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Abstract: A kind of nano-ZSM-5 zeolite crystal was synthesized by the hydrothermal method, and
HZSM-5 zeolite powder was obtained via acid exchange. By using pseudoboehmite as a binder,
a series of HZSM-5 zeolite catalysts for methanol-to-hydrocarbons (MTH) were prepared through
adjusting the binder content between 20 and 50% in addition to the molding method of wet extrusion
and mechanical mixing. XRD, 27 A1 NMR, SEM-EDS, ICP, low-temperature N, adsorption and
desorption, NH3-TPD, Py-FTIR, FI-IR, TG and elemental analyses were used to characterize the
properties of fresh catalysts and coke-deposited catalysts. Then, MTH catalytic performance was
evaluated in a continuous-flow fixed-bed reactor. The characterization and evaluation results showed
that the addition of dilute nitric acid during the molding process increased the amount of moderate-
strength acid and formed a hierarchical pore distribution, which helped to reduce the reaction ability
of cracking, aromatization and hydrogen transfer, improve the diffusion properties of the catalyst
and slow down the coke deposition rate. The catalyst with a binder content of 30% made by wet
extrusion with dilute nitric acid had the best performance, whose activity stability of MTH increased
by 96 h, higher than other catalysts, and the coke deposition rate was slower, which was due to the
most suitable distribution of acid strength and B/L ratio as well as the most obvious hierarchical
pore structure.

Keywords: ZSM-5; binder; pseudoboehmite; acid; hydrocarbon; coke

1. Introduction

The conversion of methanol-to-hydrocarbons (MTH), including gasoline, aromatic or
olefin, on acidic zeolites is a very important way for fossil fuels and biomass to produce
bulk chemicals from syngas; it has become one of the hot topics in the field of catalysis
in the past twenty years [1,2]. The present situation of energy in China is that it is rich
in coal resources and poor in the resources of oil and natural gas. The technology of
methanol production from syngas has been matured, which could provide a good raw
material foundation for MTH. ZSM-5 is the most commonly used zeolite catalyst in the
MTH process, with a three-dimensional crosspore structure and a high Si/ Al ratio; as a
result, it has unique shape selectivity, good hydrothermal stability and strong resistance to
coke deposition ability [3,4]. ZSM-5 zeolites are usually synthesized by the hydrothermal
method in an alkaline sol-gel system, and the product of ZSM-5 zeolites is an alkaline
crystal powder containing template and alkali metal cations. The template needs to be
removed by drying and calcining, and then the zeolite powder is exchanged with an
acid solution or an ammonium salt solution to form hydrogen-type ZSM-5 (HZSM-5) raw
powder. In industrial applications HZSM-5 raw powder is molded with a certain amount
of binder by wet extrusion, dried and calcined to achieve the mechanical strength required
for industrial applications and then the finished MTH catalyst is prepared. The molding of
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HZSM-5 zeolite raw powder and binders is an important part in the industrial preparation
process of an MTH catalyst. This process can not only enhance the strength of the catalyst
but also affect the acid active centers and textural properties of the catalyst by adding
a binder, thus affecting the reaction performance of the catalyst [5-7]. In addition, coke
deposition during the MTH reaction is the main reason for the one-way deactivation of
the catalyst [8-10]. The preparation methods affect the acidity and pore distribution of
the catalyst, thus affecting the deactivation behavior of coke deposition. Therefore, it is
also of great significance to study the effect of the preparation method on the catalytic
performance and coke behaviors of HZSM-5 zeolites for the development of an MTH
catalyst in industrial applications.

The typically used binders include silica, alumina, kaolin and so on, which play
different roles in the molding process. Pseudoboehmite is a kind of alumina binder used
often and commonly in the extrusion molding process of a ZSM-5 zeolite catalyst [11-14].
In order to investigate the influence of the binder content and molding method on the
MTH catalytic performance of ZSM-5 zeolite catalysts, pseudoboehmite was used as the
binder to prepare different kinds of catalysts (wet extrusion molding with dilute nitric acid,
mechanical mixing pressing molding and wet extrusion molding with water). In our study
the effects of the molding method and binder content on the catalytic performance of MTH
were discussed, and a catalyst with industrial application value was prepared. The content
and C/H ratio of coke deposition on the catalyst were compared, and the influence of the
molding method on coke behavior was analyzed.

2. Materials and Methods
2.1. Catalyst Preparation

Z5SM-5 zeolites were synthesized by the hydrothermal method, using sodium silicate
(modulus 3.3, Qingdao Dongyue sodium silicate Co., Ltd., Qingdao, China) as a silicon
source, aluminum sulfate octadecahydrate (Al(5O04)3-18H,O, analytical purity, Tianjin
Beichen Fangzheng Reagent Factory, Tianjin, China) as an aluminum source, tetrapropy-
lammonium bromide as a template (TPABr, chemical purity, Zhejiang Kente Chemical Co.,
Ltd., Xianju, China) and concentrated sulfuric acid (H,SO4, chemical purity, Sinopharm
Chemical Reagent Co., Ltd., Beijing, China) as a pH regulator, to prepare a certain propor-
tion of gel. The obtained gel was put into a 2 L stainless steel autoclave, and the stirring
speed was 400 rev/min. ZSM-5 zeolite crystals were obtained through aging at low tem-
perature and crystallization at high temperature, controlling the synthetic temperature and
crystallization time. The obtained crystals were washed to neutral with deionized water,
dried at 393 K for 12 h and calcinated at 813 K for 4 h to remove the organic template. Ac-
cording to 50 mL of a 0.5 mol/L ammonium nitrate (NH4NOs, chemical purity, Sinopharm
Chemical Reagent Co., Ltd., Beijing, China) solution of each gram of NaZSM-5 zeolites,
the hydrogen-type ZSM-5 zeolite (HZSM-5) raw powder was obtained by exchanging at
353 K for three times. The HZSM-5 raw powder was pressed into tablets and broken into a
20-40 mesh for standby, which was recorded as CZ.

Weigh 8 g, 7 g, 6 g and 5 g of HZSM-5 zeolite powder, then weigh 2 g, 3 g, 4 g and
5 g of pseudoboehmite (Zibo Baida Chemical Co., Ltd., Zibo, China), respectively. Mix
them evenly, add dilute nitric acid solution, knead evenly and extrude them. The formed
HZSM-5 catalysts with pseudoboehmite contents of 20%, 30%, 40% and 50% were prepared,
which were recorded as CN-20, CN-30, CN-40 and CN-50 successively. Weigh 7 g of
HZSM-5 zeolite raw powder and 3 g of pseudoboehmite, mix them mechanically, grind
them evenly in an agate mortar and press them into tablets, recorded as CP-30. Weigh
7 g of HZSM-5 zeolite raw powder and 3 g of pseudoboehmite, mix them evenly, add
deionized water, knead them evenly and extrude them into shape, recorded as CW-30. All
the formed catalysts were dried at 393 K for 12 h, calcinated at 813 K for 4 h and broken
into a 20-40 mesh for subsequent catalyst evaluation.
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2.2. Catalyst Characterization

X-ray diffraction (XRD) phase analysis was carried out on a D8 ADVANCE X-ray
powder diffractometer (Bruker, Germany). Cu target, K« ray (A = 0.15 nm), tube voltage of
40 kV, tube current of 30 mA, 5-50° scanning and step size of 0.02°.

Fourier transform infrared (FT-IR) spectra characterization was carried out on a Bruker
Vector 22 infrared spectrometer (Bruker, Germany). The samples and potassium bromide
powder were mixed and ground as the mass ratio of 1:(200-400), and then the spectra were
scanning at room temperature after forming by pressing.

An ¥ AINMR test was carried out on an AVANCE IIITM 600 MHz superconducting
NMR spectrometer (Bruker, Switzerland). 2 Al NMR spectra were obtained at 10.0 kHz
using a 1 s delay, for a total of 10000 pulses.

The catalysts” morphology was determined by a JSM-7001F thermal field emission
scanning electron microscope (SEM) with a voltage of 10 kV (JEOL, Akishima, Tokyo, Japan).
Elemental distributions were acquired with an X-ray energy-dispersive spectrometer (EDS,
X-Flash 5010) detector at 15 kV.

Transmission electron microscopy (TEM) images were recorded on a Tecnai G2 F20
S-Twin microscope operated at 200 kV (FEL, Hillsboro, America).

The composition of HZSM-5 zeolites were determined by a Thermo iCAP 6300 inductively
coupled plasma (ICP) atomic emission spectrometer (Thermo Fisher, Waltham, America).

Low-temperature N; adsorption and desorption isotherms at 77 K were recorded using
a Micromeritics ASAP 2010 instrument (Micromeritics, America). Before the measurements
the samples were heated to 570 K in a vacuum for at least 12 h. The specific surface area,
mesopore size pore distribution and micropore volume were calculated by the Brunauer—
Emmett-Teller (BET) method, the Barret-Joyner-Halenda (BJH) method and the t-plot
method by Harkins and Jura (DeBoer) thickness equation, with a thickness range of 3.5 to
5 A, respectively.

Ammonia temperature-programmed desorption (NH3-TPD) characterization was
carried out on a micro automatic multipurpose adsorption instrument, TP-5080 (Tianjin
Xianquan, China). The catalyst was first purged with N at 773 K for 60 min, with a N flow
rate of 30 mL/min, and then reduced to 373 K for the adsorption of NH3. After the baseline
was stable the ammonia desorption experiment was conducted at 10 K/min to 973 K.

Pyridine Fourier transform infrared (Py-FTIR) was characterized on a Bruker Vector
22 infrared spectrometer (Bruker, Karlsruhe, Germany). The catalyst was first treated at
673 K and 0.05 Pa for 30 min to remove the adsorbed impurities. Pyridine was adsorbed
at room temperature. After desorption at 573 K and 0.05 Pa, the characteristic peaks of
Bronsted (B) acid and Lewis (L) acid were integrated. The distribution of B acid and L acid
was represented by the ratio of the peak area of the two kinds of acids.

Diffuse reflectance Fourier transform infrared (FT-IR) spectra were measured on a
Bruker Tensor 27 FT-IR spectrometer (Bruker, Germany). The catalyst samples were first
calcinated at 813 K for 4 h in the muffle furnace. Prior to the measurement the sample was
heated at 723 K for 2 h with a N flow of 15 mL/min in situ cell. The IR spectra were then
recorded at room temperature.

C and H elements were analyzed by a Vario EL CUBE element analyzer (Elementar,
Frankfurt, Germany).

The thermogravimetry (TG) analysis of deposited coke catalysts was carried out on
a Setsys Evolution thermogravimetric analyzer (Setaram, Lyon, France). O, atmosphere,
from 303 K to 1173 K, with a heating rate of 10 K/min and a gas flow rate of 20 mL/min.

2.3. Catalyst Evaluation

The catalyst was evaluated in a continuous-flow fixed-bed reactor with stainless
steel tubes of 100 cm in length and 1 cm in inner diameter. Three grams of catalyst was
loaded into the constant temperature section of the reactor, and quartz sand was filled at
both ends of the bed. MTH reaction performance was evaluated at atmospheric pressure,
653 K and a methanol weight space time velocity (WHSV) of 4 h—!. The products were
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separated by cold trap gas-liquid separation. The gas- and water-phase products were
analyzed by an SP-2000 gas chromatograph of a Beijing Beifen Ruili analytical instrument
(Group) Co., Ltd. (Beijing, China). The gas-phase products were analyzed by a TDX-
102 packed column, a thermal conductivity detector (TCD), an aluminum oxide (Al,O3)
capillary column and a hydrogen flame (FID) detector. A Porapak-Q packed column and
TCD detector were used for the analysis of aqueous products. Oil-phase products in the
liquid-phase products were analyzed by an SP-3420 gas chromatograph of a Beijing Beifen
Ruili analytical instrument (Group) Co., Ltd. The chromatographic columns for oil-phase
products were an HP INNOWAX capillary column and an FID detector. The methanol
conversion, product distribution and hydrogen transfer index (HTI) are defined as follows:

Methanol conversion x = (mass of feed methanol — mass of methanol in

aqueous phase)/mass of feed methanol x 100% @
Product distribution s = mole number of carbon contained in one @)
product/total productcarbon mole number x 100%
Aromatics content in oil phase ¢ = mass of some product in C5*/mass of 3)
liquid phase product x 100%
Hydrogen transfer index = V(propane + butane)/ V(propy]ene +butene) X 100% (4)

3. Results
3.1. Catalyst Crystal Structure, >’ Al NMR and Morphology

The XRD patterns of the catalysts are shown in Figure 1. It can be concluded that all
the samples have MFI characteristic structure diffraction peaks. There is no impurity in
sample CZ, which indicates that the synthesized crystal is ZSM-5 zeolites. With an increase
in binder content the content of HZSM-5 in the unit mass catalyst decreased, and the
intensity of the MFI structure characteristic diffraction peak decreased. The diffraction peak
intensities of CN-30, CP-30 and CW-30 are slightly different: the diffraction peak intensities
of CP-30 are higher than those of CN-30, followed by those of CW-30, which indicates that
the molding method has some effect on crystal diffraction peak intensity; dilute nitric acid
does not cause obvious damage to the crystal structure of HZSM-5 zeolites.

CW-30
J)\ IN CP-30
J’x N CN-50
JLM‘WM____M

JJK N CN-30

Jh ) CN-20
h b cz
r T T T T T T T

20/(')

Figure 1. XRD patterns of the catalysts.

The FT-IR spectra of the catalysts are shown in Figure 2. It can be seen that the
synthesized zeolite has characteristic peaks at about 455, 550, 790, 1105 and 1225 cm~ L.
The band near 455 cm ™! reflects the T-O-T bending vibration, the band near 550 cm ™!
reflects the bending vibration of five-membered ring in the structural of ZSM-5, the band
near 790 cm ! reflects the T-O-T out-of-plane symmetric stretching vibration, the band at
1105 cm ™! reflects the T-O-T antisymmetric stretching vibration of tetrahedrons and the
band at 1225 cm ™! reflects the antisymmetric stretching vibration of inner tetrahedrons.
The catalysts appeared to have FT-IR peaks characteristic of ZSM-5 zeolite, which shows
that the synthesized samples have an MFI structure.
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Figure 2. FT-IR spectra of the catalysts’ structure.

The 2 Al NMR spectra of the catalysts are shown in Figure 3. The resonance peak at
54 ppm is designated as tetrahedral coordination framework aluminum (FAL), and the
weak peak at 0 ppm is designated as octahedral coordination extra framework aluminum
(EFAL) [15]. The peak of catalyst CZ at 54 ppm is sharp and its strength is very high,
indicating that most of the aluminum in HZSM-5 raw powder belongs to framework
aluminum. The peak of catalyst CZ at 0 ppm is very weak, which may be attributed to
the removal of the framework aluminum of HZSM-5 zeolites during the high-temperature
calcination step [16,17]. The signal at 54 ppm of CN-30, CP-30 and CW-30 is still clear,
which corresponded to tetrahedral coordination FAL, indicating that the crystal structure
of HZSM-5 is not destroyed in the molding process. There are two other obvious resonance
signals near 9.3 ppm and 67.28 ppm existing in CN-30, CP-30 and CW-30, which are
attributed to tetrahedral and octahedral alumina species in y-Al,O3, which was formed by
the calcination of a pseudoboehmite binder [18,19].

9.3
AT A(V)  A(IV) 6728
7
A TN o
-
: k —
@ / _/ \’_’ﬂ
2
/ \J NP
Il N )
NG
r T T T T T T 1
-20 0 20 40 60 80 100 120

Chemical shift /opm

Figure 3. 2 Al NMR spectra of the catalysts.

SEM photographs of the catalysts are shown in Figure 4. The crystal size of HZSM-5 is
less than 100 nm. The morphology of the catalyst is affected by the molding method: the
binder agglomerates with HZSM-5 crystals to form large particles. When the content of the
binder is less, pseudoboehmite powder is evenly dispersed in the middle of HZSM-5 zeolite
crystals. The particle of CN-20 is nanosized, and its crystal distribution is uniform. With an
increase in binder content the agglomerates of the binders form more large particles. There
are more large particles in CP-30, followed by CN-30; the particle distribution of CW-30 is
relatively uniform.

TEM photographs of the catalysts are shown in Figure 5. Most HZSM-5 crystals are
less than 50 nm; the binder is amorphous. The binder distribution of the catalysts prepared
by the wet extrusion method with dilute nitric acid is more uniform.
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(8
Figure 4. SEM photographs of the catalysts: (a) CZ; (b) CN-20; (c) CN-30; (d) CN-40; (e) CN-50;
(f) CP-30; and (g) CW-30.

F———— 50 nm

(d)

Figure 5. Cont.
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(e)
Figure 5. TEM images of the catalysts: (a) CZ; (b) CN-30; (c) CP-30; (d) CW-30; and (e) binder.

3.2. Catalyst Acidity

The NH3-TPD spectra of the catalysts are shown in Figure 6. The peak temperature of
weak acid is about 518 K, and that of strong acid is about 723 K on HZSM-5 raw powder
CZ. The peak temperature of weak and strong acids decreases by adding different binder
contents. The addition of the binder reduces the content of HZSM-5 raw powder in the
unit mass catalyst, adjust acid strength and regulates acidity distribution, which is due to
the dilution of HZSM-5 zeolite components. With an increase in binder content the weak
acid peak temperature of CN-20, CN-30 and CN-40 shifts to a lower temperature in turn;
the weak acid peak temperature of CN-50 is higher than that of CN-30 and CN-40, and
close to that of CN-20. The weak acid amount of CN series catalysts first increases and
then decreases with an increase in binder content. The weak acid peak area of CN-30 is the
largest, which indicates that the weak acid amount of CN-30 is the largest. The strong acid
peaks of CN series catalysts shift to low temperatures and become wider, which indicates
that strong acid strength of CN series catalysts decreases with binder addition. The peak
areas of strong acid decrease with the increase of binder content, indicating that the amount
of strong acid decrease, while the amount of weak acid and medium strength acid increase.
The weak acid peak temperature of CN-30 and CP-30 is close, higher than that of CW-30,
which indicates that the weak acid strength of water wet extrusion catalyst is low. The
results show that the addition of nitric acid in the extrusion process can form more weak
and medium-strength acid centers. The interaction between the binder and HZSM-5 zeolite
powder is weak, so the acid strength of CW-30 and CP-30 retains more, while their acid
density decreases significantly. Strong acid peaks of CN-30, CP-30 and CW-30 stay at a
similar temperature and have similar peak types, while the strong peak area of CN-30 is
significantly larger than that of CW-30 and CP-30, indicating that molding methods have
different effects on the amount and density of strong acid. Adding dilute nitric acid can
promote the interaction between pseudoboehmite and HZSM-5 zeolites, redistribute acid
properties and increase the medium-strength acid amount of the catalyst efficiently [20,21].

The Py-FTIR spectra of the catalysts are shown in Figure 7. There are three kinds of
C-C bending vibration peaks formed by pyridine adsorption in the catalysts, of which the
peak near 1545 cm ! represents B acid and the peak near 1454 cm~! represents L acid. The
characteristic peaks of the two kinds of acids appeared on all the catalysts, and the peak
area changed differently. The B acid peak area of CZ is larger than that of L acid, which
indicates that the density of the B acid center on raw HZSM-5 powder is higher than that of
L acid. The L acid peak area of CN series catalysts is significantly higher than that of CW-30
and CP-30, which indicates that acid types are redistributed by wet extrusion molding
with dilute nitric acid. The acid peak area and intensity of CN-30 were significantly higher
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than those of other catalysts, which prove once again that the addition of dilute nitric
acid may cause a chemical reaction between HZSM-5 zeolites and the pseudoboehmite
binder, resulting in the formation of new acid centers, the changing of acid amounts and
the redistribution of acid strength [22].

CW-30
CP-30

,_/\__.——\M
J\/\_%L

CN-30
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Figure 6. NH3-TPD spectra of the catalysts.
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Figure 7. Py-FTIR spectra of the catalysts.

By using ICP characterization the aluminum content of CZ is measured as 1.18%, and
the silicon content is 45.64%; therefore, the Si/ Al ratio of CZ is 37.30. In Table 1 the NH3-
TPD and Py-FTIR quantitative results of the catalysts are shown. The relationship between
the total acid amount and binder content is not obvious after adding the binder, while
the molding method has an obvious effect on acid distribution, indicating that different
methods cause different interactions between the binder and HZSM-5 raw powder. The
quantitative acid results of NH3-TPD show that the total acid amount first increases and
then decreases gradually with an increase in the binder content. The acid amount of CN-30
is the highest, at 0.73 mmol NH3/g. The total acid amount of CN-20 and CN-40 is about
0.65 mmol NHj3/g; that of CN-50 and CP-30 is similar, 0.56-0.57 mmol NH3/g; and CW-30
is the least, at only 0.45 mmol NH3/g. The results above show that the acid density of
CN-30 is the highest and that of CW-30 is the lowest. The total acid amount of CN-20, CN-
30 and CN-40 is higher than that of CZ; however, the acid strength of CN series catalysts
decreases combined with NH3-TPD spectra. As mentioned above, this may be due to the
chemical interaction between the binder and HZSM-5 zeolite powder by adding dilute
nitric acid to the wet extrusion process, resulting in the formation of new acid centers [23].
No matter what molding method is used, the acid strength distribution is greatly modified
by adding a binder of pseudoboehmite.
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Table 1. The NH3-TPD and Py-FTIR quantitative results of the catalysts.
Weak Acid ! Strong Acid ! Total Acid ! 2
Catalysts (mmol NHj3/g) (mmol NH3/g) (mmol NH3/g) B/L

cz 0.31 0.31 0.62 4.63

CN-20 0.34 0.33 0.67 2.48
CN-30 0.39 0.34 0.73 2.19
CN-40 0.35 0.29 0.64 1.85
CN-50 0.32 0.25 0.57 1.42

CP-30 0.31 0.25 0.56 3.70
CW-30 0.24 0.21 0.45 3.56

1: density of acid sites, determined from NH3-TPD results; ?: determined from 573 K Py-FTIR spectra.

The results of the B/L ratio calculated by Py-FTIR characterization show that CZ has
the highest B/L ratio, whose B acid is 4.63 times higher than L acid. The ratio of B acid to
L acid gradually decreases with an increase in the binder content; the B/L ratio of CN-50
is the lowest, which decreases to 1.42. The B/L ratios of CP-30 and CW-30 are close, both
about 3.6, lower than that of CZ and higher than that of CN-30. The molding method has
great influence on the acid type distribution, which can effectively reduce the B acid density
and the B acid strength. The addition of dilute nitric acid in the molding process is more
conducive to reducing the B acid ratio. Maybe there is a solid-state reaction between the
binder and HZSM-5 zeolite powder under acidic extrusion conditions; it is more conducive
to the close combination of the two kinds of powder, so the modification effect of the B
acid center on the surface of raw powder is stronger, or dilute nitric acid plays a role in
removing framework aluminum to some extent [24]. The catalysts prepared by mechanical
mixing and the wet extrusion method with water have weak interaction between HZSM-5
zeolites and the binder, so a strong B acid center of CP-30 and CW-30 is retained more.

3.3. Catalysts Pore Structure

The low-temperature N, adsorption and desorption isotherms of the catalysts are
shown in Figure 8. The adsorption isotherms and desorption isotherms of all the catalysts
do not coincide, and the hysteresis loops appear, indicating that there are a certain number
of mesopores in the catalysts. The hysteresis loop of CZ is slightly larger, mainly in the
region of higher relative pressure. The hysteresis ring became slender and shifted to
low pressure after adding the binder. The results show that pore distribution changes
with preparation methods, after which secondary intercrystal pores of different shapes
are formed.

900
7504
600
450

300 4

Pore volume v/em®/g STP

150

Relative pressure (p/p,)
Figure 8. The low-temperature N, adsorption and desorption isotherms of the catalysts.

The low-temperature N adsorption and desorption results of the catalysts are shown
in Table 2. The raw powder HZSM-5 has a high BET surface area, reaching 481.65 m2/ g.
With an increase in binder content, the BET surface area and micropore surface area of
the catalysts gradually decreases. The order of external surface area is CZ > CN-50 >
CN-30 > CN-4 ~ CP-30 > CW-30 > CN-20, and the changeable rule of the external surface
area with the binder content and molding method is not obvious. The external surface area
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of CN-20 is the minimum, and that of CN-50 is the maximum. There is a little difference
in the external surface area, which is no more than 20 m? /g. The total pore volume of CZ
is the largest, reaching 0.4763 cm®/g. The total pore volume decreases with the addition
of the binder, the micropore volume decreases with an increase in binder content and
the mesopore pore volume slightly increases with an increase in binder content. The
pore size of y-Al,O3 obtained by calcined pseudoboehmite is larger than that of HZSM-5
zeolites, and some pseudo boehmite binders may block the micropores; therefore, the
micropore volume of the catalyst decreases and the mesopore volume increases gradually
with an increase in binder content [25]. The BET surface area, micropore surface area and
micropore surface area of the CN-30, CP-30 and CW-30 catalysts prepared by three different
molding methods have little difference, with the maximum difference being 10.39 m?2/ g.
The decreasing degree of micropore volume and mesopore volume of CP-30 is higher than
that of CN-30 and CW-30, which indicates that the mechanical mixing method has a more
obvious influence on pore structure than the other two methods. The mechanical mixing
method is not conducive to the formation of mesopores and is easier to block micropores
with. Because the crystal of HZSM-5 zeolites used in this experiment is nanometer size, the
largest intercrystal pore has been formed by nano-HZSM-5 crystals, which leads to a lesser
degree of influence of the pseudoboehmite binder on the total pore volume. The surface of
the HZSM-5 crystal was covered by the binder, resulting in a decrease in micropore volume.
A large amount of mesopores can be formed by nano-HZSM-5 crystals; the mesopore
volume is mainly contributed by intercrystal mesopores of HZSM-5 zeolites. Although the
mesopore volume gradually increases with an increase in binder content, it is still lower
than the intercrystal mesopores formed by HZSM-5 raw powders.

Table 2. Low-temperature N, adsorption and desorption results of the catalysts.

SBET Smicro 1 Sext 1 A% 1 2 Vmicro 3 Vimeso 4 Dpore

Catalysts /(m2.g-1) /(m?-g~1) /(m2.g~1) /(Cn:gt:g,l) /(em3-g~1) /(em®.g~1) /(Ifm)
(@V4 481.65 271.72 209.93 0.4763 0.1121 0.3642 3.96
CN-20 423.82 234.74 189.07 0.4221 0.0970 0.3251 3.98
CN-30 409.01 202.15 206.86 0.4248 0.0843 0.3405 4.16
CN-40 384.18 182.40 201.77 0.4283 0.0763 0.3520 4.46
CN-50 360.57 147.72 212.85 0.4205 0.0626 0.3579 4.66
CP-30 398.71 196.96 201.75 0.4173 0.0822 0.3351 4.19
CW-30 401.42 202.83 198.59 0.4373 0.0844 0.3529 4.36

L micropore surface area and external surface area, from t-plot; 2, single-point adsorption total pore volume of

pores; 3: micropore volume, from t-plot; and #: mesopore volume, from the BJH method.

The pore distribution of the catalysts is shown in Figure 9. It can be concluded that
the binder content and molding method have an important influence on the pore size
distribution of catalysts [26]. In addition to the micropore of HZSM-5 itself there is a
concentrated mesopore distribution formed at about 15 nm for CZ, which is due to the
formation of large intercrystal mesopores. The concentrated mesopore distribution of
CN-20 shifted to a low pore diameter, indicating that the addition of the binder changed
the interaction of HZSM-5 crystals. There are two kinds of concentrated pore distribution
at about 4.79 nm and 11.28 nm for CN-30 in addition to 5.57 nm and 11.28 nm for CN-40
and CN-50. Besides, there is a concentrated pore distribution at about 3.45 nm for CN-50,
which may be formed by the binders due to the high binder content. With an increase
in binder content a hierarchical pore distribution was formed. Different from CN series
catalysts, CP-30 and CW-30 have similar pore distribution, with two kinds of concentrated
pore distribution at about 3.45 nm and 13.84 nm. The number of pores at 3.45 nm for CP-30
and CW-30 is higher than CN-30, which is similar to CN-50; this may be due to the weak
interaction of binders with HZSM-5 crystals and the strong interaction of binders. A pore
distribution comparison showed that dilute nitric acid plays an important role in the pore
formation of the molding process, increasing hierarchical pore distribution, which is more
conducive for improving diffusion performance [27].
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Figure 9. Pore distribution of the catalysts.

3.4. Catalyst Surface Characterization

The FT-IR spectra of the catalysts” surface O-H stretching vibrations are shown in
Figure 10. The band at 3745 cm ! is related to isolated external silanols [Si-OH] and the
shoulder towards lower frequencies (3728 cm ') has been assigned to weakly interacting
internal silanols, while the band at 3610 cm ™! is assigned to B acid sites associated with
framework aluminum [Si-(OH)-Al], typically located at the external surface. The band
at 3500 cm~! is related to delocalized hydrogen-bonded groups of lattice defects. The
additional weak band located at 3664 cm ! is observable at catalysts with the binder, which
is assigned to extraframework aluminium (EFALl) species [15,28]. The characteristic peaks
of external silanols [Si-OH] (3745 cm 1) and skeleton aluminum [Si-(OH)-Al] (3610 cm 1)
on the catalysts are obvious. With the addition of the binder the peak intensity of external
silanols [Si-OH] (3745 cm™!) decreases and widens. With an increase in binder content
the external silanols [Si-OH] peak widens more severely and the internal silanols shoulder
peak (3728 cm~!) appears, which indicates that the silanols become dispersed and more
abundant. The framework Al [Si-(OH)-Al] (3610 cm~!) peak remained on the formed
catalyst. When the binder content reached 40% the peak of 3610 cm ™! was significantly
widened. The [Si-(OH)-Al] (3610 cm™1) peaks of CN-30, CP-30 and CW-30 have little
difference, and the peak distribution of the external silanols [Si-OH] (3745 cm~!) of CP-30
is more concentrated, followed by CW-30. The peak distribution of the external silanols
[Si-OH] (3745 cm ™) of CN-30 is wider than that of CP-30 and CW-30, indicating that the
addition of dilute nitric acid is conducive to enhancing the interaction between the binder
and HZSM-5 zeolites.

3745

4 3610
|~ Bindercalinated

y
éxz&;ﬁ
\/\_\_\CZ-

13728 366

Absorbance /a.u.

T T T T T T T T T T 1
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Figure 10. FT-IR spectra of the catalysts’ surface O-H stretching vibrations.
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The element distribution results of the catalysts from SEM-EDS are shown in Figure 11
and Table 3. With an increase in binder content the aluminum content increases, and
the silicon content first increases and then decreases. The aluminum content of CN-30
and CW-30 is close, about 9.4%. The aluminum content of CP-30 is less, and the silicon
content of CP-30 and CW-30 is higher than CN-20. They show that the binder and HZSM-5
distribution of CN-30 is relatively uniform.

46 i
Ch" MAG:20,00% MY 35)

Figure 11. Cont.
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(8

Figure 11. SEM-EDS elemental mapping of the catalysts: (a) CZ; (b) CN-20; (c) CN-30; (d) CN-40;
(e) CN-50; (f) CP-30; (g) CW-30; and (h) binder.

Table 3. Element distribution results of the catalysts from SEM-EDS.

Catalysts O Content/% Al Content/% Si Content/%

cz 63.3 1.5 35.2
CN-20 64.0 7.6 284
CN-30 59.9 9.7 304
CN-40 56.7 12.4 30.9
CN-50 55.3 20.0 24.7
CP-30 61.2 5.8 33.0
CW-30 57.6 9.1 33.3
Binder 56.1 439 0.0

3.5. Catalyst Evaluation

The catalysts are evaluated under the conditions of atmospheric pressure, 653 K and
a methanol WHSV of 4 h~!. The change in methanol conversion with time on stream is
shown in Figure 12. The presence of methanol in the aqueous phase is the sign of catalysts’
deactivation; it can be concluded that the order of activity stability is CN-20 = CN-30 >
CN-40 > CN-50 > CP-30 = CW-30 = CZ. The lifetime of CN-20 and CN-30 is 168 h, followed
by CN-40 with 144 h. The lifetime of CZ, CP-30 and CW-30 is only 72 h. When methanol
appeared in the aqueous phase methanol conversion decreased at different rates. The
methanol conversion of CN-20, CN-30, CN-40 and CN-50 decreased slowly, indicating
those whose deactivation rate was slower than other catalysts and that the deactivation
rate of CN-30 was the slowest, indicating that its activity stability was the highest. The
methanol conversion of CZ, CP-30 and CW-30 decreased rapidly, indicating those whose
deactivation rate is very quick. Overall, the molding method of CN-30 is the best and
the binder content of 30% is the most suitable; the lifetime is increased by 96 h under the
evaluation conditions mentioned above.

The hydrocarbon product distribution of MTH over the catalysts with time on stream
is shown in Figure 13. In the range of the active period (methanol conversion is 100%) the
selectivity of light olefin (C,~, C3~ and C4~ alkenes) increases, low-carbon alkanes (C,°, C3°
and C4° alkanes), except methane, decrease and the selectivity of Cs* decreases gradually
with time on stream.

The change in oil composition with time on stream is shown in Figure 14. It showed
that the contents of nonaromatics and aromatics in the oil phase change with time on
stream constantly. Nonaromatic hydrocarbons are mainly C5-C7 alkanes and olefins, and
aromatics are mainly C7—C10 aromatics. In the range of the active period the content of
nonaromatics increases gradually, while the content of aromatics decreases gradually.
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Figure 14. The change in oil composition with time on stream: (a) CZ; (b) CN-20; (c) CN-30; (d) CN-40;
(e) CN-50; (f) CP-30; and (g) CW-30.

The change in the hydrogen transfer index (HTI) with time on stream over the catalysts
is shown in Figure 15. It can be seen that the HTI of all the catalysts decreases continuously
with time on stream and that the downward trend gradually slows down. At the beginning
of the reaction the HTI of the catalyst with less binder content is higher, and the HTI of
CW-30 and CP-30 are close, lower than that of CN-30. The HTI of CZ decreased to 3.07
at 24 h and 1.06 at 48 h. Its reduction speed is the fastest, followed by CW-30; the third is
CP-30; the fourth is CN-30; and CN-20 and CN-50 decreased slowly.
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Figure 15. The change in the hydrogen transfer index with time on stream over the catalysts.
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The results of the coke, C and H content of the coke-deposited catalysts are shown in
Table 4. The coke weight loss of CZ is the most, at 27.41%, indicating that its coke deposition
amount is the largest; additionally, its C/H ratio of coke deposition is the highest, reaching
1.75, while the lowest C/H ratio was of CN-50, at 1.36. The coke deposition amount of
CN series catalysts first increases and then decreases from CN-20 to CN-50; CN-30 has
the highest coke deposition amount, which is due to it having the longest lifetime. The
C/H ratios of CN-20, CN-30 and CN-40 are the same, 1.53, while the C/H ratio of CN-50
decreases significantly. The C/H ratio order of the catalysts prepared by the three methods
is CP-30 > CW-30 > CN-30.

Table 4. The results of the coke, C and H content of the coke-deposited catalysts.

Catalysts Coke Content /% C Content /% H Content %/% C/H? Molar Ratio

czZ 27.41 29.49 1.40 1.75
CN-20 21.46 24.63 1.34 1.53
CN-30 25.24 25.92 1.41 1.53
CN-40 24.87 25.23 1.37 1.53
CN-50 21.20 21.98 1.35 1.36
CP-30 25.37 26.00 1.27 1.71
CW-30 24.42 27.57 1.39 1.65

L. coke content, determined from TG results; 2: coke component, determined from C and H elements analysis.

4. Discussion

CN-30 has the best catalytic performance. It suggested that adding a binder and wet
extrusion molding with dilute nitric acid can effectively reduce the deactivation rate and
improve activity stability. As we all know, coke deposition is the main reason of one-way
deactivation in the MTH reaction and the catalyst activity can be restored by burning coke
deposition. Strong B acid sites are conducive to the reactions of polymerization, cracking,
cyclization and hydrogen transfer, which eventually generate macromolecular polycyclic
aromatics, and they are the active centers of deep coke deposition. The addition of the
binder not only increases the mechanical strength of the catalyst but also disperses and
covers strong B acid sites [29]. A strong acid amount and strong acid strength decreased
significantly with the addition of the binder, and strong acid strength decreased gradually
with an increase in binder content. On the one hand, although the acid amount of CN-
30 increases and its acid density is the highest, the acid strength of CN-30 decreases
significantly and its proportion of B acid is moderate. On the other hand, there are two
kinds of concentrated pore distribution in CN-30, forming a hierarchical pore structure
that greatly improves diffusion performance. CN-30 therefore has the best activity stability
due to the combination effect of acidity and pore distribution. The B acid ratio of CP-30
and CW-30 obtained by the mechanical mixing method and water extrusion method is
higher, after which a deep coke deposition reaction is more likely to occur; therefore, the
deactivation is faster.

NH;5-TPD and Py-IR characterizations show that CZ has strong acidity, high acid
density and the highest proportion of B acid, which makes it easier to deactivate via carbon
deposition. However, the activity stability of CZ is the same as that of CP-30 and CW-30,
which is 72 h, methanol conversion of CZ decreases more rapidly at 96 h than that of CP-30
and CW-30, and begins to decrease sharply at 120 h. This indicates that pore structure also
has some certain influence on activity stability. CZ molded by the pressing of HZSM-5
zeolites into tablet has formed a large number of mesopores and macropores via nano-
HZSM-5 crystals, which improves diffusion performance and is conducive to the diffusion
of precursors of macromolecular coke deposition; therefore, the deactivation rate of CZ is
reduced to a certain extent. The proportion of B acid decreases with an increase in binder
content, indicating that the strength and density of B acid decreased significantly, while
the proportion of B acid of CP-30 and CW-30 is higher than that of CN series catalysts,
which aggravated the deep coke reaction. Pore structure data show that the micropore
volume and micropore surface area of CP-30 and CW-30 decreased, which indicates that the
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binder covered the surface and pore entrance of HZSM-5 zeolites in addition to blocking
the micropore. The pore distribution also confirms the above statement. Consequently, the
catalysts prepared by the mechanical mixing method and water wet extrusion method are
detrimental to the diffusion of macromolecular products. The activity stability of CP-30
and CW-30 is not improved, and the activity stability is close to that of CZ with the effect of
the acid distribution and pore structure.

According to the “hydrocarbon pool” reaction mechanism, methanol first forms “hy-
drocarbon pool” active species, after which methanol and “hydrocarbon pool” active
species continue to react to generate various hydrocarbon products. The “hydrocarbon
pool” species on HZSM-5 are mainly long-chain olefins, polymethylbenzene and cyclopen-
tene carbon cations [30,31]. These species are also important deactivate intermediates, and
they can also be called coke deposition precursors. With the progress of the reaction the
coke deposition on the catalyst gradually increases, covering the surface of the acid center,
reducing the acid strength and acid density; therefore, the capacity of polymerization, crack-
ing, cyclization and hydrogen transfer gradually decreases, the olefin content gradually
increases, the alkane content gradually decreases and Cs5* hydrocarbon products decrease
gradually. In the same way, the catalysts with strong acidity, high proportions of B acid
centers and large acid amounts have strong abilities of polymerization, cracking, cyclization
and hydrogen transfer, so olefins are lower and alkanes are higher. The acid center is the
active center of the reaction, especially the strong B acid center, which is the key factor of
the reaction performance. If acidity is strong and the acid density is high the combination of
“hydrocarbon pool” species and acid sites is strong, and products will not be easy to desorb
from catalysts, resulting in deep coke deposition. If the acidity is moderate methanol can
continuously react with “hydrocarbon pool” species, and the catalyst will have a long
lifetime. Gas-phase hydrocarbon products of the catalysts with the addition of the binder
increased, while high-carbon-number C5* hydrocarbon products increase gradually, which
is mainly due to the decrease in strong acid strength and acid density.

The oil composition change is also mainly due to the effect of coke deposition on the
acidity during the reaction. As mentioned above, with an increase in coke deposition the
acid center is covered by coke deposition, acid strength decreases, acid density decreases
and the ability of polymerization and cyclization decrease. Therefore, the content of nonaro-
matic hydrocarbons with a low carbon number increases and the content of aromatics
decreases. Polymethylbenzenes (toluene, xylene, trimethylbenzene and tetramethylben-
zene) are the main aromatics. The content of aromatics with carbon number larger than
C10 is less; the trend is not obvious, which is due to the shape selectivity of HZSM-5
crystal micropores. Benzene, toluene and C8 aromatics are mainly obtained from cracking
reactions; the cracking ability is stronger at the initial stage of the reaction, so the content of
benzene, toluene and C8 aromatics is higher at first and then decreases gradually, which
is due to the influence of coke deposition on acidity. The change in C9 aromatics is not
obvious, and the main C9 aromatics component is the thermodynamic equilibrium product
meta-trimethylbenzene. C10 aromatics are mainly tetramethylbenzenes, in which the con-
tent of durene is the largest, and its content increases with time on stream. As the reaction
proceeds the cracking activity is insufficient, so durene increases. The results suggest that
the relationship of aromatics distribution and pore distribution is not obvious, which is
mainly related to acidity. The acid distribution affects product distribution directly. A
catalyst with strong acidity and a high density of acid centers has strong cracking ability,
and the content of low-carbon-number aromatics is high. On the contrary, the content of
polymethyl aromatics is high.

The change in HTT is also due to carbon deposits formed in the reaction process, which
modifies the acidity, weakens strong acid strength and decreases acid density. Therefore,
the HTI decreases continuously with the reaction. The trend in the HTI showed that the
coke deposition rate of a catalyst with a high B/L ratio was very fast. The addition of the
binder can reduce the acid strength, make the distribution of acid centers more dispersed
and reduce the density of acid centers, which can delay coke deposition; therefore, the HTI
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of the catalysts with a high binder content decreased slowly. The HTI corresponds to the
difference in catalysts’ acidity, which is related to the B/L ratio and acid density directly.
The essential reason is that the molding methods and binder content have different effects
on acidity, which was mentioned earlier.

Acidity is the main factor that affects the properties of coke deposition; aromatics are
prone to deep coking reactions over catalysts with a high acid density and strong acidity.
Therefore, the amount of coke deposition of CZ is the largest and the C/H ratio of coke
deposition is the highest. The interaction between the binder and strong acid sites prepared
by the mechanical mixing method is weak, its strong acid sites are retained more and the B
acid ratio is higher; therefore, its C/H ratio is higher, followed by CW-30. Adding dilute
acid to the molding process of CN-30, which enhances the interaction between the binder
and HZSM-5 zeolites, covers strong acid centers, reduces acid strength, and inhibits the
deep coking reaction effectively. The trend in the TG and C/H ratio of coke deposition
corresponds to acidity changing, which verifies the influence of acidity difference on the
reaction performance.

5. Conclusions

Molding by adding a binder of pseudoboehmite changes the acid distribution of
the catalysts, the amount of medium strength acid increases, the amount of strong acid
decreases, the strength of strong acid decreases and the B/L ratio decreases. The medium-
strength acid amount of the catalyst molded by wet extrusion with dilute nitric acid is
increased and the B acid proportion is moderate, while the mechanical mixing and water
wet extrusion methods retained more B acid sites. With the increase in binder content the
acid amount first increases and then decreases, and the B/L ratio decreases gradually.

For nano-HZSM-5 zeolite crystals a large number of intercrystal mesopores can be
formed by nanocrystals. The addition of the binder can form an obvious hierarchical pore
distribution, but the total pore volume decreases. The mechanical mixing method and water
wet extrusion molding method cause micropore blockage; the molding method of wet
extrusion with dilute nitric acid is conducive to the formation of a more obvious hierarchical
pore distribution. Hierarchical pore distribution is beneficial to product diffusion, reducing
the deactivation rate of carbon deposition and improving the activity stability of the catalyst.

The addition of dilute nitric acid in the molding process strengthens the interaction
of HZSM-5 zeolites and binders, increases the medium-strength acid amount and forms a
more obvious hierarchical pore distribution. However, the hierarchical pore structure of
the mechanical mixing method and water wet extrusion molding method is not obvious.
The acidity of the 30% binder content catalyst prepared by wet extrusion molding with
a dilute nitric acid solution is moderate, especially its strong acid strength and B/L ratio,
whose hierarchical pore structure is the most obvious; therefore, the activity stability of
CN-30 is the highest.

Acid distribution is the main reason for product distribution of the catalysts, which
is related to the ability of the hydrogen transfer reaction, the amount of coke deposition,
the rate of coke deposition and the C/H ratio of coke deposition. The catalyst with strong
acidity and a large strong acid amount has high hydrogen transfer ability, large coke
deposition, a fast coke deposition rate and a high carbon C/H ratio. A strong B acid center
is conducive to the formation of high-carbon hydrocarbons and aromatics, while pore
distribution has little influence on product distribution.
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