4 | Viewed by 2908
Abstract
Organometallic ruthenium complexes with p-cymene = 1-methyl-4-(1-methylethyl)-benzene and N^N = bidentate polypyridyl ligands constitute interesting candidates with biological and catalytic properties. Towards this aim, we have synthesized four ruthenium(II)–arene complexes of the type [Ru(η6-p-cymene)(N^N)Cl][X] (N^N = Br-Qpy = [...] Read more.
Organometallic ruthenium complexes with p-cymene = 1-methyl-4-(1-methylethyl)-benzene and N^N = bidentate polypyridyl ligands constitute interesting candidates with biological and catalytic properties. Towards this aim, we have synthesized four ruthenium(II)–arene complexes of the type [Ru(η6-p-cymene)(N^N)Cl][X] (N^N = Br-Qpy = 6-bromo-4-phenyl-2-pyridin-2-yl-quinoline, X = Cl (1a); PF6 (1b); N^N = OH-Ph-Qpy = 4-(4-phenyl-2-(pyridin-2-yl)quinolin-6-yl)phenol, X = Cl (2a); PF6 (2b)). This is the first report of ruthenium(II) p-cymene complexes incorporating substituted pyridine–quinoline ligands, with –Br and –C6H4OH groups in the 6-position of quinoline. We also refer to the cytotoxicity of the ligands and their possible effect of modulating the activity of the ruthenium(II) complexes. These were characterized by a combination of spectroscopic methods (ATR-IR, UV–Vis, multinuclear NMR), elemental analysis, and conductivity measurements. The solid-state structure of 2b, determined by single-crystal X-ray diffraction, reveals a three-legged piano-stool geometry. The in vitro cytotoxic activities of the new complexes were evaluated in HEK293T (human embryonic kidney cells) and in HeLa cells (cervical cancer cells), via the MTT assay. Poor in vitro anticancer activities were observed for the HeLa cancer cell line, with 2a being the most potent (IC50 = 75 μΜ). The cytotoxicity of Br-Qpy in HEK293T is comparable to that of cisplatin. Both complexes 1a and 1b successfully catalyze the transfer hydrogenation of benzophenone to benzhydrol by 2-propanol at 82 °C. The catalytic performance of 1a in the ratio of S:Cat:B = 400:1:40 (S = substrate, Cat = catalyst, B = base = KOiPr) leads to a conversion of 94%, within 3 h of reaction. Presumably, catalytic transformation takes place via ruthenium(II) hydride species being the active catalyst. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Graphical abstract

21 pages, 5417 KB  
Article
Ruthenium p-Cymene Complexes Incorporating Substituted Pyridine–Quinoline-Based Ligands: Synthesis, Characterization, and Cytotoxic Properties
by Afroditi Kokkosi, Elpida Garofallidou, Nikolaos Zacharopoulos, Nikolaos Tsoureas, Konstantina Diamanti, Nikolaos S. Thomaidis, Antigoni Cheilari, Christina Machalia, Evangelia Emmanouilidou and Athanassios I. Philippopoulos
Molecules 2024, 29(13), 3215; https://doi.org/10.3390/molecules29133215 - 6 Jul 2024
Cited by 5 | Viewed by 3452
Abstract
Organometallic complexes of the formula [Ru(N^N)(p-cymene)Cl][X] (N^N = bidentate polypyridyl ligands, p-cymene = 1-methyl-4-(1-methylethyl)-benzene, X = counter anion), are currently studied as possible candidates for the potential treatment of cancer. Searching for new organometallic compounds with good to moderate cytotoxic [...] Read more.
Organometallic complexes of the formula [Ru(N^N)(p-cymene)Cl][X] (N^N = bidentate polypyridyl ligands, p-cymene = 1-methyl-4-(1-methylethyl)-benzene, X = counter anion), are currently studied as possible candidates for the potential treatment of cancer. Searching for new organometallic compounds with good to moderate cytotoxic activities, a series of mononuclear water-soluble ruthenium(II)–arene complexes incorporating substituted pyridine–quinoline ligands, with pending -CH2OH, -CO2H and -CO2Me groups in the 4-position of quinoline ring, were synthesized, for the first time, to study their possible effect to modulate the activity of the ruthenium p-cymene complexes. These include the [Ru(η6-p-cymene)(pqhyme)Cl][X] (X = Cl (1-Cl), PF6 (1-PF6), pqhyme = 4-hydroxymethyl-2-(pyridin-2-yl)quinoline), [Ru(η6-p-cymene)(pqca)Cl][Cl] ((2-Cl), pqca = 4-carboxy-2-(pyridin-2-yl)quinoline), and [Ru(η6-p-cymene)(pqcame)Cl][X] (X = Cl (3-Cl), PF6 (3-PF6), pqcame = 4-carboxymethyl-2-(pyridin-2-yl)quinoline) complexes, respectively. Identification of the complexes was based on multinuclear NMR and ATR-IR spectroscopic methods, elemental analysis, conductivity measurements, UV–Vis spectroscopic, and ESI-HRMS techniques. The solid-state structures of 1-PF6 and 3-PF6 have been elucidated by single-crystal X-ray diffraction revealing a three-legged piano stool geometry. This is the first time that the in vitro cytotoxic activities of these complexes are studied. These were conducted in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) via the MTT assay. The results show poor in vitro anticancer activities for the HeLa cancer cell lines and 3-Cl proved to be the most potent (IC50 > 80 μΜ). In both cell lines, the cytotoxicity of the ligand precursor pqhyme is significantly higher than that of cisplatin. Full article
Show Figures

Graphical abstract

25 pages, 5074 KB  
Article
Evaluation of DNA and BSA-Binding, Nuclease Activity, and Anticancer Properties of New Cu(II) and Ni(II) Complexes with Quinoline-Derived Sulfonamides
by Tamara Liana Topală, Ionel Fizeşan, Andreea-Elena Petru, Alfonso Castiñeiras, Andreea Elena Bodoki, Luminița Simona Oprean, Marcos Escolano and Gloria Alzuet-Piña
Inorganics 2024, 12(6), 158; https://doi.org/10.3390/inorganics12060158 - 1 Jun 2024
Cited by 4 | Viewed by 1837
Abstract
Four complexes of essential metal ions, Cu(II) and Ni(II), with the new sulfonamide ligand N-(pyridin-2-ylmethyl)quinoline-8-sulfonamide (HQSMP) were synthesized and physicochemically and structurally characterized. Complex [Cu(QSMP)Cl]n (2) consists of a polymeric chain formed by distorted square pyramidal units. In 2 [...] Read more.
Four complexes of essential metal ions, Cu(II) and Ni(II), with the new sulfonamide ligand N-(pyridin-2-ylmethyl)quinoline-8-sulfonamide (HQSMP) were synthesized and physicochemically and structurally characterized. Complex [Cu(QSMP)Cl]n (2) consists of a polymeric chain formed by distorted square pyramidal units. In 2, the sulfonamide ligand acts as a bridge coordinating to one Cu(II) through its three N atoms and to another metal ion via one O atom in the sulfonamido group, while the pentacoordinate complex [Cu(QSMP)(C6H5COO)] (3) presents a highly distorted square pyramidal geometry. Complex [Ni(QSMP)(C6H5COO)(CH3OH)][Ni(QSMP)(CH3COO)(CH3OH)] (4) consists of two mononuclear entities containing different anion coligands, either a benzoate or an acetate group. Both units exhibit a distorted octahedral geometry. The interaction of the complexes with CT-DNA was studied by means of UV-Vis and fluorescence spectroscopy, interestingly revealing that the Ni(II) complex presents the highest affinity towards the nucleic acid. Complexes 1 and 2 are able to cleave DNA. Both compounds show promising nuclease activity at relatively low concentrations by mediating the production of a reactive oxygen species (ROS). The interaction of the four complexes with bovine serum albumin (BSA) was also investigated, showing that the compounds can bind to serum proteins. The antitumor potential of complexes 1 and 2 was evaluated against the A549 lung adenocarcinoma cell line, revealing cytotoxic properties that were both dose- and time-dependent. Full article
(This article belongs to the Special Issue Metal-Based Compounds: Relevance for the Biomedical Field)
Show Figures

Graphical abstract

14 pages, 2345 KB  
Article
Aminoquinoline-Based Tridentate (NNN)-Copper Catalyst for C–N Bond-Forming Reactions from Aniline and Diazo Compounds
by Mohsen Teimouri, Selvam Raju, Edward Acheampong, Allison N. Schmittou, Bruno Donnadieu, David O. Wipf, Brad S. Pierce, Sean L. Stokes and Joseph P. Emerson
Molecules 2024, 29(3), 730; https://doi.org/10.3390/molecules29030730 - 5 Feb 2024
Cited by 3 | Viewed by 2832
Abstract
A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine (PQM) was generated and characterized to support the activation of diazo compounds for the formation of new C–N bonds. This neutral Schiff base ligand was structurally characterized to coordinate with [...] Read more.
A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine (PQM) was generated and characterized to support the activation of diazo compounds for the formation of new C–N bonds. This neutral Schiff base ligand was structurally characterized to coordinate with copper(II) in an equatorial fashion, yielding a distorted octahedral complex. Upon characterization, this copper(II) complex was used to catalyze an efficient and cost-effective protocol for C–N bond formation between N-nucleophiles and copper carbene complexes arising from the activation of diazo carbonyl compounds. A substrate scope of approximately 15 different amine-based substrates was screened, yielding 2° or 3° amine products with acceptable to good yields under mild reaction conditions. Reactivity towards phenol and thiophenol were also screened, showing relatively weak C–O or C–S bond formation under optimized conditions. Full article
(This article belongs to the Special Issue Featured Papers in Organometallic Chemistry)
Show Figures

Graphical abstract

21 pages, 3983 KB  
Article
Exploring Long Range para-Phenyl Effects in Unsymmetrically Fused bis(imino)pyridine-Cobalt Ethylene Polymerization Catalysts
by Yizhou Wang, Zheng Wang, Qiuyue Zhang, Song Zou, Yanping Ma, Gregory A. Solan, Wenjuan Zhang and Wen-Hua Sun
Catalysts 2023, 13(10), 1387; https://doi.org/10.3390/catal13101387 - 23 Oct 2023
Cited by 6 | Viewed by 1994
Abstract
Unsymmetrical 11-phenyl-1,2,3,7,8,9,10-heptahydrocyclohepta[b]quinoline-4,6-dione, incorporating a para-phenyl substituted pyridine unit fused by both 6- and 7-membered carbocyclic rings, has been prepared on the gram-scale via a multi-step procedure involving cyclization, hydrogenation and oxidation. Templating this diketone, in the presence of cobalt(II) chloride [...] Read more.
Unsymmetrical 11-phenyl-1,2,3,7,8,9,10-heptahydrocyclohepta[b]quinoline-4,6-dione, incorporating a para-phenyl substituted pyridine unit fused by both 6- and 7-membered carbocyclic rings, has been prepared on the gram-scale via a multi-step procedure involving cyclization, hydrogenation and oxidation. Templating this diketone, in the presence of cobalt(II) chloride hexahydrate, with the corresponding aniline afforded in good yield five examples of doubly fused bis(arylimino)pyridine-cobalt(II) chlorides, Co1 (aryl = 2,6-dimethylphenyl), Co2 (2,6-diethylphenyl), Co3 (2,6-diisopropylphenyl), Co4 (2,4,6-trimethylphenyl) and Co5 (2,6-diethyl-4-methylphenyl). Structural characterization of Co1, Co2 and Co3 highlights the flexible nature of the inequivalent fused rings on the NNN’-ligand and the skewed disposition of the para-phenyl group. On activation with MAO, Co1–Co5 exhibited high activity for ethylene polymerization at 30 °C (up to 5.66 × 106 g (PE) mol−1 (Co) h−1) with the relative order being as follows: Co4 > Co1 > Co5 > Co3 > Co2. All polyethylenes were strictly linear, while their molecular weights and dispersities showed some notable variations. For Co1, Co2, Co4 and Co5, all polymerizations were well controlled as evidenced by the narrow dispersities of their polymers (Mw/Mn range: 1.8–2.7), while their molecular weights (Mw range: 2.9–10.9 kg mol−1) steadily increased in line with the greater steric properties of the N-aryl ortho-substituents. By contrast, the most hindered 2,6-diisopropyl counterpart Co3 displayed a broad distribution with bimodal characteristics (Mw/Mn = 10.3) and gave noticeably higher molecular weight polymer (Mw = 75.5 kg mol−1). By comparison, the MMAO-activated catalysts were generally less active, but showed similar trends in molecular weight and polymer dispersity. End group analysis of selected polymers via 13C and 1H NMR spectroscopy revealed the presence of both saturated and unsaturated polyethylenes in accordance with competing chain transfer pathways. Notably, when comparing Co3/MAO with its non-phenyl substituted analogue (E2,6-iPr2Ph)CoCl2/MAO, the former, though less controlled, displayed higher activity and molecular weight, a finding that points towards a role played by the remote para-phenyl group. Full article
Show Figures

Graphical abstract

20 pages, 5484 KB  
Article
Complexation of Boron and Aluminum with a Bidentate Hydroxy-BN-naphthalene Ligand
by Yannik Appiarius, Pim Puylaert, Julius Werthschütz, Tim Neudecker and Anne Staubitz
Inorganics 2023, 11(7), 295; https://doi.org/10.3390/inorganics11070295 - 12 Jul 2023
Cited by 1 | Viewed by 2693
Abstract
The isoelectronic relationship of 1,2-azaborinine (B=N structural motif) and benzene (C=C) is well documented. Upon deprotonation of the former, the anionic 1,2-azaboratabenzene is obtained, which is isosteric with pyridine (C=N) and has a similar capability as an aromatic N-donor. We present the [...] Read more.
The isoelectronic relationship of 1,2-azaborinine (B=N structural motif) and benzene (C=C) is well documented. Upon deprotonation of the former, the anionic 1,2-azaboratabenzene is obtained, which is isosteric with pyridine (C=N) and has a similar capability as an aromatic N-donor. We present the complexation of boron and aluminum precursors with a κ2-N,O-donating 8-hydroxy-BN-naphthalene ligand (H2(BQ), 1). Six chelate complexes with 1:1 and 2:1 stoichiometries were isolated and characterized by X-ray diffraction analysis and NMR spectroscopy. Comparing the isosteric dimethylaluminum complexes of H2(BQ) and an 8-hydroxyquinoline (HQ’, 2) as a reference allowed us to quantify the influence of a formal substitution of carbon by boron on the structure and the electronic properties: While the structural parameters of the ligands were similar, the electropositive boron atom affected the electron density distributions within the complexes substantially. As the consequence, the Al–N bond was significantly shortened, and the aluminum atom showed a different coordination geometry than in the quinoline analog. Moreover, strong hypsochromic shifts of both the absorption and the emission were observed. The results highlight that the differences between CN and BN polyaromatic complexes are more distinct than between equally charged BN and CC congeners. Full article
(This article belongs to the Special Issue Boron Chemistry: Fundamentals and Applications)
Show Figures

Graphical abstract

50 pages, 7553 KB  
Article
Half-Sandwich Type Platinum-Group Metal Complexes of C-Glucosaminyl Azines: Synthesis and Antineoplastic and Antimicrobial Activities
by István Kacsir, Adrienn Sipos, Evelin Major, Nikolett Bajusz, Attila Bényei, Péter Buglyó, László Somsák, Gábor Kardos, Péter Bai and Éva Bokor
Molecules 2023, 28(7), 3058; https://doi.org/10.3390/molecules28073058 - 29 Mar 2023
Cited by 7 | Viewed by 3245
Abstract
While platinum-based compounds such as cisplatin form the backbone of chemotherapy, the use of these compounds is limited by resistance and toxicity, driving the development of novel complexes with cytostatic properties. In this study, we synthesized a set of half-sandwich complexes of platinum-group [...] Read more.
While platinum-based compounds such as cisplatin form the backbone of chemotherapy, the use of these compounds is limited by resistance and toxicity, driving the development of novel complexes with cytostatic properties. In this study, we synthesized a set of half-sandwich complexes of platinum-group metal ions (Ru(II), Os(II), Ir(III) and Rh(III)) with an N,N-bidentate ligand comprising a C-glucosaminyl group and a heterocycle, such as pyridine, pyridazine, pyrimidine, pyrazine or quinoline. The sugar-containing ligands themselves are unknown compounds and were obtained by nucleophilic additions of lithiated heterocycles to O-perbenzylated 2-nitro-glucal. Reduction of the adducts and, where necessary, subsequent protecting group manipulations furnished the above C-glucosaminyl heterocycles in their O-perbenzylated, O-perbenzoylated and O-unprotected forms. The derived complexes were tested on A2780 ovarian cancer cells. Pyridine, pyrazine and pyridazine-containing complexes proved to be cytostatic and cytotoxic on A2780 cells, while pyrimidine and quinoline derivatives were inactive. The best complexes contained pyridine as the heterocycle. The metal ion with polyhapto arene/arenyl moiety also impacted on the biological activity of the complexes. Ruthenium complexes with p-cymene and iridium complexes with Cp* had the best performance in ovarian cancer cells, followed by osmium complexes with p-cymene and rhodium complexes with Cp*. Finally, the chemical nature of the protective groups on the hydroxyl groups of the carbohydrate moiety were also key determinants of bioactivity; in particular, O-benzyl groups were superior to O-benzoyl groups. The IC50 values of the complexes were in the low micromolar range, and, importantly, the complexes were less active against primary, untransformed human dermal fibroblasts; however, the anticipated therapeutic window is narrow. The bioactive complexes exerted cytostasis on a set of carcinomas such as cell models of glioblastoma, as well as breast and pancreatic cancers. Furthermore, the same complexes exhibited bacteriostatic properties against multiresistant Gram-positive Staphylococcus aureus and Enterococcus clinical isolates in the low micromolar range. Full article
Show Figures

Graphical abstract

21 pages, 6068 KB  
Article
New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies
by Ernest Ewert, Izabela Pospieszna-Markiewicz, Martyna Szymańska, Adrianna Kurkiewicz, Agnieszka Belter, Maciej Kubicki, Violetta Patroniak, Marta A. Fik-Jaskółka and Giovanni N. Roviello
Molecules 2023, 28(1), 400; https://doi.org/10.3390/molecules28010400 - 3 Jan 2023
Cited by 3 | Viewed by 3211
Abstract
The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the [...] Read more.
The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the RNA from yeast Saccharomyces cerevisiae (herein simply indicated as RNA). In more detail, by condensing p-xylylenediamine and a series of aldehydes, we obtained the following Schiff base ligands: 2-thiazolecarboxaldehyde (L1), pyridine-2-carboxaldehyde (L2), 5-methylisoxazole-3-carboxaldehyde (L3), 1-methyl-2-imidazolecarboxaldehyde (L4), and quinoline-2-carboxaldehyde (L5). The structural characterisation of the ligands L1-L5 (X-ray, 1H NMR, 13C NMR, elemental analysis) and of the coordination polymers {[CuL1]PF6}n (herein referred to as Polymer1) and {[AgL1]BF4}n, (herein referred to as Polymer2, X-ray, 1H NMR, ESI-MS) is herein described in detail. The single crystal X-ray structures of complexes Polymer1 and Polymer2 were also investigated, leading to the description of one-dimensional coordination polymers. The spectroscopic and in silico evaluation of the most promising compounds as DNA and RNA binders, as well as the study of the influence of the 1D supramolecular polymers Polymer1 and Polymer2 on the proliferation of Escherichia coli bacteria, were performed in view of their nucleic acid-modulating and antimicrobial applications. Spectroscopic measurements (UV–Vis) combined with molecular docking calculations suggest that the thiazolecarboxaldehyde derivative L1 is able to bind CT-DNA with a mechanism different from intercalation involving the thiazole ring in the molecular recognition and shows a binding affinity with DNA higher than RNA. Finally, Polymer2 was shown to slow down the proliferation of bacteria much more effectively than the free Ag(I) salt. Full article
(This article belongs to the Special Issue Shaping Medicinal Chemistry for the New Decade)
Show Figures

Graphical abstract

18 pages, 4970 KB  
Article
N-O Ligand Supported Stannylenes: Preparation, Crystal, and Molecular Structures
by Hannah S. I. Sullivan, Andrew J. Straiton, Gabriele Kociok-Köhn and Andrew L. Johnson
Inorganics 2022, 10(9), 129; https://doi.org/10.3390/inorganics10090129 - 31 Aug 2022
Cited by 3 | Viewed by 3311
Abstract
A new series of tin(II) complexes (1, 2, 4, and 5) were successfully synthesized by employing hydroxy functionalized pyridine ligands, specifically 2-hydroxypyridine (hpH), 8-hydroxyquinoline (hqH), and 10-hydroxybenzo[h]quinoline (hbqH) as stabilizing ligands. Complexes [Sn(μ-κ2ON-OC5H4 [...] Read more.
A new series of tin(II) complexes (1, 2, 4, and 5) were successfully synthesized by employing hydroxy functionalized pyridine ligands, specifically 2-hydroxypyridine (hpH), 8-hydroxyquinoline (hqH), and 10-hydroxybenzo[h]quinoline (hbqH) as stabilizing ligands. Complexes [Sn(μ-κ2ON-OC5H4N)(N{SiMe3}2)]2 (1) and [Sn4(μ-κ2ON-OC5H4N)61O-OC5H4N)2] (2) are the first structurally characterized examples of tin(II) oxypyridinato complexes exhibiting {Sn2(OCN)2} heterocyclic cores. As part of our study, 1H DOSY NMR experiments were undertaken using an external calibration curve (ECC) approach, with temperature-independent normalized diffusion coefficients, to determine the nature of oligomerisation of 2 in solution. An experimentally determined diffusion coefficient (298 K) of 6.87 × 10−10 m2 s−1 corresponds to a hydrodynamic radius of Ca. 4.95 Å. This is consistent with the observation of an averaged hydrodynamic radii and equilibria between dimeric [Sn{hp}2]2 and tetrameric [Sn{hp}2]4 species at 298 K. Testing this hypothesis, 1H DOSY NMR experiments were undertaken at regular intervals between 298 K–348 K and show a clear change in the calculated hydrodynamic radii form 4.95 Å (298 K) to 4.35 Å (348 K) consistent with a tetramer ⇄ dimer equilibria which lies towards the dimeric species at higher temperatures. Using these data, thermodynamic parameters for the equilibrium (ΔH° = 70.4 (±9.22) kJ mol−1, ΔS° = 259 (±29.5) J K−1 mol−1 and ΔG°298 = −6.97 (±12.7) kJ mol−1) were calculated. In the course of our studies, the Sn(II) oxo cluster, [Sn6(m3-O)6(OR)4:{Sn(II)(OR)2}2] (3) (R = C5H4N) was serendipitously isolated, and its molecular structure was determined by single-crystal X-ray diffraction analysis. However, attempts to characterise the complex by multinuclear NMR spectroscopy were thwarted by solubility issues, and attempts to synthesise 3 on a larger scale were unsuccessful. In contrast to the oligomeric structures observed for 1 and 2, single-crystal X-ray diffraction studies unambiguously establish the monomeric 4-coordinate solid-state structures of [Sn(κ2ON-OC9H6N)2)] (4) and [Sn(κ2ON-OC13H8N)2)] (5). Full article
(This article belongs to the Special Issue Synergy between Main Group and Transition Metal Chemistry)
Show Figures

Graphical abstract

12 pages, 1751 KB  
Article
Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR)
by Daniele Sanna and Angela Fadda
Molecules 2022, 27(14), 4560; https://doi.org/10.3390/molecules27144560 - 17 Jul 2022
Cited by 21 | Viewed by 4220
Abstract
The scavenging activity of hydroxyl radicals, produced by the Fenton reaction, is commonly used to quantify the antioxidant capacity of plant extracts. In this study, three Fenton systems (Fe/phosphate buffer, Fe/quinolinic acid and Fe/phosphate buffer/quinolinic acid) and the thermal degradation of peroxydisulfate were [...] Read more.
The scavenging activity of hydroxyl radicals, produced by the Fenton reaction, is commonly used to quantify the antioxidant capacity of plant extracts. In this study, three Fenton systems (Fe/phosphate buffer, Fe/quinolinic acid and Fe/phosphate buffer/quinolinic acid) and the thermal degradation of peroxydisulfate were used to produce hydroxyl radicals; the hydroxyl radical scavenging activity of plant extracts (ginger, blueberry juices and green tea infusion) and chemical compounds (EGCG and GA) was estimated by spin trapping with DMPO (5,5-dimethyl-1-pyrroline N-oxide) and EPR (Electron Paramagnetic Resonance) spectroscopy. Phosphate buffer was used to mimic the physiological pH of cellular systems, while quinolinic acid (pyridine-2,3-dicarboxylic acid) facilitates the experimental procedure by hindering the spontaneous oxidation of Fe(II). The EC50 (the concentration of chemical compounds or plant extracts which halves the intensity of the DMPO–OH adduct) values were determined in all the systems. The results show that, for both the chemical compounds and the plant extracts, there is not a well-defined order for the EC50 values determined in the four hydroxyl radical generating systems. The interactions of phosphate buffer and quinolinic acid with the antioxidants and with potential iron-coordinating ligands present in the plant extracts can justify the observed differences. Full article
(This article belongs to the Special Issue Applications of Metal Complexes)
Show Figures

Figure 1

14 pages, 2404 KB  
Article
pH-Responsive Emission of Novel Water-Soluble Polymeric Iridium(III) Complexes
by Dafnianna Tsakaraki, Aikaterini K. Andreopoulou and Georgios Bokias
Nanomaterials 2022, 12(6), 927; https://doi.org/10.3390/nano12060927 - 11 Mar 2022
Cited by 4 | Viewed by 2779
Abstract
The synthesis and characterization of water-soluble copolymers containing N,N-dimethylacrylamide (DMAM) and a vinylic monomer containing an Iridium(III), Ir(III), complex substituted with the quinoline-based unit 2-(pyridin-2-ylo)-6-styrene-4-phenylquinoline (VQPy) as ligand are reported. These copolymers were prepared through pre- or post-polymerization complexation of Ir(III) with [...] Read more.
The synthesis and characterization of water-soluble copolymers containing N,N-dimethylacrylamide (DMAM) and a vinylic monomer containing an Iridium(III), Ir(III), complex substituted with the quinoline-based unit 2-(pyridin-2-ylo)-6-styrene-4-phenylquinoline (VQPy) as ligand are reported. These copolymers were prepared through pre- or post-polymerization complexation of Ir(III) with the VQPy units. The first methodology led to copolymer P1 having fully complexed VQPy units, whereas the latter methodology allowed the preparation of terpolymers containing free and Ir(III)-complexed VQPy units (copolymer P2). The optical properties of the copolymers were studied in detail through UV-Vis and photoluminescence spectroscopy in aqueous solution. It is shown that the metal-to-ligand charge transfer (ΜLCT) emission is prevailing in the case of P1, regardless of pH. In contrast, in the case of terpolymer P2 the MLCT emission of the Ir(III) complex is combined with the pH-responsive emission of free VQPy units, leading to characteristic pH-responsive color changes under UV illumination in the acidic pH region. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Sensing and Detection)
Show Figures

Figure 1

Back to TopTop