Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = psammophytes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6782 KiB  
Article
Allometric Growth and Biomass Allocation in Haloxylon ammodendron Forests: Implications for Desertification Control and Ecosystem Rehabilitation in the Jilantai Salt Lake Region
by Qian Zhang and Ruidong Wang
Forests 2025, 16(3), 392; https://doi.org/10.3390/f16030392 - 22 Feb 2025
Viewed by 644
Abstract
Haloxylon ammodendron plays a pivotal role in combating aeolian desertification and restoring degraded arid ecosystems. Strategic afforestation protocols for this xerophytic species offer dual benefits in ecological stabilization and socioeconomic development, particularly in ecotonal zones between desert and oasis ecosystems, as exemplified by [...] Read more.
Haloxylon ammodendron plays a pivotal role in combating aeolian desertification and restoring degraded arid ecosystems. Strategic afforestation protocols for this xerophytic species offer dual benefits in ecological stabilization and socioeconomic development, particularly in ecotonal zones between desert and oasis ecosystems, as exemplified by the Jilantai Salt Lake region. This investigation employs allometric scaling analysis to elucidate biomass allocation strategies in H. ammodendron plantations under three distinct silvicultural approaches: soil moisture retention afforestation, water flushing afforestation, and mechanical hole afforestation. Key findings demonstrate that water flushing afforestation treatment induced significant biomass enhancement (total biomass: 1718.69 ± 214.28 g), with phylloclade (photosynthetic branch) and vegetative organ biomass increasing by 29.03% and 60.34%, respectively, compared to conventional methods. Conversely, soil moisture retention afforestation preferentially promoted lignification processes, maximizing biomass allocation to structural components (stems: 15.2% increase) and reproductive structures (inflorescences: 22.7% elevation). Standardized major axis regression revealed differential scaling exponents among organ pairs under varying treatments (stem-phylloclade: 1.798; inflorescence-phylloclade: 1.752; vegetative-reproductive: 1.672; p < 0.001), indicating treatment-specific allometric allocation patterns. Notably, soil moisture retention afforestation induced lateral crown expansion through enhanced meristematic activity in secondary branches (p < 0.01), contrasting with the apical dominance observed in water flushing afforestation and mechanical hole afforestation specimens. These morphological divergences suggest resource allocation trade-offs between vertical exploration and horizontal exploitation strategies. The differential growth trajectories were strongly correlated with edaphic moisture redistribution patterns (R2 = 0.83, p < 0.001), as quantified using soil water potential measurements. This study provides mechanistic insights into phenotypic plasticity responses to silvicultural interventions. These findings advance our understanding of allometric growth regulation in a psammophyte and establish an empirical basis for optimizing desert afforestation strategies in arid transitional ecotones. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

26 pages, 3009 KiB  
Article
Phenotypic Diversity and Seed Germination of Elaeagnus angustifolia L. in Relation to the Geographical Environment in Gansu Province, China
by Kaiqiang Zhang, Zhu Zhu, Rongrong Shi, Ningrui Shi, Qing Tian and Xuemei Lu
Agronomy 2024, 14(9), 2165; https://doi.org/10.3390/agronomy14092165 - 22 Sep 2024
Viewed by 1356
Abstract
Elaeagnus angustifolia L. is a highly adaptable urban ornamental plant, playing a key role in dry land and saline-alkali protective forests. The diverse geographical and climatic conditions in Gansu Province have resulted in variations in its distribution and growth. This study assesses the [...] Read more.
Elaeagnus angustifolia L. is a highly adaptable urban ornamental plant, playing a key role in dry land and saline-alkali protective forests. The diverse geographical and climatic conditions in Gansu Province have resulted in variations in its distribution and growth. This study assesses the phenotypic diversity of fruits and seeds, and the seed germination characteristics of 82 E. angustifolia plants from nine populations in Gansu Province, exploring their relationship with geographical and climatic factors. We measured 12 phenotypic traits and five germination indices. This study included germination tests under standard conditions, statistical analysis of phenotypic differences, and Pearson and Spearman correlation analyses to examine relationships between traits and geo-climatic factors. Principal component and cluster analyses were also performed to identify key traits and classify populations. The findings were as follows: (1) Significant differences were observed in phenotypic traits and germination characteristics among populations. Single fruit weight showed the highest variation (27.56%), while seed transverse diameter had the lowest (8.76%). The Lanzhou population exhibited the greatest variability (14.27%), while Linze had the lowest (6.29%). (2) A gradient change pattern in traits was observed, primarily influenced by longitude and a combination of geographical and climatic factors. Seed germination was positively correlated with altitude, annual precipitation, and relative humidity, but negatively affected by latitude and traits such as fruit weight. (3) Principal component analysis identified germination rate, germination index, seed shape index, and fruit shape index as primary factors, contributing 27.4%, 20.6%, and 19.9% to the variation, respectively. Cluster analysis grouped the 82 plants into four clusters, not strictly based on geographical distance, suggesting influence from factors such as genotype or environmental conditions. In conclusion, this study lays a foundation for understanding the genetic mechanisms behind the phenotypic diversity and germination characteristics of E. angustifolia. It offers insights into how geo-climatic factors influence these traits, providing valuable information for the species’ conservation, cultivation, and management. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

21 pages, 8803 KiB  
Article
Psammophytes Alyssum desertorum Stapf and Secale sylvestre Host Are Sensitive to Soil Flooding
by Elizabeth Kordyum, Yuri Akimov, Oleksandr Polishchuk, Ihor Panas, Sergiy Stepanov and Liudmyla Kozeko
Plants 2024, 13(3), 413; https://doi.org/10.3390/plants13030413 - 30 Jan 2024
Cited by 2 | Viewed by 1594
Abstract
While morphological and functional traits enable hydrophytes to survive under waterlogging and partial or complete submergence, the data on responses of psammophytes—sand plants—to flooding are very limited. We analyzed the effect of 5- and 10-day soil flooding on the photosynthetic apparatus and the [...] Read more.
While morphological and functional traits enable hydrophytes to survive under waterlogging and partial or complete submergence, the data on responses of psammophytes—sand plants—to flooding are very limited. We analyzed the effect of 5- and 10-day soil flooding on the photosynthetic apparatus and the synthesis of alcohol dehydrogenase (ADH), heat shock proteins 70 (HSP70), and ethylene in seedlings of psammophytes Alyssum desertorum and Secale sylvestre using electron microscopy, chlorophyll a fluorescence induction, and biochemical methods. It was found that seedlings growing under soil flooding differed from those growing in stationary conditions with such traits as chloroplast ultrastructure, pigment content, chlorophyll fluorescence induction, and the dynamics of ADH, HSP, and ethylene synthesis. Although flooding caused no apparent damage to the photosynthetic apparatus in all the variants, a significant decrease in total photosynthesis efficiency was observed in both studied plants, as indicated by decreased values of φR0 and PIABS,total. More noticeable upregulation of ADH in S. sylvestre, as well as increasing HSP70 level and more intensive ethylene emission in A. desertorum, indicate species-specific differences in these traits in response to short-term soil flooding. Meanwhile, the absence of systemic anaerobic metabolic adaptation to prolonged hypoxia causes plant death. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

18 pages, 7701 KiB  
Article
Warmer Temperature and Spatiotemporal Dynamics during Primary Succession on Tropical Coastal Dunes
by M. Luisa Martínez, Octavio Pérez-Maqueo, Gabriela Vázquez and Rosario Landgrave
Plants 2022, 11(22), 3029; https://doi.org/10.3390/plants11223029 - 9 Nov 2022
Cited by 5 | Viewed by 2028
Abstract
Coastal dunes are sensitive indicators of climate change: it is expected that higher precipitation and warmer temperature will promote vegetation growth and sand stabilization. Alternatively, dunes may become active during severe droughts, which would reduce plant cover and increase sand mobility. Consequently, it [...] Read more.
Coastal dunes are sensitive indicators of climate change: it is expected that higher precipitation and warmer temperature will promote vegetation growth and sand stabilization. Alternatively, dunes may become active during severe droughts, which would reduce plant cover and increase sand mobility. Consequently, it is relevant to explore community shifts and self-organization processes to better understand how coastal dunes vegetation will respond to these projected changes. Primary succession allows the exploration of community assembly and reorganization processes. We focused on three environmental variables (bare sand, temperature, and precipitation) and five successional groups (facilitators, colonizers, sand binders, nucleators, and competitors). For 25 years (from 1991 to 2016), species turnover was monitored in 150 permanent plots (4 × 4 m) placed on an initially mobile dune system located on the coast of the Gulf of Mexico. The spatiotemporal dynamics observed during primary succession were consistent with the facilitation nucleation model. As late colonizers grew and expanded, psammophytes became locally extinct. The spatial patterns revealed that ecological succession did not occur evenly on the dunes. In addition, the increased mean yearly temperature during the last decades seemed to be associated with the accelerated increment in plant cover and species richness, which had not been registered before in Mexico. Full article
(This article belongs to the Special Issue Dynamics and Stability of Plant Communities in Sand Dunes)
Show Figures

Graphical abstract

12 pages, 2357 KiB  
Article
Selection and Validation of Reference Genes for qRT-PCR Gene Expression Analysis in Kengyilia melanthera
by Junming Zhao, Jian Yang, Xiaoyun Wang, Yanli Xiong, Yi Xiong, Zhixiao Dong, Xiong Lei, Lijun Yan and Xiao Ma
Genes 2022, 13(8), 1445; https://doi.org/10.3390/genes13081445 - 14 Aug 2022
Cited by 9 | Viewed by 2241
Abstract
Kengyilia is a newly established genus. Most species in this genus survive in hash environment, which might be an indicator of an acquirement of stress resistance genes and the potential for molecular breeding in Triticeae species. Quantitative real-time PCR (qRT-PCR) is a widely [...] Read more.
Kengyilia is a newly established genus. Most species in this genus survive in hash environment, which might be an indicator of an acquirement of stress resistance genes and the potential for molecular breeding in Triticeae species. Quantitative real-time PCR (qRT-PCR) is a widely used technique with varied sensitivity heavily dependent on the optimal level of the reference genes. K. melanthera is a typical psammophyte species which has high drought resistance. The reference genes of K. melanthera are not yet reported. This study aims to evaluate the expression stability of 14 candidate reference genes (EF1A, GAPDH, ACT1, UBI, TUBB3, TIPRL, CACS, PPP2R1B, TUBA1A, EIF4A1, CYPA3, TCTP, ABCG11L, and FBXO6L) under five treatments (drought, heat, cold, salt, and ABA) and find the most stable and suitable one even upon stressed conditions. The software NormFinder, GeNorm, BestKeeper, and RefFinder were used for data analysis. In general, the genes CACS and PPP2R1B are concluded to have the best overall performance under the various treatments. With the ABA treatment, TCTP and TIPRL show the best stability. CACS and TCTP, as well as TIPRL and CYPA3, were most stable under the treatments of cold and salt, respectively. CACS and FBXO6L were ranked the highest with the heat treatment and drought treatment, respectively. Finally, the Catalase-1 (CAT1) gene was used to verify the reliability of the above reference genes. Accordingly, CAT1’s expression pattern remained unchanged after normalization with stable reference genes. This study provides beneficial information about the stability and reliability of potential reference genes for qRT-PCR in K. melanthera. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

9 pages, 1539 KiB  
Article
Flood Resilience, Viability, and Growth Response to Seawater Immersion of Bermudagrass (Cynodon dactylon (L.) Pers.)
by Stoyan Vergiev
Sustainability 2022, 14(14), 8733; https://doi.org/10.3390/su14148733 - 17 Jul 2022
Cited by 4 | Viewed by 1957
Abstract
A holistic approach to sustainable coastal zone management assigns the development of nature-based and low-cost strategies for coastal protection during extreme meteorological events. This determines the growing interest in plant species with high salt tolerance, and the study of their flood resilience in [...] Read more.
A holistic approach to sustainable coastal zone management assigns the development of nature-based and low-cost strategies for coastal protection during extreme meteorological events. This determines the growing interest in plant species with high salt tolerance, and the study of their flood resilience in order to determine their capacity for flooding and erosion control. Bermudagrass (Cynodon dactylon (L.) Pers.), with its vast rhizome system, has the major characteristic features of useful plant stabilisers of coastal sand dunes. This study aims to define the effects of flooding stress caused by storms on viability, survival ability, and growth response of bermudagrass in flooding simulations in order to define its flooding resilience. C. dactylon showed high resilience and tolerance to salt from seawater during flooding simulations. The Critical Decomposition Time of C. dactylon is estimated at 144 h, which is more than the maximum-duration flood recorded for the Bulgarian Black Sea Coast. Untreated rhizomes showed less viability than those treated with seawater in flooding simulations. Changes in resistance, viability, biomass, and vegetative allocation were more significant, with the water as an influencing factor. The temperature of seawater and duration of submergence had no significant effect. As a median value species between psammophytes from the Poaceae family and the Cyperaceae family, bermudagrass can be used as a model plant in flooding simulations. Full article
Show Figures

Figure 1

16 pages, 5964 KiB  
Article
Large-Scale Fabrication of Graded Convex Structure for Superhydrophobic Coating Inspired by Nature
by Yu Wang and Jin-Tian Huang
Materials 2022, 15(6), 2179; https://doi.org/10.3390/ma15062179 - 16 Mar 2022
Cited by 7 | Viewed by 2483
Abstract
The addition of toxic substances and poor durability severely limit the market applications of superhydrophobic coatings in the oil–water-separation industry, anti-icing, and self-cleaning surfaces. In order to solve the above problems, a stable, strong, fluorine-free superhydrophobic coating was prepared according to natural inspiration. [...] Read more.
The addition of toxic substances and poor durability severely limit the market applications of superhydrophobic coatings in the oil–water-separation industry, anti-icing, and self-cleaning surfaces. In order to solve the above problems, a stable, strong, fluorine-free superhydrophobic coating was prepared according to natural inspiration. In this study, polydivinylbenzene (PDVB) was produced by the hydrothermal method, and micro-nanoparticle clusters composed of PDVB particles of different sizes were prepared by controlling the ratio of raw materials, which was then attached to the substrate surface by a simple spraying technique. A rough coating with a lotus-leaf-like layered protruding structure was constructed by depositing particle clusters of different sizes. In the end, the prepared coating showed attractive superhydrophobicity, with a maximum contact angle (CA) that reached up to 160°. In addition, the coating had long-lasting superhydrophobic properties in various environments, such as common liquid and acidic and alkaline solutions. Moreover, in the oil–water-separation process, the superhydrophobic filter paper was still able to obtain a separation efficiency of more than 85% after being used 50 times, and it maintained a contact angle of >150°. At the same time, the coating had excellent dye resistance and self-cleaning performance. Full article
(This article belongs to the Collection Selected Papers from IMETI)
Show Figures

Graphical abstract

19 pages, 4028 KiB  
Article
Invasion at the Edge: The Case of Rosa rugosa (Rosaceae) in Italy
by Sara Ribotta, Francesco Liccari, Lucia Muggia, Alberto Pallavicini, Francesco Bagnolini, Enrico Tordoni and Giovanni Bacaro
Diversity 2021, 13(12), 645; https://doi.org/10.3390/d13120645 - 4 Dec 2021
Cited by 4 | Viewed by 4493
Abstract
The Japanese Rose (Rosa rugosa) is a perennial shrub belonging to the family Rosaceae. It was introduced in Europe from East Asia as an ornamental plant in the XIX century and is now considered an invasive species, especially in northern Europe, [...] Read more.
The Japanese Rose (Rosa rugosa) is a perennial shrub belonging to the family Rosaceae. It was introduced in Europe from East Asia as an ornamental plant in the XIX century and is now considered an invasive species, especially in northern Europe, colonising the Atlantic and Baltic coastal dune habitats and threatening local biodiversity. However, little is known about its presence and invasion patterns in the Mediterranean area. In Italy, R. rugosa has been classified as naturalised and just a few observations have been recorded in dune habitats in the North Adriatic coast. Here, we review the published data on R. rugosa in Europe and present preliminary data on the invasive pattern of R. rugosa on the Italian North Adriatic coast. We surveyed the coastline in two locations (i.e., Brussa and Bibione, Italy) where we characterised the dimension and structure (i.e., number of ramets and stem height) of the R. rugosa populations and listed the associated floristic composition. No occurrence of R. rugosa was recorded in Bibione, probably due to the success of the restoration project carried out on that site. In contrast, several stands of R. rugosa were found in Brussa, where many other alien species were also found (accounting for 15.28% of the sampled species). Given the strong invasiveness of R. rugosa, it is important to keep data on its distribution up-to-date and investigate its ecology and physiology to promote appropriate management strategies to control its spread and anticipate its future potential distribution. Full article
Show Figures

Figure 1

24 pages, 5921 KiB  
Article
Vegetation Characteristics and Recent Successional Trends of Sand Dune Habitats at the Bulgarian Black Sea Coast
by Magdalena Valcheva, Desislava Sopotlieva, Iva Apostolova and Nadya Tsvetkova
Coasts 2021, 1(1), 1-24; https://doi.org/10.3390/coasts1010001 - 22 Oct 2021
Cited by 6 | Viewed by 4944
Abstract
Coastal dunes are valuable and vulnerable habitats that require scientific exploration and understanding of their natural processes; therefore, the aims of this study were to determine the current vegetation characteristics of dune habitats along the Bulgarian Coast in terms of species richness and [...] Read more.
Coastal dunes are valuable and vulnerable habitats that require scientific exploration and understanding of their natural processes; therefore, the aims of this study were to determine the current vegetation characteristics of dune habitats along the Bulgarian Coast in terms of species richness and cover of typical psammophytes and different non-psammophytic plant groups, and to analyze how they respond to certain environmental drivers. Data were collected from 12 dune systems. The research was focused on embryonic, white and grey dunes. The field work was conducted throughout July and August 2017. The vegetation was sampled at 154 phytosociological plots (5 m × 5 m). To understand how the vegetation responds to different drivers, we tested the correlation of defined species group richness and cover in relation to (1) the soil pH and EC values, (2) the distance from inland to the sea and (3) the range of different categories of land cover in the surrounding area. In order to track temporal vegetation changes, we compared the cover of defined species groups between 2003 and 2017. We registered a total number of 269 vascular plants, 12 bryophytes and 5 lichens. The strongest presence in all dune types, both in species richness and cover, was the group of grass- and shrubland plants. Weeds and ruderal plants had significant coverage in grey dunes, while the richness and cover of forest and alien plants were negligible among the studied dune habitats. The comparison of data between 2003 and 2017 revealed a substantial decline in the cover of psammophytes. We observed a clear pattern regarding the share of species richness of psammophytes and non-psammophytes among different locations. We detected that grey dunes were the most affected by the penetration of non-psammophytes. Full article
Show Figures

Figure 1

15 pages, 1915 KiB  
Article
Differences in Gall Induction of Flower-like Galls on Haloxylon by Psyllids (Hemiptera: Aphalaridae), and the Emergence of Corresponding Parasitoids
by Qian Zhao, Ling-Ling Jiang, Jie Guo, Dong-Kang Zhang and Hong-Ying Hu
Insects 2021, 12(10), 861; https://doi.org/10.3390/insects12100861 - 23 Sep 2021
Cited by 4 | Viewed by 2655
Abstract
Saxaul is a kind of dominant perennial psammophyte that widely distributes in arid and semi-arid desert areas, and it has multiple functions in preventing desertification, especially in windbreak and sand fixation. Various gall inducers induce galls on the saxaul, including the flower-like gall. [...] Read more.
Saxaul is a kind of dominant perennial psammophyte that widely distributes in arid and semi-arid desert areas, and it has multiple functions in preventing desertification, especially in windbreak and sand fixation. Various gall inducers induce galls on the saxaul, including the flower-like gall. Parasitoids have great potentiality in controlling gall inducers. However, studies about gall inducers and parasitoids of flower-like galls on Haloxylon, as well as the parasitic efficacy of the parasitoids, are rarely reported. In this study, the flower-like galls were observed on Haloxylon ammodendron and H. persicum in Fukang, Xinjiang, China. Two types of flower-like galls were found on H. ammodendron, while only one type was found on H. persicum. In total, five species of gall inducers and three species of parasitoids were obtained from the galls mentioned above. All the galls were induced by Caillardia (Hemiptera: Aphalaridae), which were mostly bivoltine in Fukang. Besides, their parasitoids Psyllaephaguscaillardiae and P. longiventris could be observed on all the types of galls. Additionally, correlative studies on the parasitization indexes demonstrated that all the dominant parasitoids of diverse flower-like galls were P. caillardiae, which were slightly more in number than the P. ogazae discovered in the flower bud-like galls. In addition, the relevance between the emergence or lifespan of parasitoids and temperature was also investigated. The results showed that the number of parasitoids emerging decreased rapidly after a period of enhancement with the increase of temperature, including an optimum temperature, while the lifespan of wasps gradually shortened with the temperature rising. Our results highlight the importance of the biological investigation of parasitoids in the gall inducers lived in closed galls, which may provide critical evidence for us to understand its potential application in biological control. Full article
Show Figures

Figure 1

12 pages, 3247 KiB  
Article
Type of Explant Affects In Vitro Development and Multiplication Success of the Rare Halophyte Plant Honckenya Peploides L. Ehrh
by Danuta Kulpa, Mariola Wrobel and Martyna Bednarek
Plants 2020, 9(11), 1526; https://doi.org/10.3390/plants9111526 - 9 Nov 2020
Cited by 5 | Viewed by 2450
Abstract
The sea sandwort—Honckenya peploides (L.) Ehrh. is—a rare halophilous plant growing on dunes and is an endangered species on the Polish coast. It contributes to the stabilization of volatile sandy substrate, facilitating the colonization of other species. The present study determined the [...] Read more.
The sea sandwort—Honckenya peploides (L.) Ehrh. is—a rare halophilous plant growing on dunes and is an endangered species on the Polish coast. It contributes to the stabilization of volatile sandy substrate, facilitating the colonization of other species. The present study determined the reaction of two types of explant: apical shoot fragments and fragments from a lower portion of the shoot. Apical shoot fragments were used to propagate and root sea sandwort plants due to the positive impact on the development of shoots and roots. Regardless of the plant growth regulators applied in the medium, the lateral meristems on the explants from the lower parts of the shoot stopped growing, and then yellowed and died out. Apical fragments of shoots developed higher and more numerous shoots and longer and more numerous roots than explants, which were fragments collected from lower parts of shoots. The findings indicated that propagation should be conducted on Murashige and Skoog medium with the addition of 1 mg∙dm−3 kinetin, whereas shoots with their apical fragments should be rooted with the addition of 1.5 mg∙dm−3 1-naphthaleneacetic acid. The results also showed that the addition of NaCl at concentrations of 25 and 50 mM did not restrict their growth, thereby indicating the tolerance of the plant to soil salinity. However, an increase in the concentration of NaCl in the medium to 75 mM restricted the development of plants, and the shoots were lower and roots were shorter and less numerous. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Graphical abstract

17 pages, 3679 KiB  
Article
Comparison of the Photosynthetic Capacity of Phragmites australis in Five Habitats in Saline‒Alkaline Wetlands
by Subang An, Xingtu Liu, Bolong Wen, Xiaoyu Li, Peng Qi and Kun Zhang
Plants 2020, 9(10), 1317; https://doi.org/10.3390/plants9101317 - 6 Oct 2020
Cited by 7 | Viewed by 3892
Abstract
Water shortages have an important impact on the photosynthetic capacity of Phragmites australis. However, this impact has not been adequately studied from the perspective of photosynthesis. An in-depth study of the photosynthetic process can help in better understanding the impact of water [...] Read more.
Water shortages have an important impact on the photosynthetic capacity of Phragmites australis. However, this impact has not been adequately studied from the perspective of photosynthesis. An in-depth study of the photosynthetic process can help in better understanding the impact of water shortages on the photosynthetic capacity of P. australis, especially on the microscale. The aim of this study is to explore the photosynthetic adaptation strategies to environmental changes in saline‒alkaline wetlands. The light response curves and CO2 response curves of P. australis in five habitats (hygrophilous, xerophytic, psammophytic, abandoned farmland, paddy field drainage) in saline‒alkaline wetlands were measured at different stages of their life history, and we used a nonrectangular hyperbolic model to fit the data. It was concluded that P. australis utilized coping strategies that differed between the growing and breeding seasons. P. australis in abandoned farmland during the growing season had the highest apparent quantum efficiency (AQE) and photosynthetic utilization efficiency for weak light because of the dark environment. The dark respiration rate of P. australis in the drainage area of paddy fields was the lowest, and it had the highest values for photorespiration rate, maximum photosynthetic rate (Pmax), photosynthetic capacity (Pa), biomass, maximum carboxylation rate (Vcmax), and maximum electron transfer rate (Jmax). The light insensitivity of P. australis increased with the transition from growing to breeding season, and the dark respiration rate also showed a downward trend. Moreover, Vcmax and Jmax would decline when Pmax and Pa showed a declining trend, and vice versa. In other words, Vcmax and Jmax could explain changes in the photosynthetic capacity to some extent. These findings contribute to providing insights that Vcmax and Jmax can directly reflect the variation in photosynthetic capacity of P. australis under water shortages in saline‒alkaline wetlands and in other parts of world where there are problems with similarly harmful environmental conditions. Full article
(This article belongs to the Special Issue Plant Acclimatization to Abiotic Stress)
Show Figures

Graphical abstract

14 pages, 2236 KiB  
Article
Photosynthesis and Growth of Pennisetum centrasiaticum (C4) is Superior to Calamagrostis pseudophragmites (C3) during Drought and Recovery
by Yayong Luo, Xueyong Zhao, Ginger R. H. Allington, Lilong Wang, Wenda Huang, Rui Zhang, Yongqing Luo and Zhuwen Xu
Plants 2020, 9(8), 991; https://doi.org/10.3390/plants9080991 - 4 Aug 2020
Cited by 6 | Viewed by 2821
Abstract
Global warming and changes in rainfall patterns may put many ecosystems at risk of drought. These stressors could be particularly destructive in arid systems where species are already water-limited. Understanding plant responses in terms of photosynthesis and growth to drought and rewatering is [...] Read more.
Global warming and changes in rainfall patterns may put many ecosystems at risk of drought. These stressors could be particularly destructive in arid systems where species are already water-limited. Understanding plant responses in terms of photosynthesis and growth to drought and rewatering is essential for predicting ecosystem-level responses to climate change. Different drought responses of C3 and C4 species could have important ecological implications affecting interspecific competition and distribution of plant communities in the future. For this study, C4 plant Pennisetum centrasiaticum and C3 plant Calamagrostis pseudophragmites were subjected to progressive drought and subsequent rewatering in order to better understand their differential responses to regional climate changes. We tracked responses in gas exchange, chlorophyll fluorescence, biomass as well as soil water status in order to investigate the ecophysiological responses of these two plant functional types. Similar patterns of photosynthetic regulations were observed during drought and rewatering for both psammophytes. They experienced stomatal restriction and nonstomatal restriction successively during drought. Photosynthetic performance recovered to the levels in well-watered plants after rewatering for 6–8 days. The C4 plant, P. centrasiaticum, exhibited the classic CO2-concentrating mechanism and more efficient thermal dissipation in the leaves, which confers more efficient CO2 assimilation and water use efficiency, alleviating drought stress, maintaining their photosynthetic advantage until water deficits became severe and quicker recovery after rewatering. In addition, P. centrasiaticum can allocate a greater proportion of root biomass in case of adequate water supply and a greater proportion of above-ground biomass in case of drought stress. This physiological adaptability and morphological adjustment underline the capacity of C4 plant P. centrasiaticum to withstand drought more efficiently and recover upon rewatering more quickly than C. pseudophragmites and dominate in the Horqin Sandy Land. Full article
(This article belongs to the Special Issue Water Stress and Desiccation Tolerance in Plants)
Show Figures

Graphical abstract

10 pages, 2585 KiB  
Article
The Design and Application of Non-Pressure Infiltrating Irrigation in Desertification Control
by Yongping Qu and Zengzhi Zhang
Sustainability 2020, 12(4), 1547; https://doi.org/10.3390/su12041547 - 19 Feb 2020
Cited by 4 | Viewed by 2934
Abstract
The key restriction factor of desertification is water control. Non-pressure infiltrating irrigation was invented aimed at the efficient use of water, and its core technology is the key water-conducting material prepared by montmorillonite and polyacrylamide. In this study, both the water absorption and [...] Read more.
The key restriction factor of desertification is water control. Non-pressure infiltrating irrigation was invented aimed at the efficient use of water, and its core technology is the key water-conducting material prepared by montmorillonite and polyacrylamide. In this study, both the water absorption and desorption performances of the key material were tested, and then the binding condition of the water-conducting materials and the fiber substrate was also studied. Lastly, the water infiltrating performances and its application in deserts were tested. Non-pressure infiltrating irrigation could self-regulate the water conducting speed according to the external soil deserticola, but also significantly reduce water consumption. The results provide a reference for the application of this new water-saving irrigation technology, which could play an important role in desertification control. Full article
(This article belongs to the Special Issue Sustainable Irrigation System)
Show Figures

Figure 1

10 pages, 1233 KiB  
Article
Tall Wheatgrass (Thinopyrum ponticum): Flood Resilience, Growth Response to Sea Water Immersion, and Its Capacity for Erosion and Flooding Control of Coastal Areas
by Stoyan Vergiev
Environments 2019, 6(9), 103; https://doi.org/10.3390/environments6090103 - 5 Sep 2019
Cited by 14 | Viewed by 5388
Abstract
Integrated coastal zone management proposes nature-based mitigation strategies based on the replacement of artificial coastal stabilization and protection structures with dunes stabilized with plant species. These psammophytes stabilize sands and act as supporters, increasing dunes’ ability to reduce storm damages and effectively minimize [...] Read more.
Integrated coastal zone management proposes nature-based mitigation strategies based on the replacement of artificial coastal stabilization and protection structures with dunes stabilized with plant species. These psammophytes stabilize sands and act as supporters, increasing dunes’ ability to reduce storm damages and effectively minimize erosion with minimal negative impacts to natural ecosystems. That is why searching for native salt-tolerant plants with extensive root systems and studying their capacity for erosion and flooding control is fundamental to the practice of ecologically-sound ecosystem services. The aim of the present study is to define the effects of flooding stress on a number of wheatgrass (Thinopyrum ponticum) plant life aspects (survival ability, viability, and growth response) in order to determine wheatgrass’s capacity as dune stabilizer. Conducted experiments established that T. ponticum was very tolerant to immersion impact and salt and oxygen deficiency stress, and its rhizomes were able to regenerate after 30 days in seawater. The temporal expression of its survival is presented as critical decomposition time (CDT) by linking the maximum duration of floods along the Bulgarian Black Sea Coast and the resilience of tall wheatgrass in flooding simulations. A statistical analysis of the experimental data demonstrated that immersion in sea water increases rhizome viability, biomass, and allocation to root biomass, whereas other factors, such as the duration of immersion, salinity, and temperatures of sea water have no significant effect. According to flood resilience and growth response to sea water submergence, T. ponticum demonstrated high potential to be a dune stabilizer. Full article
Show Figures

Figure 1

Back to TopTop