Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,158)

Search Parameters:
Keywords = promotion path

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 311 KiB  
Article
Entrepreneurial Profiles, Sustainability, and Key Determinants of Business Trajectories in a Regional Context: Evidence from a NUTS 2 Region in an EU Country
by Ionela Gavrilă-Paven, Ruxandra Lazea, Anca Nichita, Ramona Giurea and Elena Cristina Rada
Sustainability 2025, 17(15), 7033; https://doi.org/10.3390/su17157033 (registering DOI) - 2 Aug 2025
Abstract
Understanding the entrepreneurial profile is essential for developing effective regional policies that promote business growth. The path of an entrepreneur is shaped not only by individual decisions but also by the inherent risks of managing a business. This study aims to identify the [...] Read more.
Understanding the entrepreneurial profile is essential for developing effective regional policies that promote business growth. The path of an entrepreneur is shaped not only by individual decisions but also by the inherent risks of managing a business. This study aims to identify the characteristics of entrepreneurs at the regional level, specifically highlighting the impact of accumulated experience in their fields. Our central hypothesis asserts that entrepreneurial experience significantly influences how business owners perceive and respond to economic challenges. Utilizing survey data from 120 entrepreneurs in Romania’s Center Region (a NUTS 2 area), we reveal that entrepreneurial experience profoundly affects perceptions of key business challenges, such as legislative instability, taxation predictability, governmental support strategies, and access to SME financing. Importantly, our findings demonstrate that entrepreneurs with less than 10 years of experience express greater concerns about these challenges compared to their more seasoned peers. This novel insight highlights the need for tailored policy interventions aimed at enhancing regional economic resilience and fostering entrepreneurial sustainability. By addressing the specific needs of less experienced entrepreneurs, our study contributes to a deeper understanding of how experience shapes business dynamics in the region. Full article
21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 (registering DOI) - 2 Aug 2025
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

19 pages, 2359 KiB  
Article
Research on Concrete Crack Damage Assessment Method Based on Pseudo-Label Semi-Supervised Learning
by Ming Xie, Zhangdong Wang and Li’e Yin
Buildings 2025, 15(15), 2726; https://doi.org/10.3390/buildings15152726 (registering DOI) - 1 Aug 2025
Abstract
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to [...] Read more.
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to solve two core tasks: one is binary classification of pixel-level cracks, and the other is multi-category assessment of damage state based on crack morphology. Using three-channel RGB images as input, a dual-path collaborative training framework based on U-Net encoder–decoder architecture is constructed, and a binary segmentation mask of the same size is output to achieve the accurate segmentation of cracks at the pixel level. By constructing a dual-path collaborative training framework and employing a dynamic pseudo-label refinement mechanism, the model achieves an F1-score of 0.883 using only 50% labeled data—a mere 1.3% decrease compared to the fully supervised benchmark DeepCrack (F1 = 0.896)—while reducing manual annotation costs by over 60%. Furthermore, a quantitative correlation model between crack fractal characteristics and structural damage severity is established by combining a U-Net segmentation network with the differential box-counting algorithm. The experimental results demonstrate that under a cyclic loading of 147.6–221.4 kN, the fractal dimension monotonically increases from 1.073 (moderate damage) to 1.189 (failure), with 100% accuracy in damage state identification, closely aligning with the degradation trend of macroscopic mechanical properties. In complex crack scenarios, the model attains a recall rate (Re = 0.882), surpassing U-Net by 13.9%, with significantly enhanced edge reconstruction precision. Compared with the mainstream models, this method effectively alleviates the problem of data annotation dependence through a semi-supervised strategy while maintaining high accuracy. It provides an efficient structural health monitoring solution for engineering practice, which is of great value to promote the application of intelligent detection technology in infrastructure operation and maintenance. Full article
Show Figures

Figure 1

22 pages, 1929 KiB  
Article
Investigating Provincial Coupling Coordination Between Digital Infrastructure and Green Development in China
by Beibei Zhang, Zhenni Zhou, Juan Zheng, Zezhou Wu and Yan Liu
Buildings 2025, 15(15), 2724; https://doi.org/10.3390/buildings15152724 (registering DOI) - 1 Aug 2025
Abstract
Digital technologies could facilitate green development by enhancing energy efficiency. However, existing research on coupling coordination between digital infrastructure and green development remains scarce. To fill this research gap, this study analyzes the spatio-temporal variations and barriers of coupling coordination. An evaluation index [...] Read more.
Digital technologies could facilitate green development by enhancing energy efficiency. However, existing research on coupling coordination between digital infrastructure and green development remains scarce. To fill this research gap, this study analyzes the spatio-temporal variations and barriers of coupling coordination. An evaluation index system is established and then the coupling relationship and the barrier factors between digital infrastructure and green development are analyzed. A provincial analysis is conducted by using data from China. The results in the study indicate (1) coupling coordination between digital infrastructure and green development exhibits a relatively low state, characterized by an overall upward trend; (2) noteworthy disparities are observed in the spatio-temporal pattern of the coupling coordination degree, reflecting the overall evolutionary trend from low to high coupling coordination, along with the characteristics of positive spatial correlation and high spatial concentration; and (3) obstacle factors are analyzed from the aspects of digital infrastructure and green development, emphasizing the construction of mobile phone base stations and investment in pollution control, among other aspects. This study contributes valuable insights for improvement paths for digital infrastructure and green development, offering recommendations for optimizing strategies to promote their coupled development. Full article
(This article belongs to the Special Issue Promoting Green, Sustainable, and Resilient Urban Construction)
Show Figures

Figure 1

19 pages, 6409 KiB  
Article
Recycling Quarry Dust as a Supplementary Cementitious Material for Cemented Paste Backfill
by Yingying Zhang, Kaifeng Wang, Zhengkun Shi and Shiyu Zhang
Minerals 2025, 15(8), 817; https://doi.org/10.3390/min15080817 (registering DOI) - 1 Aug 2025
Viewed by 158
Abstract
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration [...] Read more.
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration process and workability of CPB containing QD/MQD. The experimental results show that quartz, clinochlore and amphibole components react with CaO to form reactive dicalcium silicate (C2S) and amorphous glass phases, promoting pozzolanic reactivity in MQD. QD promotes early aluminocarbonate (Mc) formation through CaCO3-derived CO32− release but shifts to hemicarboaluminate (Hc) dominance at 28 d. MQD releases active Al3+/Si4+ due to calcination and deconstruction, significantly increasing the amount of ettringite (AFt) in the later stage. With the synergistic effect of coarse–fine particle gradation, MQD-type fresh backfill can achieve a 161 mm flow spread at 20% replacement. Even if this replacement rate reaches 50%, a strength of 19.87 MPa can still be maintained for 28 days. The good workability and low carbon footprint of MQD-type backfill provide theoretical support for—and technical paths toward—QD recycling and the development of low-carbon building materials. Full article
Show Figures

Figure 1

50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 (registering DOI) - 31 Jul 2025
Viewed by 103
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

26 pages, 2059 KiB  
Article
Integration and Development Path of Smart Grid Technology: Technology-Driven, Policy Framework and Application Challenges
by Tao Wei, Haixia Li and Junfeng Miao
Processes 2025, 13(8), 2428; https://doi.org/10.3390/pr13082428 - 31 Jul 2025
Viewed by 270
Abstract
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development [...] Read more.
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development mode, and typical application scenarios of the smart grid, revealing the multi-dimensional challenges that it faces. By using the methods of literature review, cross-national case comparison, and technology–policy collaborative analysis, the differentiated paths of China, the United States, and Europe in the development of smart grids are compared, aiming to promote the integration and development of smart grid technologies. From a technical perspective, this paper proposes a collaborative framework comprising the perception layer, network layer, and decision-making layer. Additionally, it analyzes the integration pathways of critical technologies, including sensors, communication protocols, and artificial intelligence. At the policy level, by comparing the differentiated characteristics in policy orientation and market mechanisms among China, the United States, and Europe, the complementarity between government-led and market-driven approaches is pointed out. At the application level, this study validates the practical value of smart grids in optimizing energy management, enhancing power supply reliability, and promoting renewable energy consumption through case analyses in urban smart energy systems, rural electrification, and industrial sectors. Further research indicates that insufficient technical standardization, data security risks, and the lack of policy coordination are the core bottlenecks restricting the large-scale development of smart grids. This paper proposes that a new type of intelligent and resilient power system needs to be constructed through technological innovation, policy coordination, and international cooperation, providing theoretical references and practical paths for energy transition. Full article
Show Figures

Figure 1

27 pages, 1637 KiB  
Article
Collaborative Industrial Agglomeration and a Green Low-Carbon Circular Development Economy: A Study Based on Provincial Panel Data in China
by Mengqi Gong, Gege He, Yizi Wang, Yiyue Yang and Xinru Li
Sustainability 2025, 17(15), 6950; https://doi.org/10.3390/su17156950 (registering DOI) - 31 Jul 2025
Viewed by 248
Abstract
As an important direction in industrial evolution, the synergistic agglomeration of manufacturing and productive service industries has become a key path to promote the green transformation of the economy. Based on China’s provincial panel data, this study utilizes a variety of econometric methods [...] Read more.
As an important direction in industrial evolution, the synergistic agglomeration of manufacturing and productive service industries has become a key path to promote the green transformation of the economy. Based on China’s provincial panel data, this study utilizes a variety of econometric methods to explore in depth the mechanisms, spatial effects and regional differences in the impact of the synergistic agglomeration of manufacturing and productive service industries on the green, low-carbon and recycling development of the economy. The empirical results show that the synergistic agglomeration of manufacturing and productive services not only directly promotes the green, low-carbon and recycling development of the economy, but also generates an indirect impact through the intermediary channel and exhibits significant spillover characteristics in the spatial dimension. This conclusion holds firm after a series of robustness tests. In addition, environmental regulations and the level of regional industrialization play a moderating role on the impact of industrial synergistic agglomeration and green, low-carbon and recycling development of the economy, and the effect of the role varies across regions and levels of economic development. This paper provides a decision-making reference for further optimizing the regional layout of China’s industries and enhancing the green, low-carbon and recycling development of the economy in each province. Full article
Show Figures

Figure 1

11 pages, 2733 KiB  
Article
Laser Texturing of Tungsten Carbide (WC-Co): Effects on Adhesion and Stress Relief in CVD Diamond Films
by Argemiro Pentian Junior, José Vieira da Silva Neto, Javier Sierra Gómez, Evaldo José Corat and Vladimir Jesus Trava-Airoldi
Surfaces 2025, 8(3), 54; https://doi.org/10.3390/surfaces8030054 - 30 Jul 2025
Viewed by 170
Abstract
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by [...] Read more.
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by chemical treatment (Murakami’s solution + aqua regia) to remove surface cobalt. Diamond films were grown via HFCVD and characterized by Raman spectroscopy, EDS, and Rockwell indentation. The results demonstrate that pyramidal texturing increased the surface area by a factor of 58, promoting effective mechanical interlocking and reducing compressive stresses to −1.4 GPa. Indentation tests revealed suppression of interfacial cracks, with propagation paths deflected toward textured regions. The pyramidal geometry exhibited superior cutting post-deposition cooling time for stress relief from 3 to 1 h. These findings highlight the potential of laser texturing for high-performance machining tool applications. Full article
Show Figures

Figure 1

16 pages, 543 KiB  
Article
Understanding the Impact of Social, Hedonic, and Promotional Cues on Purchase Intention in Short Video Platforms: A Dual-Path Model for Digital Sustainability
by Aonan Cao, Yannan Li and Ahreum Hong
Sustainability 2025, 17(15), 6894; https://doi.org/10.3390/su17156894 - 29 Jul 2025
Viewed by 335
Abstract
In the context of eco-friendly e-commerce, understanding the psychological and experiential mechanisms that drive consumers’ online purchasing behavior is essential for promoting sustainable platform development. This study aims to fill a critical gap in the literature by examining how social interaction, entertainment, and [...] Read more.
In the context of eco-friendly e-commerce, understanding the psychological and experiential mechanisms that drive consumers’ online purchasing behavior is essential for promoting sustainable platform development. This study aims to fill a critical gap in the literature by examining how social interaction, entertainment, and sales promotion influence consumers’ purchase intentions through the mediating roles of perceived value and immersive flow experience. Grounded in the Stimulus–Organism–Response (S-O-R) theoretical framework, we developed a structural model and conducted an empirical analysis using survey data collected from 438 online shoppers. Data analysis was conducted using SPSS and AMOS through SEM. The results show that social interaction and sales promotion significantly enhance both perceived value and flow experience, which in turn positively influence consumers’ purchase intentions. However, entertainment exhibits a negative and significant effect on perceived value and does not significantly affect flow experience, indicating that hedonic content may not always translate into perceived usefulness or deep engagement. Moreover, the influence of social interaction on flow experience was also found to be negative and significant, suggesting that not all forms of interaction necessarily lead to immersive experiences. These findings highlight the complex psychological dynamics in digital consumption. This study contributes original insights by integrating psychological engagement mechanisms with the goal of digital sustainability, offering practical implications for online retailers aiming to enhance user engagement and platform longevity through experience-driven strategies. Full article
Show Figures

Figure 1

18 pages, 3778 KiB  
Article
Total Internal Reflection End-Pumped Solar Laser with the Solar-to-Laser Conversion Efficiency of 6.09%
by Lin Wang, Haiyang Zhang, Dário Garcia, Weichen Xu, Changming Zhao and Anran Guo
Energies 2025, 18(15), 4033; https://doi.org/10.3390/en18154033 - 29 Jul 2025
Viewed by 152
Abstract
A novel total internal reflection solar end-pumped laser system has been introduced for the first time, aimed at enhancing the solar-to-laser conversion efficiency. Utilizing a conical solid or cavity reflector, this system refocuses sunlight from a 0.2818 m2 parabolic mirror into a [...] Read more.
A novel total internal reflection solar end-pumped laser system has been introduced for the first time, aimed at enhancing the solar-to-laser conversion efficiency. Utilizing a conical solid or cavity reflector, this system refocuses sunlight from a 0.2818 m2 parabolic mirror into a single Ce (0.05 at.%): Nd (1 at.%): YAG crystal rod, measuring 4 mm in diameter and 10 mm in length, thereby promoting total internal reflection and extending the pumping path. Simulation results indicate that under the same solar input power conditions (249.05 W), the conversion efficiencies of the conical solid reflector and cavity reflector systems are 1.2 times and 1.33 times higher than the current highest recorded efficiency of single-rod systems, respectively. At 950 W/m2, the conical reflector reaches 5.48% efficiency, while the cavity reflector attains 6.09%. Their collection efficiencies are 52.03 W/m2 and 57.90 W/m2, with slope efficiencies of 6.65% and 7.72%. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

27 pages, 4327 KiB  
Article
The Art Nouveau Path: Promoting Sustainability Competences Through a Mobile Augmented Reality Game
by João Ferreira-Santos and Lúcia Pombo
Multimodal Technol. Interact. 2025, 9(8), 77; https://doi.org/10.3390/mti9080077 - 29 Jul 2025
Viewed by 285
Abstract
This paper presents a qualitative case study on the design, implementation, and validation of the Art Nouveau Path, a mobile augmented reality game developed to foster sustainability competences through engagement with Aveiro’s Art Nouveau built heritage. Grounded in the GreenComp framework and [...] Read more.
This paper presents a qualitative case study on the design, implementation, and validation of the Art Nouveau Path, a mobile augmented reality game developed to foster sustainability competences through engagement with Aveiro’s Art Nouveau built heritage. Grounded in the GreenComp framework and developed through a Design-Based Research approach, the game integrates location-based interaction, narrative storytelling, and multimodal augmented reality and multimedia content to activate key competences such as systems thinking, futures literacy, and sustainability-oriented action. The game was validated with 33 in-service schoolteachers, both through a simulation-based training workshop and a curricular review of the game. A mixed-methods strategy was used, combining structured questionnaires, open-ended reflections, and curricular review. The findings revealed strong emotional and motivational engagement, interdisciplinary relevance, and alignment with formal education goals. Teachers emphasized the game’s capacity to connect local identity with global sustainability challenges through immersive and reflective experiences. Limitations pointed to the need for enhanced pedagogical scaffolding, clearer integration into STEAM subjects, and broader accessibility across technological contexts. This study demonstrates that these games, when grounded in competence-based frameworks and inclusive design, can meaningfully support multimodal, situated learning for sustainability and offer valuable contributions to pedagogical innovation in Education for Sustainable Development. Full article
Show Figures

Figure 1

23 pages, 1075 KiB  
Article
How Does Social Capital Promote Willingness to Pay for Green Energy? A Social Cognitive Perspective
by Lingchao Huang and Wei Li
Sustainability 2025, 17(15), 6849; https://doi.org/10.3390/su17156849 - 28 Jul 2025
Viewed by 193
Abstract
Individual willingness to pay (WTP) for green energy plays a vital role in mitigating climate change. Based on social cognitive theory (SCT), which emphasizes the dynamic interaction among individual cognition, behavior and the environment, this study develops a theoretical model to identify factors [...] Read more.
Individual willingness to pay (WTP) for green energy plays a vital role in mitigating climate change. Based on social cognitive theory (SCT), which emphasizes the dynamic interaction among individual cognition, behavior and the environment, this study develops a theoretical model to identify factors influencing green energy WTP. The study is based on 585 valid questionnaire responses from urban areas in China and uses Structural Equation Modeling (SEM) to reveal the linear causal path. Meanwhile, fuzzy-set Qualitative Comparative Analysis (fsQCA) is utilized to identify the combined paths of multiple conditions leading to a high WTP, making up for the limitations of SEM in explaining complex mechanisms. The SEM analysis shows that social trust, social networks, and social norms have a significant positive impact on individual green energy WTP. And this influence is further transmitted through the mediating role of environmental self-efficacy and expectations of environmental outcomes. The FsQCA results identified three combined paths of social capital and environmental cognitive conditions, including the Network–Norm path, the Network–efficacy path and the Network–Outcome path, all of which can achieve a high level of green energy WTP. Among them, the social networks are a core condition in every path and a key element for enhancing the high green energy WTP. This study promotes the expansion of SCT, from emphasizing the linear role of individual cognition to focusing on the configuration interaction between social structure and psychological cognition, provides empirical evidence for formulating differentiated social intervention strategies and environmental education policies, and contributes to sustainable development and the green energy transition. Full article
Show Figures

Figure 1

19 pages, 424 KiB  
Article
“Words Falter in Encapsulating the Dao 言語道斷”: The Philosophy of Language of Zen Buddhism in The Platform Sutra of the Sixth Patriarch
by Xiangqian Che
Religions 2025, 16(8), 974; https://doi.org/10.3390/rel16080974 - 27 Jul 2025
Viewed by 283
Abstract
This paper examines the philosophy of language in The Platform Sutra of the Sixth Patriarch (六祖壇經), demonstrating its centrality to Zen Buddhism and Buddhist sinicization. The sutra emphasizes the ineffability of ultimate truth (至道無言) and the principle that words falter in encapsulating the [...] Read more.
This paper examines the philosophy of language in The Platform Sutra of the Sixth Patriarch (六祖壇經), demonstrating its centrality to Zen Buddhism and Buddhist sinicization. The sutra emphasizes the ineffability of ultimate truth (至道無言) and the principle that words falter in encapsulating the Dao (言語道斷), framing language as a provisional “raft” (筏) that must be instrumentalized yet transcended through a dialectic of employing and abandoning (用離辯證). It ontologically grounds this view in Buddha-nature’s (佛性) pre-linguistic essence, advocating transcending reliance on words and letters (不假文字) while strategically deploying language to dismantle its own authority. Historically, this constituted a revolt against Tang scholasticism’s textual fetishism. The text adopts a dynamic dialectic, neither clinging to nor rejecting language, exemplified by Huineng’s awakening through the Diamond Sutra, where recitation catalyzes internal insight. Operationally, it utilizes negational discourse, the “Two Paths Mutually Condition” method (二道相因) embedded in the “Twelve Pairs of Dharmic Forms” (法相語言十二對) in particular, to systematically deconstruct dualisms, while promoting embodied unity of speech, mind, and action (口念心行) to critique empty recitation. Ultimately, the sutra orchestrates language as a self-subverting medium: balancing acknowledgment of its limitations with pragmatic instrumentality, it presents an Eastern paradigm where language actively disrupts conceptual fetters to facilitate direct insight into Buddha-nature, reframing it as a dynamic catalyst for “illuminating the mind and seeing one’s nature” (明心見性). Full article
26 pages, 3167 KiB  
Article
Global Population, Carrying Capacity, and High-Quality, High-Pressure Processed Foods in the Industrial Revolution Era
by Agata Angelika Sojecka, Aleksandra Drozd-Rzoska and Sylwester J. Rzoska
Sustainability 2025, 17(15), 6827; https://doi.org/10.3390/su17156827 - 27 Jul 2025
Viewed by 216
Abstract
The report examines food availability and demand in the Anthropocene era, exploring the connections between global population growth and carrying capacity through an extended version of Cohen’s Condorcet concept. It recalls the super-Malthus and Verhulst-type scalings, matched with the recently introduced analytic relative [...] Read more.
The report examines food availability and demand in the Anthropocene era, exploring the connections between global population growth and carrying capacity through an extended version of Cohen’s Condorcet concept. It recalls the super-Malthus and Verhulst-type scalings, matched with the recently introduced analytic relative growth rate. It focuses particularly on the ongoing Fifth Industrial Revolution (IR) and its interaction with the concept of a sustainable civilization. In this context, the significance of innovative food preservation technologies that can yield high-quality foods with health-promoting features, while simultaneously increasing food quantities and reducing adverse environmental impacts, is discussed. To achieve this, high-pressure preservation and processing (HPP) can play a dominant role. High-pressure ‘cold pasteurization’, related to room-temperature processing, has already achieved a global scale. Its superior features are notable and are fairly correlated with social expectations of a sustainable society and the technological tasks of the Fifth Industrial Revolution. The discussion is based on the authors’ experiences in HPP-related research and applications. The next breakthrough could be HPP-related sterilization. The innovative HPP path, supported by the colossal barocaloric effect, is presented. The mass implementation of pressure-related sterilization could lead to milestone societal, pro-health, environmental, and economic benefits. Full article
Show Figures

Figure 1

Back to TopTop