Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = ps-PLD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3898 KiB  
Article
Immobilization of Phospholipase D on Fe3O4@SiO2-Graphene Oxide Nanocomposites: A Strategy to Improve Catalytic Stability and Reusability in the Efficient Production of Phosphatidylserine
by Huiyi Shang, Juntan Wang, Bishan Guo, Haihua Zhu and Huijuan Li
Molecules 2025, 30(4), 912; https://doi.org/10.3390/molecules30040912 - 16 Feb 2025
Viewed by 866
Abstract
Phospholipase D (PLD) plays a pivotal role in the biosynthesis of phosphatidylserine (PS), but its practical application is constrained by limitations in stability and reusability. In this study, we successfully fabricated the Fe3O4@SiO2–graphene oxide (GO) nanocomposite by [...] Read more.
Phospholipase D (PLD) plays a pivotal role in the biosynthesis of phosphatidylserine (PS), but its practical application is constrained by limitations in stability and reusability. In this study, we successfully fabricated the Fe3O4@SiO2–graphene oxide (GO) nanocomposite by chemical binding of Fe3O4@SiO2 and GO. Subsequently, PLD was immobilized onto the nanocomposite via physical adsorption, with the aim of enhancing catalytic stability, reducing mass transfer resistance, and improving reusability. Under optimal conditions, the immobilization efficiency reached 84.4%, with a PLD loading capacity of 111.4 mg/gsupport. The optimal pH for PS production by immobilized PLD shifted from 6.0 to 6.5, while the optimal temperature increased from 45 °C to 50 °C. Notably, the immobilized PLD demonstrated a shorter reaction time and a higher PS yield, achieving a 95.4% yield within 90 min, compared to the free PLD (78.1% yield within 150 min), representing a 1.04-fold improvement in production efficiency. Furthermore, the immobilized PLD exhibited outstanding storage stability and thermal stability, along with remarkable reusability. Even after being reused for 10 cycles, the PS yield still stays as high as 78.3%. These findings strongly suggest that the Fe3O4@SiO2–GO immobilized PLD has the potential for the efficient production of PS. Full article
(This article belongs to the Special Issue Novel Biocatalysts for Environmental and Food Industry Applications)
Show Figures

Figure 1

15 pages, 4571 KiB  
Article
Immobilization of Phospholipase D on Magnetic Graphene Oxide for Efficient Phosphatidylserine Production
by Huiyi Shang, Bishan Guo, Juntan Wang, Huijuan Li and Haihua Zhu
Catalysts 2024, 14(11), 765; https://doi.org/10.3390/catal14110765 - 29 Oct 2024
Cited by 3 | Viewed by 1219
Abstract
Phosphatidylserine (PS) has significant applications in various sectors, such as the medical and food industries. However, its production relies heavily on phospholipase D (PLD), a crucial tool that is hindered by issues like poor stability and irrecoverability. Immobilization presents itself as an effective [...] Read more.
Phosphatidylserine (PS) has significant applications in various sectors, such as the medical and food industries. However, its production relies heavily on phospholipase D (PLD), a crucial tool that is hindered by issues like poor stability and irrecoverability. Immobilization presents itself as an effective solution to overcome these limitations. In this study, magnetic graphene oxide (MGO) modified with an amino (NH2) group was synthesized and utilized for PLD immobilization. The activity of the immobilized PLD (MGO-PLD) reached 3062 U/gMGO, with a specific activity of 33.9 U/mgPLD, virtually identical to that of the free PLD. MGO-PLD was utilized to synthesize PS efficiently in a biphasic system. Under optimal conditions, the PS yield reached 18.66 g/L, with a conversion rate of 92.8% and a productivity of 3.11 g/L/h. Notably, MGO-PLD retained an impressive PS conversion rate of 77.4% even after seven repetitive usages. Moreover, MGO-PLD displayed enhanced thermal and pH resistance properties compared to free PLD, alongside augmented storage stability. After an 8-week preservation at 4 °C, its residual activity was maintained at 76.3%. This study provides a sustainable and highly efficient pathway for the biocatalytic synthesis of PS. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

19 pages, 2672 KiB  
Article
The Potential of Spot Size Control in Shaping the Thickness Distribution in Ultrashort Laser Deposition
by Antonella Lorusso, László Égerházi, Sándor Szatmári and Tamás Szörényi
Materials 2024, 17(11), 2712; https://doi.org/10.3390/ma17112712 - 3 Jun 2024
Viewed by 994
Abstract
The availability of new-generation femtosecond lasers capable of delivering pulses with energies in the hundreds of mJ, or even in the joules range, has called for a revision of the effect of scaling spot size on the material distribution within the plasma plume. [...] Read more.
The availability of new-generation femtosecond lasers capable of delivering pulses with energies in the hundreds of mJ, or even in the joules range, has called for a revision of the effect of scaling spot size on the material distribution within the plasma plume. Employing a state-of-the-art Szatmári-type hybrid dye-excimer laser system emitting 248 nm pulses with a maximum energy of 20 mJ and duration of 600 fs, copper films were grown in the classical pulsed laser deposition geometry. The exceptionally clean temporal profile of the laser pulses yielded a femtosecond component of 4.18 ± 0.19 mJ, accompanied by a 0.22 ± 0.01 mJ ASE pedestal on the target surface. While varying the spot sizes, the plasma plume consistently exhibited an extremely forward-peaked distribution. Deposition rates, defined as peak thickness per number of pulses, ranged from 0.030 to 0.114 nm/pulse, with a gradual narrowing of the thickness distribution as the spot area increased from 0.085 to 1.01 mm2 while keeping the pulse energy constant. The material distribution on the silicon substrates was characterized using the f(Θ) = AcoskΘ + (1 − A)cospΘ formalism, revealing exponents characterizing the forward-peaked component of the thickness profile of the film material along the axes, ranging from k = 15 up to exceptionally high values exceeding 50, as the spot area increased. Consequently, spot size control and outstanding beam quality ensured that majority of the ablated material was confined to the central region of the plume, indicating the potential of PLD (pulsed laser deposition) for highly efficient localized deposition of exotic materials. Full article
(This article belongs to the Special Issue Advances in Laser Processing Technology of Materials)
Show Figures

Figure 1

15 pages, 13318 KiB  
Article
Fabrication of Nanostructures Consisting of Composite Nanoparticles by Open-Air PLD
by Anna Og Dikovska, Daniela Karashanova, Genoveva Atanasova, Georgi Avdeev, Petar Atanasov and Nikolay N. Nedyalkov
Coatings 2024, 14(5), 527; https://doi.org/10.3390/coatings14050527 - 24 Apr 2024
Viewed by 1724
Abstract
We present a two-step physical method for the fabrication of composite nanoparticle-based nanostructures. The proposed method is based on the pulsed laser deposition (PLD) technique performed sequentially in vacuum and in air. As a first step, thin-alloyed films of iron with noble metal [...] Read more.
We present a two-step physical method for the fabrication of composite nanoparticle-based nanostructures. The proposed method is based on the pulsed laser deposition (PLD) technique performed sequentially in vacuum and in air. As a first step, thin-alloyed films of iron with noble metal were deposited by PLD in vacuum. The films were prepared by ablation of a mosaic target formed by equal iron and gold sectors. As a second step, the as-prepared alloyed films were ablated in air at atmospheric pressure as the laser beam scanned their surface. Two sets of experiments were performed in the second step, namely, by applying nanosecond (ns) and picosecond (ps) laser pulses for ablation. The structure, microstructure, morphology, and optical properties of the samples obtained were studied with respect to the laser ablation regime applied. The implementation of the ablation process in open air resulted in the formation of nanoparticle and/or nanoparticle aggregates in the plasma plume regardless of the ablation regime applied. These nanoparticles and/or nanoaggregates deposited on the substrate formed a complex porous structure. It was found that ablating FeAu films in air by ns pulses resulted in the fabrication of alloyed nanoparticles, while ablation by ps laser pulses results in separation of the metals in the alloy and further oxidation of Fe. In the latter case, the as-deposited structures also contain core–shell type nanoparticles, with the shell consisting of Fe-oxide phase. The obtained structures, regardless of the ablation regime applied, demonstrate a red-shifted plasmon resonance with respect to the plasmon resonance of pure Au nanoparticles. Full article
Show Figures

Figure 1

12 pages, 2853 KiB  
Article
Whole-Cell Display of Phospholipase D in Escherichia coli for High-Efficiency Extracellular Phosphatidylserine Production
by Baotong Sun, Zhongchen Li, Yanhong Peng, Fei Wang, Yibin Cheng, Yang Liu and Lixin Ma
Biomolecules 2024, 14(4), 430; https://doi.org/10.3390/biom14040430 - 2 Apr 2024
Cited by 3 | Viewed by 2068
Abstract
Phospholipids are widely utilized in various industries, including food, medicine, and cosmetics, due to their unique chemical properties and healthcare benefits. Phospholipase D (PLD) plays a crucial role in the biotransformation of phospholipids. Here, we have constructed a super-folder green fluorescent protein (sfGFP)-based [...] Read more.
Phospholipids are widely utilized in various industries, including food, medicine, and cosmetics, due to their unique chemical properties and healthcare benefits. Phospholipase D (PLD) plays a crucial role in the biotransformation of phospholipids. Here, we have constructed a super-folder green fluorescent protein (sfGFP)-based phospholipase D (PLD) expression and surface-display system in Escherichia coli, enabling the surface display of sfGFP-PLDr34 on the bacteria. The displayed sfGFP-PLDr34 showed maximum enzymatic activity at pH 5.0 and 45 °C. The optimum Ca2+ concentrations for the transphosphatidylation activity and hydrolysis activity are 100 mM and 10 mM, respectively. The use of displayed sfGFP-PLDr34 for the conversion of phosphatidylcholine (PC) and L-serine to phosphatidylserine (PS) showed that nearly all the PC was converted into PS at the optimum conditions. The displayed enzyme can be reused for up to three rounds while still producing detectable levels of PS. Thus, Escherichia coli/sfGFP-PLD shows potential for the feasible industrial-scale production of PS. Moreover, this system is particularly valuable for quickly screening higher-activity PLDs. The fluorescence of sfGFP can indicate the expression level of the fused PLD and changes that occur during reuse. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

13 pages, 2502 KiB  
Article
Immobilization of Phospholipase D for Production of Phosphatidylserine via Enzyme-Inorganic Hybrid Nanoflower Strategy
by Shujing Zhang, Hui Sun, Zhiqi Huang, Zhuoxuan Han, Jiayi Hou, Fuping Lu and Yihan Liu
Fermentation 2023, 9(12), 1016; https://doi.org/10.3390/fermentation9121016 - 13 Dec 2023
Cited by 3 | Viewed by 2126
Abstract
Phosphatidylserine (PS) is a natural phospholipid with particular importance in the food, cosmetic, and pharmaceutical industries. Recently, the synthesis of PS mediated by phospholipase D (PLD) has drawn great attention. But the application of free PLD is limited by various drawbacks, including its [...] Read more.
Phosphatidylserine (PS) is a natural phospholipid with particular importance in the food, cosmetic, and pharmaceutical industries. Recently, the synthesis of PS mediated by phospholipase D (PLD) has drawn great attention. But the application of free PLD is limited by various drawbacks, including its instability under extreme conditions, difficulties in reuse and recovery, and high costs. In this work, saPLD-inorganic hybrid nanoflowers (saPLD@NFs) were synthesized with PLD from Streptomyces antibioticus (saPLD) as the organic component and Ca3(PO4)2 as the inorganic component. The saPLD@NFs demonstrated outstanding immobilization capability and achieved a 119% enzyme activity recovery rate. Furthermore, the saPLD@NFs exhibited better thermostability and pH stability in comparison to free saPLD. The PS yield of saPLD@NFs was about 57.4% in the first cycles and still reached 60.4% of its initial PS yield after four cycles. After 25 d storage at 4 °C, saPLD@NFs retained 66.5% of its original activity, but free saPLD only retained 38.3%, indicating that saPLD@NFs have excellent storage stability. Thus, this study established a new method of preparing PLD nanoflowers for effective PS synthesis, which might accelerate the practical utilization of this biocatalyst. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

13 pages, 18765 KiB  
Article
Formation of Oriented Nanowires from Mixed Metal Oxides
by Anna Dikovska, Genoveva Atanasova, Rumen Nikov, Georgi Avdeev, Zara Cherkezova-Zheleva, Daniela Paneva and Nikolay Nedyalkov
Materials 2023, 16(19), 6446; https://doi.org/10.3390/ma16196446 - 27 Sep 2023
Cited by 1 | Viewed by 1184
Abstract
In this study, we present a physical method for the fabrication of oriented nanowires composed of mixed metal oxides. Pulsed laser deposition carried out in the air under atmospheric pressure was used for the production of samples. Two sets of experiments were performed [...] Read more.
In this study, we present a physical method for the fabrication of oriented nanowires composed of mixed metal oxides. Pulsed laser deposition carried out in the air under atmospheric pressure was used for the production of samples. Two sets of experiments were performed by applying nanosecond and picosecond laser ablation, respectively. The depositions were performed using the laser ablation of mixed targets from iron oxide and zinc oxide as the initial materials in different ratios. The experiments were carried out in a magnetic field, which allowed us to control the morphology of nanostructures. The structure, microstructure, morphology, and composition of the structures obtained were studied in relation to the sample composition and laser ablation regime applied. The morphological analysis revealed that the structure of the samples consisted mainly of nanowire-like features reaching tens of micrometers in length. These nanowires were composed of nanoparticles and oriented predominantly in parallel to magnetic field lines. Nanoparticles produced using ps ablation were, on average, smaller than those obtained by ns ablation of the same target. Using ablation with ps laser pulses, we were able to produce new composite materials or materials containing unstable phases. Full article
Show Figures

Figure 1

16 pages, 4424 KiB  
Article
Immobilization of Phospholipase D for Production of Phosphatidylserine by a Pickering Emulsion Strategy
by Hui Sun, Shujing Zhang, Dianqing Liu, Zhiqi Huang, Yuxin Ge, Jiayi Hou, Fuping Lu and Yihan Liu
Catalysts 2023, 13(10), 1318; https://doi.org/10.3390/catal13101318 - 23 Sep 2023
Cited by 3 | Viewed by 1759
Abstract
As a natural phospholipid, phosphatidylserine (PS) plays a key role in the food, cosmetic, and pharmaceutical industries. Recently, substantial attention has been focused on the phospholipase D (PLD)-mediated synthesis of PS. However, the application of free PLD is usually limited by high cost, [...] Read more.
As a natural phospholipid, phosphatidylserine (PS) plays a key role in the food, cosmetic, and pharmaceutical industries. Recently, substantial attention has been focused on the phospholipase D (PLD)-mediated synthesis of PS. However, the application of free PLD is usually limited by high cost, poor reusability, and low stability. In this study, PLD from Streptomyces antibiotics (saPLD) was efficiently immobilized on SiO2 through physical adsorption to develop saPLD@SiO2. The stability of the saPLD@SiO2 was higher than that of the free saPLD over an extensive range of temperature and pH conditions. Furthermore, the PS yield of saPLD@SiO2 was approximately 41% in the first cycles, and still kept 60% of its initial PS yield after 14 cycles. After a 25-day storage period, the saPLD@SiO2 retained 62.5% of its initial activity, while the free saPLD retained only 34.3%, suggesting that saPLD@SiO2 has better stability than free saPLD. A Pickering emulsion was produced by dispersing saPLD@SiO2 in solutions (ethyl propanoate and acetate/acetic acid buffer) using ultrasound. The engineered Pickering emulsion demonstrated excellent catalytic activity, with a 62% PS yield after 6 h, while free saPLD had only 18%. The results indicated that a high-performance and sustainable biocatalysis method was established for the effective synthesis of PS. Full article
(This article belongs to the Special Issue Recent Trends in Enzyme Immobilization)
Show Figures

Graphical abstract

13 pages, 1261 KiB  
Article
Efficient Biosynthesis of Phosphatidylserine in a Biphasic System through Parameter Optimization
by Bishan Guo, Juntan Wang, Mengxue Zhang, Huiyi Shang, Rui Du, Fayun Wang, Hui Wang, Jun Xu and Haihua Zhu
Processes 2023, 11(8), 2368; https://doi.org/10.3390/pr11082368 - 7 Aug 2023
Cited by 4 | Viewed by 2488
Abstract
Phosphatidylserine (PS) has significant biological and nutritional effects and finds wide applications in the food, pharmaceutical, and chemical industries. To produce high-value PS efficiently, phospholipase D (PLD)-induced transphosphatidylation of low-value phosphatidylcholine (PC) with L-serine has been explored. In this research, we purified recombinant [...] Read more.
Phosphatidylserine (PS) has significant biological and nutritional effects and finds wide applications in the food, pharmaceutical, and chemical industries. To produce high-value PS efficiently, phospholipase D (PLD)-induced transphosphatidylation of low-value phosphatidylcholine (PC) with L-serine has been explored. In this research, we purified recombinant PLD from Streptomyces antibioticus SK-3 using ion exchange chromatography and gel filtration chromatography. Subsequently, we thoroughly characterized the purified enzyme and optimized the transphosphatidylation conditions to identify the most favorable settings for synthesizing PS in a biphasic system. The purified recombinant PLD displayed a robust transphosphatidylation function, facilitating efficient catalysis in the synthesis of PS. Under the optimal conditions (butyl acetate/enzyme solution 1:1, L-serine 160 mg/mL, soybean lecithin 2 mg/mL, and MgCl2 15 mM, at 50 °C for 2.5 h with shaking), we achieved a conversion rate of 91.35% and a productivity of 0.73 g/L/h. These results demonstrate the applicability of the process optimization strategy for using the candidate enzyme in the efficient synthesis of PS. Overall, this study presents a novel and scalable approach for the efficient large-scale synthesis of PS. Full article
Show Figures

Figure 1

12 pages, 959 KiB  
Article
The Safety and Efficacy of Hepatic Transarterial Embolization Using Microspheres and Microcoils in Patients with Symptomatic Polycystic Liver Disease
by Alexis Coussy, Eva Jambon, Yann Le Bras, Christian Combe, Laurence Chiche, Nicolas Grenier and Clément Marcelin
J. Pers. Med. 2022, 12(10), 1624; https://doi.org/10.3390/jpm12101624 - 1 Oct 2022
Cited by 3 | Viewed by 2360
Abstract
Purpose: We investigated the long-term safety and efficacy of hepatic transarterial embolization (TAE) in patients with symptomatic polycystic liver disease (PLD). Materials and Methods: A total of 26 patients were included, mean age of 52.3 years (range: 33–78 years), undergoing 32 TAE procedures [...] Read more.
Purpose: We investigated the long-term safety and efficacy of hepatic transarterial embolization (TAE) in patients with symptomatic polycystic liver disease (PLD). Materials and Methods: A total of 26 patients were included, mean age of 52.3 years (range: 33–78 years), undergoing 32 TAE procedures between January 2012 and December 2019 were included in this retrospective study. Distal embolization of the segmental hepatic artery was performed with 300–500 µm embolic microspheres associated with proximal embolization using microcoils. The primary endpoint was clinical efficacy, defined by an improvement in health-related quality of life using a modified Short Form-36 Health Survey and improvement in symptoms (digestive or respiratory symptoms and chronic abdominal pain), without invasive therapy during the follow-up period. Secondary endpoints were a decrease in total liver volume and treated liver volume and complications. Results: Hepatic embolization was performed successfully in 30 of 32 procedures with no major adverse events. Clinical efficacy was 73% (19/26). The mean reduction in hepatic volume was −12.6% at 3 months and −27.8% at the last follow-up 51 ± 15.2 months after TAE (range: 30–81 months; both ps < 0.01). The mean visual analog scale pain score was 5.4 ± 2.8 before TAE and decreased to 2.7 ± 1.9 after treatment. Three patients had minor adverse events, and one patient had an adverse event of moderate severity. Conclusion: Hepatic embolization using microspheres and microcoils is a safe and effective treatment for PLD that improves symptoms and reduces the volume of hepatic cysts. Full article
(This article belongs to the Special Issue Present and Future Perspectives of Vascular Interventional Radiology)
Show Figures

Figure 1

11 pages, 3859 KiB  
Article
Vanadium Dioxide–Iridium Composite Development: Specific Near Infrared Surface Plasmon Resonance
by Adrian Ionut Bercea, Corinne Champeaux, Catalin Daniel Constantinescu and Frédéric Dumas-Bouchiat
J. Compos. Sci. 2021, 5(7), 193; https://doi.org/10.3390/jcs5070193 - 20 Jul 2021
Cited by 3 | Viewed by 2872
Abstract
This work serves as a roadmap for the development of a Vanadium dioxide (VO2)–Iridium composite based on the self-assembly of closely packed colloidal polystyrene microspheres (P-spheres) coupled with a Pulsed Laser Deposition (PLD) process. The self-assembly of a monolayer of PS [...] Read more.
This work serves as a roadmap for the development of a Vanadium dioxide (VO2)–Iridium composite based on the self-assembly of closely packed colloidal polystyrene microspheres (P-spheres) coupled with a Pulsed Laser Deposition (PLD) process. The self-assembly of a monolayer of PS is performed on an Al2O3-c substrate, using an adapted Langmuir–Blodgett (LB) process. Then, on the substrate covered with P-spheres, a 50-nanometer Iridium layer is deposited by PLD. The Iridium deposition is followed by the removal of PS with acetone, revealing an array of triangular shaped metallic elements formed on the underlaying substrate. In a last deposition step, 50-, 100- and 200-nanometer thin films of VO2 are deposited by PLD on top of the substrates covered with the Iridium quasi-triangles, forming a composite. Adapting the size of the P-spheres leads to control of both the size of the Iridium micro-triangle and, consequently, the optical transmittance of the composite. Owing to their shape and size the Iridium micro-triangles exhibit localized surface plasmon resonance (LSPR) characterized by a selective absorption of light. Due to the temperature dependent properties of VO2, the LSPR properties of the composite can be changeable and tunable. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2021)
Show Figures

Figure 1

15 pages, 2361 KiB  
Article
Highly Efficient Extracellular Production of Recombinant Streptomyces PMF Phospholipase D in Escherichia coli
by Jing Wang, Sheng Xu, Yang Pang, Xin Wang, Kequan Chen and Pingkai Ouyang
Catalysts 2020, 10(9), 1057; https://doi.org/10.3390/catal10091057 - 14 Sep 2020
Cited by 5 | Viewed by 3721
Abstract
To achieve efficient bio-production of phospholipase D (PLD), PLDs from different organisms were expressed in E.coli. An efficient secretory expression system was thereby developed for PLD. First, PLDs from Streptomyces PMF and Streptomyces racemochromogenes were separately over-expressed in E.coli to [...] Read more.
To achieve efficient bio-production of phospholipase D (PLD), PLDs from different organisms were expressed in E.coli. An efficient secretory expression system was thereby developed for PLD. First, PLDs from Streptomyces PMF and Streptomyces racemochromogenes were separately over-expressed in E.coli to compare their transphosphatidylation activity based on the synthesis of phosphatidylserine (PS), and PLDPMF was determined to have higher activity. To further improve PLDPMF synthesis, a secretory expression system suitable for PLDPMF was constructed and optimized with different signal peptides. The highest secretory efficiency was observed when the PLD * (PLDPMF with the native signal peptide Nat removed) was expressed fused with the fusion signal peptide PelB-Nat in E. coli. The fermentation conditions were also investigated to increase the production of recombinant PLD and 10.5 U/mL PLD was ultimately obtained under the optimized conditions. For the application of recombinant PLD to PS synthesis, the PLD properties were characterized and 30.2 g/L of PS was produced after 24 h of bioconversion when 50 g/L phosphatidylcholine (PC) was added. Full article
Show Figures

Graphical abstract

14 pages, 2070 KiB  
Article
Ge-Sb-Te Chalcogenide Thin Films Deposited by Nanosecond, Picosecond, and Femtosecond Laser Ablation
by Georgiana Bulai, Oana Pompilian, Silviu Gurlui, Petr Nemec, Virginie Nazabal, Nicanor Cimpoesu, Bertrand Chazallon and Cristian Focsa
Nanomaterials 2019, 9(5), 676; https://doi.org/10.3390/nano9050676 - 1 May 2019
Cited by 20 | Viewed by 4319
Abstract
Ge-Sb-Te thin films were obtained by ns-, ps-, and fs-pulsed laser deposition (PLD) in various experimental conditions. The thickness of the samples was influenced by the Nd-YAG laser wavelength, fluence, target-to-substrate distance, and deposition time. The topography and chemical analysis results showed that [...] Read more.
Ge-Sb-Te thin films were obtained by ns-, ps-, and fs-pulsed laser deposition (PLD) in various experimental conditions. The thickness of the samples was influenced by the Nd-YAG laser wavelength, fluence, target-to-substrate distance, and deposition time. The topography and chemical analysis results showed that the films deposited by ns-PLD revealed droplets on the surface together with a decreased Te concentration and Sb over-stoichiometry. Thin films with improved surface roughness and chemical compositions close to nominal values were deposited by ps- and fs-PLD. The X-ray diffraction and Raman spectroscopy results showed that the samples obtained with ns pulses were partially crystallized while the lower fluences used in ps- and fs-PLD led to amorphous depositions. The optical parameters of the ns-PLD samples were correlated to their structural properties. Full article
(This article belongs to the Special Issue Synthesis and Modification of Nanostructured Thin Films)
Show Figures

Graphical abstract

16 pages, 3397 KiB  
Article
Recombinant Phospholipase D from Loxosceles gaucho Binds to Platelets and Promotes Phosphatidylserine Exposure
by Daniel A. Fukuda, Maria C. Caporrino, Katia C. Barbaro, Maisa S. Della-Casa, Eliana L. Faquim-Mauro and Geraldo S. Magalhaes
Toxins 2017, 9(6), 191; https://doi.org/10.3390/toxins9060191 - 13 Jun 2017
Cited by 7 | Viewed by 4185
Abstract
Spider envenomation, from the genus Loxosceles, is frequently reported as a cause of necrotic lesions in humans around the world. Among the many components found in the venom of Loxosceles genus, phospholipases D (PLDs) are the most investigated, since they can cause [...] Read more.
Spider envenomation, from the genus Loxosceles, is frequently reported as a cause of necrotic lesions in humans around the world. Among the many components found in the venom of Loxosceles genus, phospholipases D (PLDs) are the most investigated, since they can cause a massive inflammatory response, dermonecrosis, hemolysis and platelet aggregation, among other effects. Even though the PLDs induce strong platelet aggregation, there are no studies showing how the PLDs interact with platelets to promote this effect. Since many agonists must interact with specific receptors on the platelet membrane to induce aggregation, it is reasonable to expect that the PLDs may, in some way, also interact with platelets, to induce this activity. Therefore, to address this possibility, in this work, a recombinant PLD, called LgRec1, from L. gaucho was fused to enhanced green fluorescent protein (EGFP) and used as a probe to detect the interaction of LgRec1 to platelets, by fluorescence-activated cell sorter (FACS) and confocal microscopy. The preservation of biological activities of this chimera toxin was also analyzed. As a first, the results show that LgRec1 does not require plasma components to bind to platelets, although these components are necessary to LgRec1 to induce platelet aggregation. Also, the attachment of LgRec1 to human platelets’ cell membranes suggests that the exposure of phosphatidylserine (PS) may act as a scaffold for coagulation factors. Therefore, the results add new information about the binding of Loxosceles PLDs to platelets, which may help unravel how these toxins promote platelet aggregation. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

14 pages, 287 KiB  
Article
Optical and Nonlinear Optical Response of Light Sensor Thin Films
by H. Liu, A. J. Rua, O. Vasquez, V. S. Vikhnin, L. F.E. Fernandez, F. Fonseca, O. Resto and S. Z. Weisz
Sensors 2005, 5(4), 185-198; https://doi.org/10.3390/s5040185 - 27 Apr 2005
Cited by 18 | Viewed by 11147
Abstract
For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD) and RF co-sputteringtechniques. In photoluminescence (PL) measurement c-Si/SiO2 film containsnanoparticles of crystal [...] Read more.
For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD) and RF co-sputteringtechniques. In photoluminescence (PL) measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO) response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT) immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration. Full article
(This article belongs to the Special Issue Papers presented at I3S2004, Nanjing)
Show Figures

Back to TopTop