Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = pseudo-boehmite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5799 KiB  
Article
Synthesis and Characterization of a Pla Scaffold with Pseudoboehmite and Graphene Oxide Nanofillers Added
by Rafael Vieira Maidana, Antônio Hortêncio Munhoz, Filipe Figueiredo Ramos, Alex Lopes de Oliveira, José César de Souza Almeida Neto, Victor Inácio de Oliveira, Bruno Luis Soares de Lima and Fábio Jesus Moreira de Almeida
Nanomaterials 2025, 15(3), 167; https://doi.org/10.3390/nano15030167 - 22 Jan 2025
Viewed by 1018
Abstract
In cases of severe injuries or burns, skin grafts (scaffolds) are often required as skin substitutes. In order not to harm the patient or the donor, biodegradable and biocompatible materials are used, which validates the search for heterografts such as poly (L-lactic acid)—PLA. [...] Read more.
In cases of severe injuries or burns, skin grafts (scaffolds) are often required as skin substitutes. In order not to harm the patient or the donor, biodegradable and biocompatible materials are used, which validates the search for heterografts such as poly (L-lactic acid)—PLA. However, natural polymers applied to the skin suffer great degradation in environments with large amounts of carbon and water or via binders with considerable resistivity, which implies little durability due to their low ductility. For the proposal, this work investigates PLA-based scaffolds modified with a mixture of pseudoboehmite (PB) and graphene oxide (GO), produced via the sol–gel route. The nanomaterials are incorporated into the polymer at different loadings, seeking to improve mechanical and thermal properties. Analyses via SEM, EDS, and XRD confirm the presence and distribution of these fillers. Tensile and flexural tests indicate that adding the filler can increase stress resistance, prevent deformations before failure, and increase toughness when compared to pure PLA. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

15 pages, 4873 KiB  
Article
Bisphenol F Synthesis from Formaldehyde and Phenol over Zeolite Y Extrudate Catalysts in a Catalyst Basket Reactor and a Fixed-Bed Reactor
by Yeongseo Park, Seoyeon Hwang, Seyeon Won, Yehee Kim, Sooyeon Hong, Jungyeop Lee, Simon Lee and Jong-Ki Jeon
Catalysts 2024, 14(10), 656; https://doi.org/10.3390/catal14100656 - 24 Sep 2024
Viewed by 1545
Abstract
The objective of this study was to evaluate the applicability of zeolite Y as a catalyst for producing bisphenol F (BPF) from phenol and formaldehyde. Catalyst extrudates were prepared by extrusion after adding pseudoboehmite sol (PS) and Ludox (Lu) as alumina and silica [...] Read more.
The objective of this study was to evaluate the applicability of zeolite Y as a catalyst for producing bisphenol F (BPF) from phenol and formaldehyde. Catalyst extrudates were prepared by extrusion after adding pseudoboehmite sol (PS) and Ludox (Lu) as alumina and silica binders, respectively. The compressive strength of the catalyst extrudates increased with the addition of Ludox. However, the formaldehyde conversion decreased as more Ludox was used as a binder, resulting in a decrease in the yield of BPF. This decrease is attributed to the reduction in the total amount of acid sites caused by the addition of Ludox. In this study, the Y_PS5_Lu5 catalyst was selected as the most suitable for BPF synthesis. In the BPF synthesis over the Y_PS5_Lu5 catalyst in a catalyst basket reactor, the optimum reaction temperature was determined to be 110 °C. The effect of stirring speed on the yield of BPF was found to be negligible in the range of 200 rpm to 350 rpm. The spent catalyst was able to recover a specific surface area and reaction activity similar to those of a fresh catalyst through regeneration in an air atmosphere at 500 °C. When the Y_PS5_Lu5 extruded catalyst was used in a continuous reaction in a fixed-bed reactor, there was no noticeable deactivation of the catalyst at low space velocities of the reactants. However, when the space velocity was increased to 18.0 h−1, catalyst deactivation was clearly observed. This suggests that periodic regeneration of the catalyst is inevitable in a continuous reaction using the Y_PS5_Lu5 extruded catalyst. Full article
(This article belongs to the Special Issue Feature Papers in "Industrial Catalysis" Section)
Show Figures

Graphical abstract

18 pages, 5751 KiB  
Article
Adsorption of Eriochrome Black T on Pseudo Boehmite and Gamma Alumina Synthesized from Drinking Water Treatment Sludge: A Waste-to-Recycling Approach
by Ibtissam Ballou, Jamal Naja, Zineelabidine Bakher and Sanae Kholtei
Recycling 2024, 9(3), 49; https://doi.org/10.3390/recycling9030049 - 4 Jun 2024
Cited by 4 | Viewed by 2683
Abstract
Eriochrome black T is considered as one of the anionic dyes with potential harmful effects on human health and the environment. Among other processes, adsorption can contribute to the removal of these dyes. In the present study, two adsorbent materials, pseudo-boehmite (γ-AlOOH) and [...] Read more.
Eriochrome black T is considered as one of the anionic dyes with potential harmful effects on human health and the environment. Among other processes, adsorption can contribute to the removal of these dyes. In the present study, two adsorbent materials, pseudo-boehmite (γ-AlOOH) and gamma alumina (γ-Al2O3), were synthesized and tested in the removal of the Eriochrome black T molecule (EBT). γ-AlOOH and γ-Al2O3 were obtained by precipitation from NaAlO2 solution at pH = 7, at a temperature of 80 °C, and by the thermal transformation of γ-AlOOH at 800 °C, respectively. In order to gain insights into the structural, chemical, thermal and morphological properties of these materials, numerous analytical techniques were involved, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential thermogravimetric–thermal analysis (TGA-DTA), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and specific surface area measurement using the Brunauer–Emmett–Teller (BET) method. Several adsorption parameters were studied, such as the adsorbent dose, initial concentration, pH, contact time and reaction temperature. The kinetic study showed that EBT adsorption follows the pseudo-second-order model. The Langmuir isotherm model revealed a maximum EBT adsorption capacity of 344.44 mg g−1 and 421.94 mg g−1 for γ-AlOOH and γ-Al2O3, respectively. A textural and structural analysis after adsorption highlighted the effective adsorption of the dye. Full article
(This article belongs to the Special Issue Sustainability of the Circular Economy)
Show Figures

Figure 1

16 pages, 4464 KiB  
Article
Adsorptive Removal of Sb(V) from Wastewater by Pseudo-Boehmite: Performance and Mechanism
by Yating He, Qiming Mao, Yaoyu Zhou, Xiande Xie and Lin Luo
Water 2024, 16(8), 1172; https://doi.org/10.3390/w16081172 - 20 Apr 2024
Viewed by 1783
Abstract
With the increasing concern about antimony (Sb) pollution and remediation in aquatic ecosystems, more and more feasible technologies have been developed. Adsorption has been extensively studied due to the simplicity of its operation and its minimal environmental effects, but the lack of cheap [...] Read more.
With the increasing concern about antimony (Sb) pollution and remediation in aquatic ecosystems, more and more feasible technologies have been developed. Adsorption has been extensively studied due to the simplicity of its operation and its minimal environmental effects, but the lack of cheap and stable adsorbents has limited its application in Sb treatment. In this study, pseudo-boehmite (PB) was successfully synthesized via aluminum isopropylate hydrolysis, and its potential for removing Sb(V) from wastewater was explored. The removal efficiency of Sb(V) was 92.50%, and the maximum adsorption capacity was 75.25 mg/g under optimal conditions (pH 5.0, 2 g·L−1 PB, and 10 mg·L−1 Sb(V)). In addition, better performance could be obtained at acidic conditions (pH 3.0–5.0). Surface complexation, electrostatic attraction, and hydrogen bonding were identified as potential major processes for Sb(V) elimination by PB based on experimental and characterization data. This study presents a promising approach for the efficient removal of Sb(V) from wastewater, offering a new insight into the application of aluminum-based materials for heavy metal removal. Full article
Show Figures

Figure 1

13 pages, 5295 KiB  
Article
Pt and Al Recovery from a Spent Pt/Al2O3 Catalyst via an Integrated Soda Roasting–Alkaline Leaching–Carbonization Process
by Haigang Dong, Chunxi Zhang, Jiachun Zhao, Yuedong Wu, Zhonglin Dong and Qian Li
Metals 2023, 13(12), 1944; https://doi.org/10.3390/met13121944 - 27 Nov 2023
Cited by 3 | Viewed by 1419
Abstract
An integrated soda roasting–alkaline leaching–carbonization process was developed to recover platinum (Pt) and aluminum (Al) from a spent Pt/Al2O3 catalyst. A product with the main component of NaAlO2 was obtained under the optimal roasting conditions of the mass ratio [...] Read more.
An integrated soda roasting–alkaline leaching–carbonization process was developed to recover platinum (Pt) and aluminum (Al) from a spent Pt/Al2O3 catalyst. A product with the main component of NaAlO2 was obtained under the optimal roasting conditions of the mass ratio of Na2CO3 to spent catalyst 1, roasting time 2 h and roasting temperature 900 °C. The Al in the roasted residue was effectively leached in a dilute NaOH solution, while Pt was enriched in the leached residue with a Pt content that reached 29.4%, and the calculated concentration factor of Pt yielded 79.4. After carbonization was performed for the leached solution, 99.0% of the Al was recovered as the pseudo-boehmite product, which could be used as the feed for preparing the Al2O3 carrier. Pt and Al2O3 in the spent catalyst were selectively separated and enriched using the above process, which thus has good application prospects. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

18 pages, 5582 KiB  
Article
The Influence of Metal–Support Interactions on the Performance of Ni-MoS2/Al2O3 Catalysts for Dibenzothiophene Hydrodesulfurization
by Chuangchuang Yang, Qiaoling Dai, Anpeng Hu, Hui Yuan and Qinghe Yang
Processes 2023, 11(11), 3181; https://doi.org/10.3390/pr11113181 - 8 Nov 2023
Cited by 2 | Viewed by 1562
Abstract
In this present work, a new kind of sulfurized hydrodesulfurization catalyst was synthesized via the hydrothermal treatment of MoS2, NiCO3·2Ni(OH)2·4H2O, and Al2O3 precursors, followed by annealing under a H2 atmosphere, which [...] Read more.
In this present work, a new kind of sulfurized hydrodesulfurization catalyst was synthesized via the hydrothermal treatment of MoS2, NiCO3·2Ni(OH)2·4H2O, and Al2O3 precursors, followed by annealing under a H2 atmosphere, which does not require a sulfurization process compared to traditional preparation methods. The influence of the annealing temperature and the type of Al2O3 precursor on the interactions between MoS2 and Al2O3 were studied using X-ray fluorescence spectroscopy, X-ray diffraction, N2 adsorption–desorption, Raman spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The results indicated an increase in the number of stacked layers of the MoS2 catalyst, accompanied by a decrease in the degree of decoration of Ni atoms onto MoS2 nanoslabs, as a result of the strengthened MoS2–Al2O3 interaction. Subsequently, the efficiency of hydrodesulfurization (HDS) was evaluated using dibenzothiophene as a representative reactant, while establishing a correlation between the structure of the catalyst and its performance. The catalysts, using pseudo-boehmite as the precursor and calcined at 500 °C, synthesized by calcining pseudo-boehmite as the precursor for Al2O3 at a temperature of 500 °C and possessing suitable metal–support interactions, exhibited a reduced number of MoS2 stacking layers and lateral dimensions, along with an optimal decoration degree of Ni atoms, thereby resulting in the highest level of HDS activity. Full article
(This article belongs to the Special Issue Metal-Support Interactions in Heterogeneous Catalysis)
Show Figures

Figure 1

14 pages, 3648 KiB  
Article
Sorption Capacity of AlOOH/FeAl2 Composites towards As(V)
by Sergey O. Kazantsev, Konstantin V. Suliz, Nikolay G. Rodkevich and Aleksandr S. Lozhkomoev
Materials 2023, 16(17), 6057; https://doi.org/10.3390/ma16176057 - 4 Sep 2023
Cited by 2 | Viewed by 1641
Abstract
The treatment of wastewater from arsenic compounds is an important and urgent problem. Composite nanostructures consisting of boehmite and iron compounds have a high adsorption capacity towards As(V) specie. In this work, the adsorption properties of nanostructured composites prepared by the oxidation of [...] Read more.
The treatment of wastewater from arsenic compounds is an important and urgent problem. Composite nanostructures consisting of boehmite and iron compounds have a high adsorption capacity towards As(V) specie. In this work, the adsorption properties of nanostructured composites prepared by the oxidation of bimetallic Al/Fe nanoparticles with different iron contents were investigated. As a result of oxidation, boehmite AlOOH nanosheets are formed, with the resultant FeAl2 nanoparticles being distributed on the surface of boehmite nanosheets. The nanostructured composites prepared from Al/Fe nanoparticles containing 20 wt% Fe have been found to show the highest adsorption capacity towards As(V) specie, being 248 mg/g. The adsorption isotherms are most accurately described by the Freundlich model, with the arsenic adsorption process obeying pseudo second order kinetics. As a result of the study, the optimal ratio of Al and Fe in Al/Fe nanoparticles has been determined to obtain an AlOOH/FeAl2 composite adsorbent with a developed and accessible surface and a high sorption capacity towards As(V). This allows us to consider this material as a promising adsorbent for the removal of arsenic compounds from water. Full article
(This article belongs to the Special Issue Materials for Heavy Metals Removal from Waters)
Show Figures

Figure 1

18 pages, 14223 KiB  
Article
Application of Alumina Nanofibers as Adsorbents for the Removal of Mercury (II) and Lead (II) from Aqueous Solutions
by Rebecca L. Houston, Eric R. Waclawik and Sarina Sarina
Minerals 2023, 13(5), 654; https://doi.org/10.3390/min13050654 - 10 May 2023
Cited by 6 | Viewed by 2366
Abstract
This study aims to design novel amine-functionalized alumina nanofibers for the removal of lead (II) and mercury (II) ions from aqueous solutions. The γ-Al2O3 nanofibers were prepared by calcination of boehmite, and then functionalization with 3-(2-aminoethylamino) propyl trimethoxy silane. [...] Read more.
This study aims to design novel amine-functionalized alumina nanofibers for the removal of lead (II) and mercury (II) ions from aqueous solutions. The γ-Al2O3 nanofibers were prepared by calcination of boehmite, and then functionalization with 3-(2-aminoethylamino) propyl trimethoxy silane. The characterization of the nanofibers was carried out using TEM, EDS, elemental mapping, XRD, and XPS. The effects of initial concentration, pH, contact time, and selectivity were studied. The results revealed that the nanofibers can remove 98% of Hg2+ ions and 90% of Pb2+ ions from aqueous solution at concentrations of 40 mg/L and 35 mg/L, respectively. Additionally, the optimal pH conditions for mercury and lead ion adsorption were established to be 6. It was also observed that for concentrations of 100 mg/L and 250 mg/L, the majority of ion contaminants were removed by the nanofibers within the first hour. The adsorption capacities were found to be 129 mg/g and 165 mg/g for Hg2+ and 72.3 mg/g and 111 mg/g for Pb2+ at 100 mg/L and 250 mg/L concentrations, respectively. The ion-adsorption kinetic data was best fitted to a pseudo-second-order model. High sorption capacities were also demonstrated when employed to selectively adsorb mercury (II) and lead (II) ions from aqueous solutions containing Zn2+, Mg2+, Cu4+, Sn4+, and Ni4+. Desorption tests were performed to explore the stability of the heavy metals on the nanofiber. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

11 pages, 4375 KiB  
Article
Effect of CaO-TiO2-SiO2 on the Microstructure and Mechanical Properties of Ceramic Corundum Abrasives
by Quanbao Zhao, Zhihong Li and Yumei Zhu
Inorganics 2023, 11(5), 187; https://doi.org/10.3390/inorganics11050187 - 26 Apr 2023
Cited by 2 | Viewed by 2027
Abstract
Ceramic corundum abrasives were prepared using pseudo-boehmite as a raw material via the sol-gel method. Additives can significantly change the microscopic morphology of abrasives and improve mechanical properties. When 2 wt% CaO-TiO2-SiO2 with a molar ratio of 3:4:9 was added, [...] Read more.
Ceramic corundum abrasives were prepared using pseudo-boehmite as a raw material via the sol-gel method. Additives can significantly change the microscopic morphology of abrasives and improve mechanical properties. When 2 wt% CaO-TiO2-SiO2 with a molar ratio of 3:4:9 was added, samples with the best morphology and mechanical properties were obtained. Single-particle compressive strength, density, Vickers hardness, and average grain size were 51.45 N, 3.94 g·cm−3, 16.43 GPa, and 0.98 μm, respectively. We compared the same additive system with abrasives prepared by ball milling, and found that ball milling was beneficial for obtaining denser and smaller grain size abrasives. On the other hand, abrasives obtained without ball milling had relatively higher single-particle compressive strength. Additionally, the additives are non-precious metal oxides, which can reduce the cost of the synthesis process. In addition, there has been discussion of the connection between microstructure and mechanical characteristics. Full article
Show Figures

Figure 1

8 pages, 3735 KiB  
Article
Facile Preparation and Promising Hydrothermal Stability of Spherical γ-Alumina Support with High Specific Surface Area
by Yi Zhang, Yimin Lv, Yufan Mo, Huiyu Li, Pinggui Tang, Dianqing Li and Yongjun Feng
Catalysts 2022, 12(11), 1416; https://doi.org/10.3390/catal12111416 - 11 Nov 2022
Cited by 12 | Viewed by 2925
Abstract
It is of great importance to develop a spherical γ-alumina support with high hydrothermal stability to be used in platinum reforming catalyst processes. The porous pseudo-boehmite powder with a high surface area was first synthesized via a simple separate nucleation and aging steps [...] Read more.
It is of great importance to develop a spherical γ-alumina support with high hydrothermal stability to be used in platinum reforming catalyst processes. The porous pseudo-boehmite powder with a high surface area was first synthesized via a simple separate nucleation and aging steps method, and was then used as a precursor to produce a spherical γ-Al2O3 support via an oil–ammonia column method. The as-synthesized pseudo-boehmite has a substantially greater specific surface area of 336.0 m2·g−1 in comparison with the commercial Sasol boehmite powder (293.0 m2·g−1) from Sasol Chemicals. In addition, the as-prepared spherical γ-Al2O3 support derived from the as-synthesized pseudo-boehmite also possesses a higher specific surface area of 280.0 m2·g−1 compared to the corresponding Sasol sample. Moreover, the as-prepared spherical γ-Al2O3 balls demonstrate a much higher specific surface area of 185.0 m2·g−1 compared with the Sasol sample of 142.0 m2·g−1 after hydrothermal tests at 600 °C, suggesting its promising application in the chemical industry. Full article
(This article belongs to the Special Issue Exclusive Papers of the Editorial Board Members (EBMs) of Catalysts)
Show Figures

Figure 1

17 pages, 3228 KiB  
Article
Preparation and Performance of the Lipid Hydrodeoxygenation of a Nickel-Induced Graphene/HZSM-5 Catalyst
by Wen Luo, Qiongyao Zeng, Akram Ali Nasser Mansoor Al-Haimi, Ming Li, Lingmei Yang, Zhigang Sun, Shiyou Xing, Junying Fu and Pengmei Lv
Catalysts 2022, 12(6), 627; https://doi.org/10.3390/catal12060627 - 7 Jun 2022
Cited by 3 | Viewed by 2286
Abstract
Graphene-encapsulated nickel nanoclusters are a feasible strategy to inhibit the nickel deactivation of nickel-based catalysts. In this work, graphene-encapsulated catalysts (Ni@C/HZSM-5) were prepared by a compression forming process, using pseudo-boehmite, Al2O3, and ZrO2 as binders. The pseudo-boehmite was [...] Read more.
Graphene-encapsulated nickel nanoclusters are a feasible strategy to inhibit the nickel deactivation of nickel-based catalysts. In this work, graphene-encapsulated catalysts (Ni@C/HZSM-5) were prepared by a compression forming process, using pseudo-boehmite, Al2O3, and ZrO2 as binders. The pseudo-boehmite was gradually transformed from amorphous to crystalline alumina at high temperatures, which destroyed the nucleation of Ni@C. In contrast, the crystal-stabilized zirconia was more favorable for the nucleation of Ni@C. The extensive dispersion of alumina on the surface of HZSM-5 covers the acid sites of HZSM-5. In contrast, when zirconia was used as the binder, the binder existed in the form of the direct aggregation of ~100 nm zirconia spheres; this distribution form reduced better the damage of the binder to the acid site of the catalyst. Furthermore, the particle size of Ni crystals in the graphene-encapsulated catalysts decreased significantly (mostly <11 nm), and no evident agglomeration of nickel particles appeared. It was found that the stabilization of the metal interface delayed, to an extent, the accumulation rate of carbon deposits and, thus, postponed the deactivation of the acid sites. After 8 h of continuous reaction, the conversion of the traditional catalyst Ni/Z5+Zr dropped significantly to 60%. In contrast, the conversion of Ni@C catalysts prepared with ZrO2 remained above 90%. The regeneration test shows that air roasting could effectively remove carbon deposits and restore the catalyst activity. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

22 pages, 7801 KiB  
Article
Effect of Preparation Method on the Catalytic Performance of HZSM-5 Zeolite Catalysts in the MTH Reaction
by Junhua Gao, Hao Zhou, Fucan Zhang, Keming Ji, Ping Liu, Zenghou Liu and Kan Zhang
Materials 2022, 15(6), 2206; https://doi.org/10.3390/ma15062206 - 17 Mar 2022
Cited by 12 | Viewed by 3038
Abstract
A kind of nano-ZSM-5 zeolite crystal was synthesized by the hydrothermal method, and HZSM-5 zeolite powder was obtained via acid exchange. By using pseudoboehmite as a binder, a series of HZSM-5 zeolite catalysts for methanol-to-hydrocarbons (MTH) were prepared through adjusting the binder content [...] Read more.
A kind of nano-ZSM-5 zeolite crystal was synthesized by the hydrothermal method, and HZSM-5 zeolite powder was obtained via acid exchange. By using pseudoboehmite as a binder, a series of HZSM-5 zeolite catalysts for methanol-to-hydrocarbons (MTH) were prepared through adjusting the binder content between 20 and 50% in addition to the molding method of wet extrusion and mechanical mixing. XRD, 27Al NMR, SEM-EDS, ICP, low-temperature N2 adsorption and desorption, NH3-TPD, Py-FTIR, FT-IR, TG and elemental analyses were used to characterize the properties of fresh catalysts and coke-deposited catalysts. Then, MTH catalytic performance was evaluated in a continuous-flow fixed-bed reactor. The characterization and evaluation results showed that the addition of dilute nitric acid during the molding process increased the amount of moderate-strength acid and formed a hierarchical pore distribution, which helped to reduce the reaction ability of cracking, aromatization and hydrogen transfer, improve the diffusion properties of the catalyst and slow down the coke deposition rate. The catalyst with a binder content of 30% made by wet extrusion with dilute nitric acid had the best performance, whose activity stability of MTH increased by 96 h, higher than other catalysts, and the coke deposition rate was slower, which was due to the most suitable distribution of acid strength and B/L ratio as well as the most obvious hierarchical pore structure. Full article
(This article belongs to the Special Issue Advances in Nanostructured Catalysts)
Show Figures

Figure 1

11 pages, 1717 KiB  
Article
Synthesis of Si-Modified Pseudo-Boehmite@kaolin Composite and Its Application as a Novel Matrix Material for FCC Catalyst
by Chengyuan Yuan, Zhongfu Li, Lei Zhou and Guannan Ju
Materials 2022, 15(6), 2169; https://doi.org/10.3390/ma15062169 - 15 Mar 2022
Cited by 7 | Viewed by 2987
Abstract
Fluid catalytic cracking (FCC) has been the primary processing technology for heavy oil. Due to the inferior properties of heavy oil, an excellent performance is demanded of FCC catalysts. In this work, based on the acid extracting method, Si-modified pseudo-boehmite units (Si-PB) are [...] Read more.
Fluid catalytic cracking (FCC) has been the primary processing technology for heavy oil. Due to the inferior properties of heavy oil, an excellent performance is demanded of FCC catalysts. In this work, based on the acid extracting method, Si-modified pseudo-boehmite units (Si-PB) are constructed in situ and introduced into the structure of kaolin to synthesize a Si-PB@kaolin composite. The synthesized Si-PB@kaolin is further characterized and used as a matrix material for the FCC catalyst. The results indicate that, compared with a conventional kaolin matrix, a Si-PB@kaolin composite could significantly improve the heavy oil catalytic cracking performance of the prepared FCC catalyst because of its excellent properties, such as a larger surface area, a higher pore volume, and a good surface acidity. For the fresh FCC catalysts, compared with the FCC catalysts using conventional kaolin (Cat-1), the gasoline yield and total liquid yield of the catalyst containing Si-PB@kaolin (Cat-2) could obviously increase by 2.06% and 1.55%, respectively, with the bottom yield decreasing by 2.64%. After vanadium and nickel contamination, compared with Cat-1, the gasoline yield and total liquid yield of Cat-2 could increase by 1.97% and 1.24%, respectively, with the bottom yield decreasing by 1.80 percentage points. Full article
Show Figures

Figure 1

23 pages, 4753 KiB  
Article
Silica Removal from a Paper Mill Effluent by Adsorption on Pseudoboehmite and γ-Al2O3
by Ruben Miranda, Isabel Latour and Angeles Blanco
Water 2021, 13(15), 2031; https://doi.org/10.3390/w13152031 - 25 Jul 2021
Cited by 12 | Viewed by 4523
Abstract
Effluent reuse is a common practice for sustainable industrial water use. Salt removal is usually carried out by a combination of membrane processes with a final reverse osmosis (RO). However, the presence of silica limits the RO efficiency due to its high scaling [...] Read more.
Effluent reuse is a common practice for sustainable industrial water use. Salt removal is usually carried out by a combination of membrane processes with a final reverse osmosis (RO). However, the presence of silica limits the RO efficiency due to its high scaling potential and the difficulty of cleaning the fouled membranes. Silica adsorption has many advantages compared to coagulation and precipitation at high pHs: pH adjustment is not necessary, the conductivity of treated waters is not increased, and there is no sludge generation. Therefore, this study investigates the feasibility of using pseudoboehmite and its calcination product (γ-Al2O3) for silica adsorption from a paper mill effluent. The effect of sorbent dosage, pH, and temperature, including both equilibrium and kinetics studies, were studied. γ-Al2O3 was clearly more efficient than pseudoboehmite, with optimal dosages around 2.5–5 g/L vs. 7.5–15 g/L. The optimum pH is around 8.5–10, which fits well with the initial pH of the effluent. The kinetics of silica adsorption is fast, especially at high dosages and temperatures: 80–90% of the removable silica is removed in 1 h. At these conditions, silica removal is around 75–85% (<50 mg/L SiO2 in the treated water). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 2415 KiB  
Article
A Study on the Effect of Different Ball Milling Methods on the NH3-SCR Activity of Aluminum-Laden Bayan Obo Tailings
by Xinrui Bai, Jiawei Lin, Zedong Chen, Limin Hou and Wenfei Wu
Catalysts 2021, 11(5), 568; https://doi.org/10.3390/catal11050568 - 29 Apr 2021
Cited by 6 | Viewed by 2589
Abstract
Rich in Fe, Ce, Mn, Si and other elements which have good catalytic activity, Bayan Obo rare-earth tailings are naturally advantaged as the carrier of denitrification catalysts. In this paper, pseudo boehmite (γ-Al2O3) was mixed with Bayan Obo tailings [...] Read more.
Rich in Fe, Ce, Mn, Si and other elements which have good catalytic activity, Bayan Obo rare-earth tailings are naturally advantaged as the carrier of denitrification catalysts. In this paper, pseudo boehmite (γ-Al2O3) was mixed with Bayan Obo tailings using different ball milling methods for modification to prepare NH3-SCR catalysts. The effect of different mixing methods on the SCR denitrification activity at a low temperature was investigated and the prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), temperature programed desorption (NH3-TPD), temperature programed reduction (H2-TPR) and other means. The conversion rate of NOx at 250–350 °C was above 80% and the highest conversion rate of NOx of 90% was achieved at 300 °C. SEM and XRD revealed that the tailings modified by pseudo boehmite (γ-Al2O3) using the ordinary ball milling method have loose structure and good dispersion of active substances, and specific surface area (BET) analysis shows that the tailings have the maximum specific surface area and pore volume. However, over grinding and secondary spheronization were observed in the tailings modified by pseudo boehmite (γ-Al2O3) using high energy ball milling method, leading to the decrease of specific surface area and pore volume, poor dispersion of active substances, and ultimately low denitrification rate. Full article
(This article belongs to the Special Issue Catalysts Based on Mesoporous Materials for Environmental Application)
Show Figures

Graphical abstract

Back to TopTop