Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = pseudo-germ-free

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4744 KiB  
Article
Millet Quinic Acid Relieves Colitis by Regulating Gut Microbiota and Inhibiting MyD88/NF-κB Signaling Pathway
by Sen Li, Ze Zhang, Lei Luo, Yu Zhang, Kai Huang and Xiao Guan
Foods 2025, 14(13), 2267; https://doi.org/10.3390/foods14132267 - 26 Jun 2025
Viewed by 369
Abstract
Polyphenols are compounds derived from plant-based food possessing numerous biological activities, including inhibiting oxidative stress, suppressing inflammation, and regulating gut microbiota. In this study, we investigated the effects of quinic acid, a phenolic acid from millet, on the regulation of gut microbiota and [...] Read more.
Polyphenols are compounds derived from plant-based food possessing numerous biological activities, including inhibiting oxidative stress, suppressing inflammation, and regulating gut microbiota. In this study, we investigated the effects of quinic acid, a phenolic acid from millet, on the regulation of gut microbiota and intestinal inflammation and further discussed the possible mechanism. The results showed that quinic acid could improve the microbiota composition of the feces of patients with inflammatory bowel disease (IBD) by in vitro anaerobic fermentation by increasing the abundance of beneficial genera including Bifidobacterium, Weissella, etc., and decreasing that of harmful genera like Escherichia-Shigella. Quinic acid treatment could alleviate the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice, maintain the intestinal barrier, down-regulate the expression of inflammatory factors such as IL-1β and TNF-α, and inhibit the activation of the MyD88/NF-κB signaling pathway. In addition, quinic acid also improved the diversity of gut microbiota in mice with colitis. Furthermore, pseudo-germ-free colitis mice proved that the effect of quinic acid on intestinal inflammation was diminished after removing most gut microbiota by antibiotic treatment, suggesting that gut microbiota play important roles during the regulation of colitis by quinic acid. In a word, our study verified the regulatory effects of quinic acid on intestinal inflammation, depending on gut microbiota regulation and NF-κB signaling suppression. Full article
Show Figures

Figure 1

15 pages, 1612 KiB  
Article
Intestinal Metabolism of Crocin and a Pharmacokinetics and Pharmacodynamics Study in the Chronic Social Defeat Stress Mouse Model
by Fan Xiao, Yulong Song, Guangji Wang and Jiye Aa
Pharmaceuticals 2024, 17(7), 843; https://doi.org/10.3390/ph17070843 - 27 Jun 2024
Cited by 4 | Viewed by 2003
Abstract
Orally administered crocin rapidly and efficiently rescues depressive-like behaviors in depression models; however, crocin levels in the circulatory and central nervous systems are rather low. The underlying mechanism responsible for the inconsistency between pharmacokinetics and pharmacodynamics is unknown. To identify the active metabolites [...] Read more.
Orally administered crocin rapidly and efficiently rescues depressive-like behaviors in depression models; however, crocin levels in the circulatory and central nervous systems are rather low. The underlying mechanism responsible for the inconsistency between pharmacokinetics and pharmacodynamics is unknown. To identify the active metabolites and clarify the underlying mechanisms, the pharmacokinetics and metabolic effects of the gut flora and hepatic and intestinal microsomes on crocin were examined, and the pharmacodynamics of crocin and its major metabolite, crocetin, were also evaluated in both normal and pseudo germ-free mice subjected to chronic social defeat stress. The results showed that oral administration of 300 mg/kg crocin significantly improved the depression-like behaviors of chronic social defeat stress mice, although the levels of crocin in the circulatory system were rather low (Cmax = 43.5 ± 8.6 μg/L; AUC = 151 ± 20.8 μg·h/L). However, the primary metabolite of crocetin was much more abundant in vivo (Cmax = 4662.5 ± 586.1 μg/L; AUC = 33,451.9 ± 3323.6 μg·h/L). Orally administered crocin was primarily metabolized into crocetin by the gut flora instead of hepatic or intestinal microsomal enzymes, and less than 10% of crocin was transformed into crocetin in the liver or intestinal microsomes. Inhibition of the gut flora dramatically reduced the production of and in vivo exposure to crocetin, and the rapid antidepressant effect of crocin disappeared. Moreover, crocetin showed rapid antidepressant effects similar to those of crocin, and the effects were independent of the gut flora. In conclusion, the metabolic transformation of crocin to crocetin primarily contributes to the rapid antidepressant effects of crocin and is dependent on the gut flora. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 3426 KiB  
Article
Targeting Non-Alcoholic Fatty Liver Disease with Hawthorn Ethanol Extract (HEE): A Comprehensive Examination of Hepatic Lipid Reduction and Gut Microbiota Modulation
by Tianyu Wang, Dawei Wang, Yinghui Ding, He Xu, Yue Sun, Jumin Hou and Yanrong Zhang
Nutrients 2024, 16(9), 1335; https://doi.org/10.3390/nu16091335 - 29 Apr 2024
Cited by 3 | Viewed by 2625
Abstract
Recent studies have highlighted the lipid-lowering ability of hawthorn ethanol extract (HEE) and the role played by gut flora in the efficacy of HEE. Our study sought to explore the effects of HEE on non-alcoholic fatty liver disease (NAFLD) in normal flora and [...] Read more.
Recent studies have highlighted the lipid-lowering ability of hawthorn ethanol extract (HEE) and the role played by gut flora in the efficacy of HEE. Our study sought to explore the effects of HEE on non-alcoholic fatty liver disease (NAFLD) in normal flora and pseudo germ-free mice. The results showed that HEE effectively diminished hepatic lipid accumulation, ameliorated liver function, reduced inflammatory cytokine levels and blood lipid profiles, and regulated blood glucose levels. HEE facilitated triglyceride breakdown, suppressed fatty acid synthesis, and enhanced intestinal health by modulating the diversity of the gut microbiota and the production of short-chain fatty acids in the gut. In addition, HEE apparently helps to increase the presence of beneficial genera of bacteria, thereby influencing the composition of the gut microbiota, and the absence of gut flora affects the efficacy of HEE. These findings reveal the potential of hawthorn for the prevention and treatment of NAFLD and provide new perspectives on the study of functional plants to improve liver health. Full article
(This article belongs to the Special Issue Metabolic Features and Nutritional Interventions in Chronic Diseases)
Show Figures

Figure 1

37 pages, 11679 KiB  
Article
Beneficial Effect of Faecal Microbiota Transplantation on Mild, Moderate and Severe Dextran Sodium Sulphate-Induced Ulcerative Colitis in a Pseudo Germ-Free Animal Model
by Stanislav Lauko, Sona Gancarcikova, Gabriela Hrckova, Vanda Hajduckova, Zuzana Andrejcakova, Livia Kolesar Fecskeova, Izabela Bertkova, Emilia Hijova, Anna Kamlarova, Martin Janicko, Lubos Ambro, Monika Kvakova, Zuzana Gulasova, Ladislav Strojny, Gabriela Strkolcova, Dagmar Mudronova, Marian Madar, Vlasta Demeckova, Daniela Nemetova, Ivan Pacuta and Drahomira Sopkovaadd Show full author list remove Hide full author list
Biomedicines 2024, 12(1), 43; https://doi.org/10.3390/biomedicines12010043 - 22 Dec 2023
Cited by 2 | Viewed by 2581
Abstract
Transplantation of faecal microbiota (FMT) is generally considered a safe therapeutic procedure with few adverse effects. The main factors that limit the spread of the use of FMT therapy for idiopathic inflammatory bowel disease (IBD) are the necessity of minimising the risk of [...] Read more.
Transplantation of faecal microbiota (FMT) is generally considered a safe therapeutic procedure with few adverse effects. The main factors that limit the spread of the use of FMT therapy for idiopathic inflammatory bowel disease (IBD) are the necessity of minimising the risk of infection and transfer of another disease. Obtaining the animal model of UC (ulcerative colitis) by exposure to DSS (dextran sodium sulphate) depends on many factors that significantly affect the result. Per os intake of DSS with water is individual for each animal and results in the development of a range of various forms of induced UC. For this reason, the aim of our study was to evaluate the modulation and regenerative effects of FMT on the clinical and histopathological responses and the changes in the bowel microenvironment in pseudo germ-free (PGF) mice of the BALB/c line subjected to chemical induction of mild, moderate and serious forms of UC. The goal was to obtain new data related to the safety and effectiveness of FMT that can contribute to its improved and optimised use. The animals with mild and moderate forms of UC subjected to FMT treatment exhibited lower severity of the disease and markedly lower damage to the colon, including reduced clinical and histological disease index and decreased inflammatory response of colon mucosa. However, FMT treatment failed to achieve the expected therapeutic effect in animals with the serious form of UC activity. The results of our study indicated a potential safety risk involving development of bacteraemia and also translocation of non-pathogenic representatives of bowel microbiota associated with FMT treatment of animals with a diagnosed serious form of UC. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

20 pages, 4640 KiB  
Article
Ethanol Extract of Licorice Alleviates HFD-Induced Liver Fat Accumulation in Association with Modulation of Gut Microbiota and Intestinal Metabolites in Obesity Mice
by Fei Liu, Xin Tang, Bingyong Mao, Qiuxiang Zhang, Jianxin Zhao, Shumao Cui and Wei Chen
Nutrients 2022, 14(19), 4180; https://doi.org/10.3390/nu14194180 - 8 Oct 2022
Cited by 24 | Viewed by 3731
Abstract
As a traditional Chinese medicine, licorice is often used in functional foods for its health benefits. However, the role of gut microbiota in the efficacy of licorice has not yet been fully elucidated. We hypothesized that the involvement of intestinal flora may be [...] Read more.
As a traditional Chinese medicine, licorice is often used in functional foods for its health benefits. However, the role of gut microbiota in the efficacy of licorice has not yet been fully elucidated. We hypothesized that the involvement of intestinal flora may be a key link in licorice ethanol extract (LEE)-induced health benefits. The aim of this study was to investigate whether LEE improves hepatic lipid accumulation in obese mice fed a high-fat diet (HFD) and whether the gut microbiota plays a key role in LEE treatment. Male C57BL/6J mice were fed HFD for liver fat accumulation and then treated with LEE. The same experiments were later performed using pseudo-sterile mice to verify the importance of gut flora. Supplementation with LEE improved the obesity profile, lipid profile and liver fat accumulation in HFD mice. In addition, LEE treatment improved intestinal flora dysbiosis caused by HFD in mice, as evidenced by a decrease in the percentage of Firmicutes/Bacteroidetes and an increase in the abundance of known anti-obesity-related bacteria. However, LEE failed to exhibit a therapeutic effect in pseudo-sterile mice. The results of the cellular assay showed that glycyrrhetic acid (GA), the main conversion product of glycyrrhizin (GL), was more effective in reducing fat accumulation and intracellular TG content in hepatocytes compared to GL. In conclusion, our data suggest that LEE attenuates obesity and hepatic fat accumulation in HFD mice, which may be associated with modulating the composition of gut microbiota and the conversion of LLE by the intestinal flora. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

28 pages, 2438 KiB  
Article
Innovative Animal Model of DSS-Induced Ulcerative Colitis in Pseudo Germ-Free Mice
by Sona Gancarcikova, Stanislav Lauko, Gabriela Hrckova, Zuzana Andrejcakova, Vanda Hajduckova, Marian Madar, Livia Kolesar Fecskeova, Dagmar Mudronova, Kristina Mravcova, Gabriela Strkolcova, Radomira Nemcova, Jana Kacirova, Andrea Staskova, Stefan Vilcek and Alojz Bomba
Cells 2020, 9(12), 2571; https://doi.org/10.3390/cells9122571 - 1 Dec 2020
Cited by 42 | Viewed by 8285
Abstract
The aim of this study was to investigate the use of a standardized animal model subjected to antibiotic treatment, and the effects of this treatment on the course of dextran sodium sulphate (DSS)-induced colitis in mice. By decontamination with selective antibiotics and observation [...] Read more.
The aim of this study was to investigate the use of a standardized animal model subjected to antibiotic treatment, and the effects of this treatment on the course of dextran sodium sulphate (DSS)-induced colitis in mice. By decontamination with selective antibiotics and observation of pathogenesis of ulcerative colitis (UC) induced chemically by exposure of mice to various concentrations of DSS, we obtained an optimum animal PGF model of acute UC manifested by mucin depletion, epithelial degeneration and necrosis, leading to the disappearance of epithelial cells, infiltration of lamina propria and submucosa with neutrophils, cryptitis, and accompanied by decreased viability of intestinal microbiota, loss of body weight, dehydration, moderate rectal bleeding, and a decrease in the selected markers of cellular proliferation and apoptosis. The obtained PGF model did not exhibit changes that could contribute to inflammation by means of alteration of the metabolic status and the induced dysbiosis did not serve as a bearer of pathogenic microorganisms participating in development of ulcerative colitis. The inflammatory process was induced particularly by exposure to DSS and its toxic action on compactness and integrity of mucosal barrier in the large intestine. This offers new possibilities of the use of this animal model in studies with or without participation of pathogenic microbiota in IBD pathogenesis. Full article
Show Figures

Figure 1

Back to TopTop