Facile Preparation and Promising Hydrothermal Stability of Spherical γ-Alumina Support with High Specific Surface Area
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphologies and Structure of PB Powder
2.2. Pore Structure of PB Powder
2.3. Morphologies and Structure of Spherical γ-Al2O3 Balls
2.4. Hydrothermal Stability of γ-Al2O3
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Pseudo-Boehmite
3.3. Preparation of Spherical γ-Al2O3 Balls
3.4. Hydrothermal Stability Evaluation
3.5. Characterizations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Ibrahim, A.-R.; Hu, X.; Hong, Y.; Su, Y.; Wang, H.; Li, J. Preparation of large pore volume γ-alumina and its performance as catalyst support in phenol hydroxylation. Microporous Mesoporous Mater. 2016, 231, 1–8. [Google Scholar] [CrossRef]
- Li, T.; Zhang, L.; Tao, Z.; Hu, C.; Zhao, C.; Yi, F.; Gao, X.; Wen, X.; Yang, Y.; Li, Y. Synthesis and characterization of amorphous silica-alumina with enhanced acidity and its application in hydro-isomerization/cracking. Fuel 2020, 279, 118487. [Google Scholar] [CrossRef]
- Liu, P.; Feng, J.; Zhang, X.; Lin, Y.; Evans, D.G.; Li, D. Preparation of high purity spherical gamma-alumina using a reduction-magnetic separation process. J. Phys. Chem. Solids 2008, 69, 799–804. [Google Scholar] [CrossRef]
- Delgado, A.D.; Alvarez-Contreras, L.; Beltran, K.A.; Leyva-Porras, C.; Aguilar-Elguezabal, A. Comparison of three-dimensional versus two-dimensional structure of mesoporous alumina as support of (Ni)MoS2 catalysts for HDS. Catal. Today 2021, 360, 165–175. [Google Scholar] [CrossRef]
- Rahmati, M.; Huang, B.; Mortensen, M.K., Jr.; Keyvanloo, K.; Fletcher, T.H.; Woodfield, B.F.; Hecker, W.C.; Argyle, M.D. Effect of different alumina supports on performance of cobalt Fischer-Tropsch catalysts. J. Catal. 2018, 359, 92–100. [Google Scholar] [CrossRef]
- Shan, Y.-L.; Zhao, W.-T.; Zhao, S.-L.; Wang, X.-X.; Sun, H.-L.; Yu, W.-L.; Ding, J.-W.; Feng, X.; Chen, D. Effects of alumina phases on the structure and performance of VOx/Al2O3 catalysts in non-oxidative propane dehydrogenation. Mol. Catal. 2021, 504, 111466. [Google Scholar] [CrossRef]
- Lv, Y.; Li, D.; Tang, P.; Feng, Y. A simple and promoter free way to synthesize spherical γ-alumina with high hydrothermal stability. Mater. Lett. 2015, 155, 75–77. [Google Scholar] [CrossRef]
- Nazer, S.; Dabbagh, H.A.; Najafi Chermahini, A.; Farrokhpour, H. Surface modification of alumina with P2O5 and its application in 2-octanol dehydration. React. Kinet. Mech. Catal. 2020, 129, 265–282. [Google Scholar] [CrossRef]
- Enache, D.; Roy-Auberger, M.; Esterle, K.; Revel, R. Preparation of Al2O3–ZrO2 mixed supports; their characteristics and hydrothermal stability. Colloids Surf. A Physicochem. Eng. Asp. 2003, 220, 223–233. [Google Scholar] [CrossRef]
- Cheng, G.; Shen, G.; Wang, J.; Wang, Y.; Zhang, W.; Wang, J.; Shen, M. The Hydrothermal Stability and the Properties of Non- and Strongly-Interacting Rh Species over Rh/γ, θ-Al2O3 Catalysts. Catalysts 2021, 11, 99. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, B.; Mardkhe, M.K.; Woodfield, B.F. Thermal and hydrothermal stability of pure and silica-doped mesoporous aluminas. Microporous Mesoporous Mater. 2019, 284, 60–68. [Google Scholar] [CrossRef]
- Claude, V.; Mahy, J.G.; Wolfs, C.; Lambert, S.D. Physico-chemical properties of alumina supports modified with silicon alkoxides. J. Solid State Chem. 2020, 282, 121102. [Google Scholar] [CrossRef]
- Amrute, A.P.; Jeske, K.; Lodziana, Z.; Prieto, G.; Schueth, F. Hydrothermal Stability of High-Surface-Area alpha-Al2O3 and Its Use as a Support for Hydrothermally Stable Fischer-Tropsch Synthesis Catalysts. Chem. Mater. 2020, 32, 4369–4374. [Google Scholar] [CrossRef]
- Chung, S.; Liu, Q.; Joshi, U.A.; Regalbuto, J.R.; Boateng, A.A.; Smith, M.A.; Coe, C.G. Using polyfurfuryl alcohol to improve the hydrothermal stability of mesoporous oxides for reactions in the aqueous phase. J. Porous Mater. 2018, 25, 407–414. [Google Scholar] [CrossRef]
- Girel, E.; Cabiac, A.; Chaumonnot, A.; Besson, M.; Tuel, A. Selective Carbon Deposition on gamma-Alumina Acid Sites: Toward the Design of Catalyst Supports with Improved Hydrothermal Stability in Aqueous Media. ACS Appl. Mater. Interfaces 2020, 12, 13558–13567. [Google Scholar] [CrossRef]
- Van Cleve, T.; Underhill, D.; Rodrigues, M.V.; Sievers, C.; Medlin, J.W. Enhanced Hydrothermal Stability of gamma-Al2O3 Catalyst Supports with Alkyl Phosphonate Coatings. Langmuir 2018, 34, 3619–3625. [Google Scholar] [CrossRef]
- Pérez, L.L.; Alvarez-Galván, C.; Zarubina, V.; Fernandes, B.O.F.; Melián-Cabrera, I. A hydrothermally stable transition alumina by condensation-enhanced self-assembly and pyrolysis crystallization: Application in the steam reforming of methane. CrystEngComm 2014, 16, 6775–6783. [Google Scholar] [CrossRef]
- Fujisaki, S.; Zahir, M.H.; Ikuhara, Y.H.; Iwamoto, Y.; Kuroda, K. Nanostructural Characterization of Hydrothermally Stable γ-Alumina-Based Composite Materials by Transmission Electron Microscopy. Adv. Mater. Res. 2007, 26–28, 1109–1112. [Google Scholar] [CrossRef]
- Gu, Y.; Hacarlioglu, P.; Oyama, S.T. Hydrothermally stable silica–alumina composite membranes for hydrogen separation. J. Membr. Sci. 2008, 310, 28–37. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, F.; Zhang, R.; Evans, D.G.; Duan, X. Preparation of Layered Double-Hydroxide Nanomaterials with a Uniform Crystallite Size Using a New Method Involving Separate Nucleation and Aging Steps. Chem. Mater. 2002, 14, 4286–4291. [Google Scholar] [CrossRef]
- Li, Z.J.; He, L.; Tian, W.L.; Huang, R.Y.; Wang, X.P.; Li, D.Q.; Tang, P.G.; Feng, Y.J. Batch and fixed-bed adsorption behavior of porous boehmite with high percentage of exposed (020) facets and surface area towards Congo red. Inorg. Chem. Front. 2021, 8, 735–745. [Google Scholar] [CrossRef]
- Feng, Y.J.; Li, D.Q.; Li, C.X.; Wang, Z.H.; Evans, D.G.; Duan, X. Synthesis of Cu-containing layered double hydroxides with a narrow crystallite-size distribution. Clays Clay Miner. 2003, 51, 566–569. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y.; Han, B.; Xu, B.; Liu, X.; Yan, Z. Effects of synthetic conditions on the textural structure of pseudo-boehmite. J. Colloid Interface Sci. 2016, 469, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Coronado, I.; Stekrova, M.; Reinikainen, M.; Simell, P.; Lefferts, L.; Lehtonen, J. A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions. Int. J. Hydrogen Energy 2016, 41, 11003–11032. [Google Scholar] [CrossRef]
- Ravenelle, R.M.; Copeland, J.R.; Kim, W.G.; Crittenden, J.C.; Sievers, C. Structural Changes of gamma-Al2O3-Supported Catalysts in Hot Liquid Water. ACS Catal. 2011, 1, 552–561. [Google Scholar] [CrossRef]







Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lv, Y.; Mo, Y.; Li, H.; Tang, P.; Li, D.; Feng, Y. Facile Preparation and Promising Hydrothermal Stability of Spherical γ-Alumina Support with High Specific Surface Area. Catalysts 2022, 12, 1416. https://doi.org/10.3390/catal12111416
Zhang Y, Lv Y, Mo Y, Li H, Tang P, Li D, Feng Y. Facile Preparation and Promising Hydrothermal Stability of Spherical γ-Alumina Support with High Specific Surface Area. Catalysts. 2022; 12(11):1416. https://doi.org/10.3390/catal12111416
Chicago/Turabian StyleZhang, Yi, Yimin Lv, Yufan Mo, Huiyu Li, Pinggui Tang, Dianqing Li, and Yongjun Feng. 2022. "Facile Preparation and Promising Hydrothermal Stability of Spherical γ-Alumina Support with High Specific Surface Area" Catalysts 12, no. 11: 1416. https://doi.org/10.3390/catal12111416
APA StyleZhang, Y., Lv, Y., Mo, Y., Li, H., Tang, P., Li, D., & Feng, Y. (2022). Facile Preparation and Promising Hydrothermal Stability of Spherical γ-Alumina Support with High Specific Surface Area. Catalysts, 12(11), 1416. https://doi.org/10.3390/catal12111416

