Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (373)

Search Parameters:
Keywords = protoplasts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9314 KiB  
Article
Genome-Wide Characterization of the SnRK Gene Family in Taxus and Homologous Validation of TaSnRK1.2 as a Central Regulator in Stress-Responsive Transcriptional Networks
by Pengjun Lu, Jianqiu Ji, Fangjuan Fan, Tao Liu, Zhenting Shi, Wentao Li and Chongbo Sun
Plants 2025, 14(15), 2410; https://doi.org/10.3390/plants14152410 - 4 Aug 2025
Abstract
SnRK kinases, central regulators of plant stress response, remain uncharacterized in Taxus—an ancient gymnosperm valued for paclitaxel production. This study aimed to identify the Taxus SnRK family and elucidate its functional roles. Specifically, we identified SnRK genes through genomic analysis and assessed [...] Read more.
SnRK kinases, central regulators of plant stress response, remain uncharacterized in Taxus—an ancient gymnosperm valued for paclitaxel production. This study aimed to identify the Taxus SnRK family and elucidate its functional roles. Specifically, we identified SnRK genes through genomic analysis and assessed tissue-specific expression via transcriptomics, while regulatory networks were deciphered using WGCNA. To overcome experimental constraints, a PEG-mediated protoplast transient expression system was developed using calli, followed by dual-luciferase assays. Consequently, 19 SnRK genes (2 SnRK1, 4 SnRK2, 13 SnRK3) were identified, with tissue-specific expression revealing TaSnRK1.2 upregulation under methyl jasmonate (MeJA) and in stress-resilient tissues (bark/root). Subsequently, WGCNA uncovered a bark/root-specific module containing TaSnRK1.2 with predicted TF interactions (TaGRAS/TaERF). Critically, homologous dual-luciferase assays demonstrated TaSnRK1.2 activates TaGRAS and TaERF promoters (4.34-fold and 3.11-fold induction, respectively). This study establishes the Taxus SnRK family and identifies TaSnRK1.2 as a hub integrating stress signals (e.g., MeJA) to modulate downstream TF networks, while the novel protoplast system enables future functional studies in this medicinal plant. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

24 pages, 4499 KiB  
Article
What Is Similar, What Is Different? Characterization of Mitoferrin-like Proteins from Arabidopsis thaliana and Cucumis sativus
by Karolina Małas, Ludmiła Polechońska and Katarzyna Kabała
Int. J. Mol. Sci. 2025, 26(15), 7103; https://doi.org/10.3390/ijms26157103 - 23 Jul 2025
Viewed by 163
Abstract
Chloroplasts, as the organelles primarily responsible for photosynthesis, require a substantial supply of iron ions. Conversely, due to Fe toxicity, the homeostasis of these ions is subject to tight regulation. Permease in chloroplast 1 (PIC1) has been identified as the primary iron importer [...] Read more.
Chloroplasts, as the organelles primarily responsible for photosynthesis, require a substantial supply of iron ions. Conversely, due to Fe toxicity, the homeostasis of these ions is subject to tight regulation. Permease in chloroplast 1 (PIC1) has been identified as the primary iron importer into chloroplasts. However, previous studies suggested the existence of a distinct pathway for Fe transfer to chloroplasts, likely involving mitoferrin-like 1 (MFL1) protein. In this work, Arabidopsis MFL1 (AtMFL1) and its cucumber homolog (CsMFL1) were characterized using, among others, Arabidopsis protoplasts as well as both yeast and Arabidopsis mutants. Localization of both proteins in chloroplasts has been shown to be mediated via an N-terminal transit peptide. At the gene level, MFL1 expression profiles differed between the model plant and the crop plant under varying Fe availability. The expression of other genes involved in chloroplast Fe homeostasis, including iron acquisition, trafficking, and storage, was affected to some extent in both AtMFL1 knockout and overexpressing plants. Moreover, root growth and photosynthetic parameters changed unfavorably in the mutant lines. The obtained results imply that AtMFL1 and CsMFL1, as putative chloroplast iron transporters, play a role in both iron management and the proper functioning of the plant. Full article
(This article belongs to the Special Issue New Insights in Plant Cell Biology)
Show Figures

Figure 1

9 pages, 1013 KiB  
Article
Miniature enOsCas12f1 Enables Targeted Genome Editing in Rice
by Junjie Wang, Qiangbing Xuan, Biaobiao Cheng, Beibei Lv and Weihong Liang
Plants 2025, 14(14), 2100; https://doi.org/10.3390/plants14142100 - 8 Jul 2025
Viewed by 362
Abstract
The type V CRISPR/Cas12f system, with its broad PAM recognition range, small size, and ease of delivery, has significantly contributed to the gene editing toolbox. In this study, enOsCas12f1 activity was detected during transient expression in rice protoplasts. The results showed that enOsCas12f1 [...] Read more.
The type V CRISPR/Cas12f system, with its broad PAM recognition range, small size, and ease of delivery, has significantly contributed to the gene editing toolbox. In this study, enOsCas12f1 activity was detected during transient expression in rice protoplasts. The results showed that enOsCas12f1 exhibited DNA cleavage activity when it recognized TTN PAMs. Subsequently, we examined the gene editing efficiency of enOsCas12f1 in stably transformed rice plants, and the results showed that enOsCas12f1 could identify the TTT and TTC PAM sequences of the OsPDS gene, resulting in gene mutations and an albino phenotype. The editing efficiencies of TTT and TTC PAMs were 6.21% and 44.21%, respectively. Furthermore, all mutations were base deletions, ranging in size from 7 to 29 base pairs. Then, we used enOsCas12f1 to edit the promoter and 5′ UTR of the OsDREB1C gene, demonstrating that enOsCas12f1 could stably produce base deletion, mutant rice plants. Additionally, we fused the transcriptional activation domain TV with the dead enOsCas12f1 to enhance the expression of the target gene OsIPA1. Our study demonstrates that enOsCas12f1 can be utilized for rice gene modification, thereby expanding the toolbox for rice gene editing. Full article
(This article belongs to the Special Issue Advances and Applications of Genome Editing in Plants)
Show Figures

Figure 1

17 pages, 5753 KiB  
Protocol
Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars
by Marion Barrera, Blanca Olmedo, Matías Narváez, Felipe Moenne-Locoz, Anett Rubio, Catalina Pérez, Karla Cordero-Lara and Humberto Prieto
Plants 2025, 14(13), 2059; https://doi.org/10.3390/plants14132059 - 5 Jul 2025
Viewed by 608
Abstract
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary [...] Read more.
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary uses. Although some of these varieties are adapted to cooler climates, they often suffer from reduced productivity or increased disease susceptibility when cultivated in warmer productive environments. These limitations underscore the need for breeding programs to incorporate biotechnological tools that can enhance the adaptability and resilience of the plants. However, New Genomic Techniques (NGTs), including CRISPR-Cas9, require robust in vitro systems, which are still underdeveloped for temperate japonica genotypes. In this study, we developed a reproducible and adaptable protocol for protoplast isolation and regeneration from the temperate japonica cultivars ‘Ónix’ and ‘Platino’ using somatic embryos as the starting tissue. Protoplasts were isolated via enzymatic digestion (1.5% Cellulase Onozuka R-10 and 0.75% Macerozyme R-10) in 0.6 M AA medium over 18–20 h at 28 °C. Regeneration was achieved through encapsulation in alginate beads and coculture with feeder extracts in 2N6 medium, leading to embryogenic callus formation within 35 days. Seedlings were regenerated in N6R and N6F media and acclimatized under greenhouse conditions within three months. The isolated protoplast quality displayed viability rates of 70–99% within 48 h and supported transient PEG-mediated transfection with GFP. Additionally, the transient expression of a gene editing CRISPR-Cas9 construct targeting the DROUGHT AND SALT TOLERANCE (OsDST) gene confirmed genome editing capability. This protocol offers a scalable and genotype-adaptable system for protoplast-based regeneration and gene editing in temperate japonica rice, supporting the application of NGTs in the breeding of cold-adapted cultivars. Full article
Show Figures

Graphical abstract

18 pages, 2260 KiB  
Article
Optimization of Establishment, Protoplast Separation, and Fusion via Embryonic Suspension System in Chestnut (Castanea mollissima Bl.)
by Shiying Zhang, Sujuan Guo and Ruijie Zheng
Agronomy 2025, 15(7), 1595; https://doi.org/10.3390/agronomy15071595 - 30 Jun 2025
Viewed by 426
Abstract
Castanea mollissima Bl. is rich in nutrition and strong in stress resistance, and has nutritional, economic, and ecological values. A protoplast is impactful in somatic fusion and germplasm creation. Here, we propose an effective scheme for the construction of an embryonic suspension cell, [...] Read more.
Castanea mollissima Bl. is rich in nutrition and strong in stress resistance, and has nutritional, economic, and ecological values. A protoplast is impactful in somatic fusion and germplasm creation. Here, we propose an effective scheme for the construction of an embryonic suspension cell, protoplast isolation, and fusion. Studies have shown that when 1.0 g yellow loose embryonic callus was inoculated into MS + 1.5 mg∙L−1 6-BA + 0.2 mg∙L−1 NAA + 0.5 mg∙L−1 2, 4-D liquid medium, a stable suspension cell line can be obtained. After further culturing for 2–4 days, protoplast isolation was performed. First, single-factor screening was conducted on the four enzymes, and then a two-factor random block was further set up to screen the enzyme combinations based on the results. We found that 1.0%cellulase R-10 + 0.5%pectolase Y-23 led to the highest protoplast yield (9.27 × 106/g FW) and the highest activity (92.49%). Furthermore, the protoplast yield could be increased to 9.47 × 106/g FW by adding 0.4 M mannitol and shaking for 8 h. The protoplasts were purified by centrifuging at 40× g for 4 min and then mixed with 30% PEG 6000 at a volume ratio of 1.5:1 for 25 min. The fusion rate could reach 70.00%. This study laid a foundation for the creation of new germplasm by Castanea mollissima Bl. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

17 pages, 4220 KiB  
Article
Disease-Resistance Functional Analysis and Screening of Interacting Proteins of ZmCpn60-3, a Chaperonin 60 Protein from Maize
by Bo Su, Lixue Mao, Huiping Wu, Xinru Yu, Chongyu Bian, Shanshan Xie, Temoor Ahmed, Hubiao Jiang and Ting Ding
Plants 2025, 14(13), 1993; https://doi.org/10.3390/plants14131993 - 30 Jun 2025
Viewed by 444
Abstract
Chaperonin 60 proteins plays an important role in plant growth and development as well as the response to abiotic stress. As part of the protein homeostasis system, molecular chaperones have attracted increasing attention in recent years due to their involvement in the folding [...] Read more.
Chaperonin 60 proteins plays an important role in plant growth and development as well as the response to abiotic stress. As part of the protein homeostasis system, molecular chaperones have attracted increasing attention in recent years due to their involvement in the folding and assembly of key proteins in photosynthesis. However, little is known about the function of maize chaperonin 60 protein. In the study, a gene encoding the chaperonin 60 proteins was cloned from the maize inbred line B73, and named ZmCpn60-3. The gene was 1, 818 bp in length and encoded a protein consisting of 605 amino acids. Phylogenetic analysis showed that ZmCpn60-3 had high similarity with OsCPN60-1, belonging to the β subunits of the chloroplast chaperonin 60 protein family, and it was predicted to be localized in chloroplasts. The ZmCpn60-3 was highly expressed in the stems and tassels of maize, and could be induced by exogenous plant hormones, mycotoxins, and pathogens; Overexpression of ZmCpn60-3 in Arabidopsis improved the resistance to Pst DC3000 by inducing the hypersensitive response and the expression of SA signaling-related genes, and the H2O2 and the SA contents of ZmCpn60-3-overexpressing Arabidopsis infected with Pst DC3000 accumulated significantly when compared to the wild-type controls. Experimental data demonstrate that flg22 treatment significantly upregulated transcriptional levels of the PR1 defense gene in ZmCpn60-3-transfected maize protoplasts. Notably, the enhanced resistance phenotype against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in ZmCpn60-3-overexpressing transgenic lines was specifically abolished by pretreatment with ABT, a salicylic acid (SA) biosynthetic inhibitor. Our integrated findings reveal that this chaperonin protein orchestrates plant immune responses through a dual mechanism: triggering a reactive oxygen species (ROS) burst while simultaneously activating SA-mediated signaling cascades, thereby synergistically enhancing host disease resistance. Additionally, yeast two-hybrid assay preliminary data indicated that ZmCpn60-3 might bind to ZmbHLH118 and ZmBURP7, indicating ZmCpn60-3 might be involved in plant abiotic responses. The results provided a reference for comprehensively understanding the resistance mechanism of ZmCpn60-3 in plant responses to abiotic or biotic stress. Full article
(This article belongs to the Special Issue Functional Genomics and Molecular Breeding of Crops—2nd Edition)
Show Figures

Figure 1

11 pages, 1440 KiB  
Communication
GAG Protein of Arabidopsis thaliana LTR Retrotransposon Forms Retrosome-like Cytoplasmic Granules and Activates Stress Response Genes
by Alexander Polkhovskiy, Roman Komakhin and Ilya Kirov
Plants 2025, 14(13), 1894; https://doi.org/10.3390/plants14131894 - 20 Jun 2025
Viewed by 571
Abstract
LTR retrotransposons are widespread genomic elements that significantly impact genome structure and function. In Arabidopsis thaliana, the EVD LTR retrotransposon encodes a GAG protein essential for retrotransposon particle assembly. Here, we present a comprehensive analysis of the structural features, intracellular localization, and [...] Read more.
LTR retrotransposons are widespread genomic elements that significantly impact genome structure and function. In Arabidopsis thaliana, the EVD LTR retrotransposon encodes a GAG protein essential for retrotransposon particle assembly. Here, we present a comprehensive analysis of the structural features, intracellular localization, and transcriptomic effects of the EVD GAG (evdGAG) protein. Using AlphaFold3, we identified canonical capsid (CA-NTD and CA-CTD) and nucleocapsid (NC) domains, with predicted disordered regions likely facilitating oligomerization. Transient expression of GFP-tagged evdGAG in protoplasts of A. thaliana and distant plant species (Nicotiana benthamiana and Helianthus annuus) revealed the formation of multiple large cytoplasmic aggregates resembling retrosomes, often localized near the nucleus. Stable overexpression of evdGAG in wild-type and ddm1 mutant backgrounds induced significant transcriptomic changes, including up-regulation of stress response and defense-related genes and downregulation of photosynthesis and chloroplast-associated pathways. Importantly, genes linked to stress granule formation were also up-regulated, suggesting a role for evdGAG in modulating cellular stress responses. Our findings provide novel insights into the cellular and molecular properties of plant retrotransposon GAG proteins and their influence on host gene expression. Full article
Show Figures

Figure 1

19 pages, 11989 KiB  
Article
PEG-Mediated Protoplast Transformation of Penicillium sclerotiorum (scaumcx01): Metabolomic Shifts and Root Colonization Dynamics
by Israt Jahan, Qilin Yang, Zijun Guan, Yihan Wang, Ping Li and Yan Jian
J. Fungi 2025, 11(5), 386; https://doi.org/10.3390/jof11050386 - 17 May 2025
Viewed by 1692
Abstract
Protoplast-based transformation is a vital tool for genetic studies in fungi, yet no protoplast method existed for P. sclerotiorum-scaumcx01 before this study. Here, we optimized protoplast isolation, regeneration, and transformation efficiency. The highest protoplast yield (6.72 × 106 cells/mL) was obtained [...] Read more.
Protoplast-based transformation is a vital tool for genetic studies in fungi, yet no protoplast method existed for P. sclerotiorum-scaumcx01 before this study. Here, we optimized protoplast isolation, regeneration, and transformation efficiency. The highest protoplast yield (6.72 × 106 cells/mL) was obtained from liquid mycelium after 12 h of enzymatic digestion at 28 °C using Lysing Enzymes, Yatalase, cellulase, and pectinase. Among osmotic stabilizers, 1 M MgSO4 yielded the most viable protoplasts. Regeneration occurred via direct mycelial outgrowth and new protoplast formation, with a 1.02% regeneration rate. PEG-mediated transformation with a hygromycin resistance gene and GFP tagging resulted in stable GFP expression in fungal spores and mycelium over five generations. LC/MS-based metabolomic analysis revealed significant changes in glycerophospholipid metabolism, indicating lipid-related dynamics influenced by GFP tagging. Microscopy confirmed successful colonization of tomato roots by GFP-tagged scaumcx01, with GFP fluorescence observed in cortical tissues. Enzymatic (cellulase) seed pretreatment enhanced fungal colonization by modifying root surface properties, promoting plant–fungal interaction. This study establishes an efficient protoplast transformation system, reveals the metabolic impacts of genetic modifications, and demonstrates the potential of enzymatic seed treatment for enhancing plant–fungal interactions. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

13 pages, 1521 KiB  
Article
Identification of Nigrospora oryzae Causing Leaf Spot Disease in Tomato and Screening of Its Potential Antagonistic Bacteria
by Jun Zhang, Fei Yang, Aihong Zhang, Qinggang Guo, Xiangrui Sun, Shangqing Zhang and Dianping Di
Microorganisms 2025, 13(5), 1128; https://doi.org/10.3390/microorganisms13051128 - 14 May 2025
Viewed by 555
Abstract
Tomato is a widely cultivated vegetable crop worldwide. It is susceptible to various phytopathogens, including fungi, bacteria, viruses, and nematodes. In 2024, an unknown leaf spot disease outbreak, characterized by distinct brown necrotic lesions on leaves, was observed in tomato plants in Yunnan [...] Read more.
Tomato is a widely cultivated vegetable crop worldwide. It is susceptible to various phytopathogens, including fungi, bacteria, viruses, and nematodes. In 2024, an unknown leaf spot disease outbreak, characterized by distinct brown necrotic lesions on leaves, was observed in tomato plants in Yunnan Province, China. Through rigorous pathogen isolation and the fulfillment of Koch’s postulates, it was proved that the fungal isolate could infect tomato leaves and cause typical symptoms. The pathogen isolated from tomato leaves was identified as Nigrospora oryzae based on its morphology and using a multilocus sequence analysis method with the internal transcribed spacer gene (ITS1), beta-tubulin gene (TUB2), and translation elongation factor 1-alpha gene (TEF1-α). This represents the first documented case of N. oryzae infecting tomatoes in the world. Given the damage caused by N. oryzae to tomato plants, we explored biocontrol methods. Through a dual-culture assay on PDA plates, Bacillus velezensis B31 demonstrated significant biocontrol potential, exhibiting strong antagonistic activity toward N. oryzae. In addition, we developed a polyethylene glycol (PEG)-mediated transformation system that successfully introduced pYF11-GFP into the protoplasts of N. oryzae. This achievement provides a foundation for future genetic manipulation studies of N. oryzae. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

15 pages, 5116 KiB  
Article
An Optimized Editing Approach for Wheat Genes by Improving sgRNA Design and Transformation Strategies
by Rui-Xiang Zhang, Yun-Fei Zhang, Hao Yang, Xiao-Dong Zhang, Zheng-Guang Yang, Bin-Bin Li, Wei-Hang Sun, Zi Yang, Wen-Ting Liu and Kun-Ming Chen
Int. J. Mol. Sci. 2025, 26(8), 3796; https://doi.org/10.3390/ijms26083796 - 17 Apr 2025
Viewed by 487
Abstract
Hexaploid wheat has a large genome, making it difficult for transgenes to produce phenotypes due to gene redundancy and tight linkage among genes. Multiple gene copies typically necessitate multiple targeting events during gene editing, followed by several generations of self-crossing to achieve homozygous [...] Read more.
Hexaploid wheat has a large genome, making it difficult for transgenes to produce phenotypes due to gene redundancy and tight linkage among genes. Multiple gene copies typically necessitate multiple targeting events during gene editing, followed by several generations of self-crossing to achieve homozygous genotypes. The high cost of transgenesis in wheat is another issue, which hinders the easy availability of gene-edited materials in wheat. In this study, we developed a comprehensive approach to improve wheat gene editing efficiency. First, we established a protoplast-based system to evaluate the relative efficiency of gene editing targets, which enabled the rapid and effective selection of optimal sgRNAs. We then compared two transformation strategies: biolistic bombardment and Agrobacterium-mediated transformation for generating edited wheat lines. Although biolistic bombardment showed higher initial editing efficiency, Agrobacterium-mediated transformation proved more effective for obtaining homozygous mutants. Notably, we discovered that deploying the same sgRNA through different vectors enhanced editing efficiency, whereas overlapping but distinct sgRNAs exhibited interference effects. Finally, we optimized the VITF-edit (virus-induced transgene free editing) technique using BSMV delivery to establish a relatively simple and easily applied wheat gene editing method for general laboratories. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 5870 KiB  
Article
An Efficient System for Mesophyll Protoplast Isolation, Purification, and Transformation in Loquat: Studies on Fluorescent Marker Analysis and Subcellular Localization
by Shuming Wang, Liyun Wang, Zhixiang Liu, Yan Xia, Danlong Jing, Qigao Guo, Guolu Liang and Qiao He
Horticulturae 2025, 11(4), 391; https://doi.org/10.3390/horticulturae11040391 - 7 Apr 2025
Cited by 2 | Viewed by 466
Abstract
Loquat (Eriobotrya japonica Lindl.) is one of the most important subtropical evergreen fruit trees. However, due to the lack of widely applicable genetic transformation platforms, the research about gene functional characterization and molecular mechanisms is largely confined. In this study, the efficient [...] Read more.
Loquat (Eriobotrya japonica Lindl.) is one of the most important subtropical evergreen fruit trees. However, due to the lack of widely applicable genetic transformation platforms, the research about gene functional characterization and molecular mechanisms is largely confined. In this study, the efficient protocol of protoplast isolation (the enzyme solution composed of 2.4% macerozyme R-10, 4.8% cellulase RS, dissolved in a 0.6 M mannitol solution) and the method of protoplast purification (CPW solution containing 5% sucrose and 11% mannitol) have been achieved with protoplast yields of 12.6 × 106/g·FW, reaching a viability rate of up to 91%. A protoplast transient gene expression system has been established with an efficiency of approximately 40% using GFP reporter gene. Using this reliable and efficient system, the protein localization characteristics of transcription factor EjDELLA, EjbHLH79, and marker gene OsPHT4 were also utilized for further analysis. To our knowledge, this is the first report on establishing an efficient system for protoplast isolation, purification, and transformation of loquat mesophyll. The system reported here will definitely promote rapid progress in breeding, genetic transformation, and molecular research. Full article
Show Figures

Figure 1

15 pages, 1378 KiB  
Article
Distribution of Two Mating-Type Idiomorphs in Commercially Cultivated Morchella sextelata Unveiling Unique Life Cycle of Morels
by Jingting Wang, Dezheng Zhu, Xiaobo Li, Xia Gao, Yan Zhang, Meixiu Liu, Weidong Lu, Lili Xu, Hao Yu and Xiuqing Yang
Horticulturae 2025, 11(4), 385; https://doi.org/10.3390/horticulturae11040385 - 4 Apr 2025
Viewed by 444
Abstract
The outdoor cultivation of true morels has been successfully commercialized in China in recent years. However, unstable yields make it a high-risk business. A lack of understanding of the morel life cycle has led to chaotic spawn production processes, further affecting cultivation. In [...] Read more.
The outdoor cultivation of true morels has been successfully commercialized in China in recent years. However, unstable yields make it a high-risk business. A lack of understanding of the morel life cycle has led to chaotic spawn production processes, further affecting cultivation. In this study, the life cycle of Morchella sextelata, the most widely cultivated species of true morels, was characterized. A disproportion in the two mating-type idiomorphs, MAT1-1 and MAT1-2, was observed in the mycelia during vegetative growth, successive subcultures, and different parts of the fruiting body. Homokaryotic hyphae were found to dominate the mycelia and fruiting body of M. sextelata through the separation and detection of protoplast-regenerated single strains. The findings suggest that two homokaryotic hyphae with different mating types fuse to form heterokaryotic hyphae just before ascospore production in the life cycle of M. sextelata. The observed disproportion of mating-type idiomorphs is a primary reason for strain degeneration during spawn production. This study offers new insights into the life cycle of M. sextelata, particularly the role of mating-type distribution, which may inform strategies for improving the artificial cultivation of true morels. Full article
(This article belongs to the Special Issue Edible Mushrooms: Genetics, Genomics, and Breeding)
Show Figures

Figure 1

19 pages, 1959 KiB  
Article
A Protoplast System for CRISPR-Cas Ribonucleoprotein Delivery in Pinus taeda and Abies fraseri
by Barbara M. Marques, Daniel B. Sulis, Bethany Suarez, Chenmin Yang, Carlos Cofre-Vega, Robert D. Thomas, Justin G. A. Whitehill, Ross W. Whetten, Rodolphe Barrangou and Jack P. Wang
Plants 2025, 14(7), 996; https://doi.org/10.3390/plants14070996 - 22 Mar 2025
Viewed by 1198
Abstract
Climate change profoundly impacts the health, productivity, and resilience of forest ecosystems and threatens the sustainability of forest products and wood-based industries. Innovations to enhance tree growth, development, and adaptation offer unprecedented opportunities to strengthen ecosystem resilience and mitigate the effects of climate [...] Read more.
Climate change profoundly impacts the health, productivity, and resilience of forest ecosystems and threatens the sustainability of forest products and wood-based industries. Innovations to enhance tree growth, development, and adaptation offer unprecedented opportunities to strengthen ecosystem resilience and mitigate the effects of climate change. Here, we established a method for protoplast isolation, purification, and CRISPR-Cas ribonucleoprotein (RNP) delivery in Pinus taeda and Abies fraseri as a step towards accelerating the genetic improvement of these coniferous tree species. In this system, purified protoplasts could be isolated from somatic embryos with up to 2 × 106 protoplasts/g of tissue and transfected with proteins and nucleotides, achieving delivery efficiencies up to 13.5%. The delivery of functional RNPs targeting phenylalanine ammonia lyase in P. taeda and phytoene desaturase in A. fraseri yielded gene editing efficiencies that reached 2.1% and 0.3%, respectively. This demonstration of RNP delivery for DNA-free genome editing in the protoplasts of P. taeda and A. fraseri illustrates the potential of CRISPR-Cas to enhance the traits of value in ecologically and economically important tree species. The editing system provides a foundation for future efforts to regenerate genome-edited forest trees to improve ecosystem health and natural resource sustainability. Full article
Show Figures

Figure 1

14 pages, 3272 KiB  
Article
Optimization of Protoplast Preparation and Establishment of PEG-Mediated Genetic Transformation Method in Cordyceps cicadae
by Haikun Qi, Haihua Ruan, Tao Wu, Hongyang Zhang, Rui Dong and Yanjun Jiang
J. Fungi 2025, 11(3), 219; https://doi.org/10.3390/jof11030219 - 13 Mar 2025
Viewed by 1291
Abstract
Cordyceps cicadae (C. cicadae) is an important edible medicinal fungus; however, owing to its wild growth and lack of genome annotation, construction of a stable genetic transformation system in C. cicadae is greatly limited, impeding the extensive exploitation of C. cicadae [...] Read more.
Cordyceps cicadae (C. cicadae) is an important edible medicinal fungus; however, owing to its wild growth and lack of genome annotation, construction of a stable genetic transformation system in C. cicadae is greatly limited, impeding the extensive exploitation of C. cicadae in industry. Here, we successfully established an efficient plasmid transformation method within protoplasts of C. cicadae by PEG mediation using pCas9-EGFP as a marker plasmid. In order to overcome low transformation efficiency and acquire sufficient protoplasts for transformation, the influence of enzyme species, enzymatic hydrolysis time, enzymatic hydrolysis temperature, and fungal age on protoplast preparation were analyzed sequentially, and the optimal conditions for protoplast preparation were determined as follows: 2-day-old C. cicadae mycelia with 1.5% lywallzyme hydrolysis at 34 °C for 5 h. Our results indicate that no less than 5.1 × 107 CFU/mL protoplasts could be acquired. Additionally, five osmotic pressure stabilizers including potassium chloride (KCl), sodium chloride (NaCl), glucose, mannitol, and sucrose were employed to enhance the regeneration of protoplasts, among which sucrose exhibited the highest regeneration rate of 10.43%. The transformation efficiency of plasmid was 37.3 CFU/µg DNA. On this basis, a genetic transformation method was successfully constructed, laying the foundation for further gene editing and metabolic engineering of C. cicadae. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

19 pages, 8331 KiB  
Article
Genome-Wide Characterization of Soybean 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes Demonstrates the Importance of GmACS15 in the Salt Stress Responses
by Peng Cheng, Yi-Cheng Yu, Si-Hui Wang, Jun Yang, Run-Nan Zhou, Xin-Ling Zhang, Chun-Yan Liu, Zhan-Guo Zhang, Ming-Liang Yang, Qing-Shan Chen, Xiao-Xia Wu and Ying Zhao
Int. J. Mol. Sci. 2025, 26(6), 2526; https://doi.org/10.3390/ijms26062526 - 12 Mar 2025
Viewed by 728
Abstract
ACS (1-aminocyclopropane-1-carboxylic acid synthase) is a member of the aminotransferase superfamily and a pyridoxal phosphate-dependent enzyme. ACS is also a rate-limiting enzyme for the biosynthesis of ethylene and has been linked with plant development, growth, and stress responses. However, information on ACS genes [...] Read more.
ACS (1-aminocyclopropane-1-carboxylic acid synthase) is a member of the aminotransferase superfamily and a pyridoxal phosphate-dependent enzyme. ACS is also a rate-limiting enzyme for the biosynthesis of ethylene and has been linked with plant development, growth, and stress responses. However, information on ACS genes in the soybean genome is limited. In this study, we identified ACS genes in soybean through phylogenetic trees and conserved motifs and analyzed their cis-acting elements, subcellular localization, and expression patterns. Twenty-two members of the ACS family were identified in soybean, and they were divided into four subfamilies based on phylogenetic relationships. Moreover, the results of Arabidopsis mesophyll protoplasts showed that GmACS1, GmACS8, and GmACS15 were all localized in the nucleus and cell membrane. Cis-regulatory elements and qRT-PCR analyses indicated markedly increased levels of GmACS transcripts under hormone treatments and abiotic stress conditions (drought, alkalinity, and salt). In addition, under different abiotic stresses, the potential functional variations across the GmACS isoforms were mirrored in their differential expression. The analysis of transcriptional response to salinity indicated that salt stress might primarily be mediated by the GmACS15 gene. GmACS15 was also found to reduce salt-induced oxidative damage by modulating the ROS-scavenging system, cellular redox homeostasis, and maintaining intracellular Na+/K+ balance. The results of this investigation revealed the involvement of the ACS gene family in soybean stress-response pathways, including the identification of a potential target for enhancing salt tolerance in soybean. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop