Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = projected mortar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1630 KiB  
Article
Research on the Initial Launching Technology of Subway Shield Tunneling in Complex Terrain and Numerical Simulation of Soil Deformation
by Jiangka Wang, Hui Li, Xujie Li, Xingzhong Nong, Chen Liu and Tao Yang
Buildings 2025, 15(13), 2222; https://doi.org/10.3390/buildings15132222 - 25 Jun 2025
Viewed by 400
Abstract
Using the shield project of the Cai Cang Section tunnel of the Guangzhou Metro Line 13 to solve the problem that shield construction is difficult to start in a narrow space and it is easy to disturb the surrounding buildings and pipelines, the [...] Read more.
Using the shield project of the Cai Cang Section tunnel of the Guangzhou Metro Line 13 to solve the problem that shield construction is difficult to start in a narrow space and it is easy to disturb the surrounding buildings and pipelines, the corresponding shield tunneling parameters, construction and transportation plans, residual soil management plans, and grouting reinforcement plans are designed. These are tailored according to different working conditions. Meanwhile, the MIDAS GTS 2022 numerical simulation software is applied to simulate and analyze the impact of shield tunneling construction on soil deformation, and to compare the effects before and after reinforcement of the soil layer during shield tunneling. The results show the amount of disturbance of building pipelines along the tunnel are effectively controlled by designing the corresponding shield tunneling parameters for three working conditions: contact reinforcement zone, entering reinforcement zone, and exiting reinforcement zone. In narrow spaces, three kinds of construction transportation modes (namely, horizontal transportation in the tunnel, translation transportation in the cross passage, and vertical transportation) ensure the smooth transportation of pipe segments and the smooth discharge of shield dregs. After the reinforced area is constructed, secondary grouting with cement mortar effectively reduces the erosion concrete segments by underground water. By comparing the deformation of the tunnel soil layer before and after reinforcement, it is found that the maximum surface deformation of the soil layer is significantly reduced after reinforcement. Specifically, the maximum settlement and maximum uplift are 0.782 mm and 1.87 mm respectively, which represent a reduction of 1.548 mm in the maximum surface settlement, and 0.16 mm in the maximum uplift compared with the unreinforced soil layer. This indicates that setting up a soil reinforcement zone during the initial launching stage can effectively reduce soil deformation. The Cai Cang Section tunnel shield project successfully completed the shield construction in a narrow space, which can be a reference and guide for similar projects. Full article
Show Figures

Figure 1

29 pages, 278 KiB  
Communication
Post-Pandemic Realities: How Will Churches Staff for Ministry in the Future?
by Deborah L. Coe and Hale Inanoglu
Religions 2025, 16(6), 782; https://doi.org/10.3390/rel16060782 - 16 Jun 2025
Viewed by 341
Abstract
The Religious Workforce Project is a Lilly Endowment-funded effort to map the nation’s changing Christian religious landscape. A quantitative component identifies broad US trends, while our qualitative work focuses on Christian congregations in the Washington, DC metro area and surrounding counties, to understand [...] Read more.
The Religious Workforce Project is a Lilly Endowment-funded effort to map the nation’s changing Christian religious landscape. A quantitative component identifies broad US trends, while our qualitative work focuses on Christian congregations in the Washington, DC metro area and surrounding counties, to understand how congregations staff to fulfill their missions, and to learn how congregational leaders understand the nature of their ministry today. In 2019–2022, we conducted case studies in 40 congregations in a variety of Christian traditions and contexts. For our analysis, we used a framework based on three societal trends that have impacted congregations: long-term member loss in churches, a skewed distribution in church attendance in which most people attend large churches while most churches are small, and a pandemic-induced movement from brick-and-mortar spaces to online spaces. This analysis revealed the consequential impacts of these three trends on congregations and their leaders, and some of the essential skills needed for effective church operation during this “wilderness moment,” a liminal time in the life of the church. We see these impacts not only as responses to external pressures but also as signs of internal reimagining. Understanding these dynamics is crucial for developing effective strategies for church staffing and for preparing future congregational leaders that can adapt to the future needs of ministry. Full article
(This article belongs to the Special Issue Emerging Trends in Congregational Engagement and Leadership)
29 pages, 5998 KiB  
Article
Stability of Slope and Concrete Structure Under Cyclic Load Coupling and Its Application in Ecological Risk Prevention and Control
by Shicong Ren, Jun Wang, Nian Chen and Tingyao Wu
Sustainability 2025, 17(10), 4260; https://doi.org/10.3390/su17104260 - 8 May 2025
Viewed by 490
Abstract
This paper focuses on the stability issues of geological and engineering structures and conducts research from two perspectives: the mechanism of slope landslides under micro-seismic action and the cyclic failure behavior of concrete materials. In terms of slope stability, through the combination of [...] Read more.
This paper focuses on the stability issues of geological and engineering structures and conducts research from two perspectives: the mechanism of slope landslides under micro-seismic action and the cyclic failure behavior of concrete materials. In terms of slope stability, through the combination of model tests and theories, the cumulative effect of circulating micro-seismic waves on the internal damage of slopes was revealed. This research finds that the coupling of micro-vibration stress and static stress significantly intensifies the stress concentration on the slope, promotes the development of potential sliding surfaces and the extension of joints, and provides a scientific basis for the prediction of landslide disasters. This helps protect mountain ecosystems and reduce soil erosion and vegetation destruction. The number of cyclic loads has a power function attenuation relationship with the compressive strength of concrete. After 1200 cycles, the strength drops to 20.5 MPa (loss rate 48.8%), and the number of cracks increases from 2.7 per mm3 to 34.7 per mm3 (an increase of 11.8 times). Damage evolution is divided into three stages: linear growth, accelerated expansion, and critical failure. The influence of load amplitude on the number of cracks shows a threshold effect. A high amplitude (>0.5 g) significantly stimulates the propagation of intergranular cracks in the mortar matrix, and the proportion of intergranular cracks increases from 12% to 65%. Grey correlation analysis shows that the number of cycles dominates the strength attenuation (correlation degree 0.87), and the load amplitude regulates the crack initiation efficiency more significantly (correlation degree 0.91). These research results can optimize the design of concrete structures, enhance the durability of the project, and indirectly reduce the resource consumption and environmental burden caused by structural damage. Both studies are supported by numerical simulation and experimental verification, providing theoretical support for disaster prevention and control and sustainable engineering practices and contributing to ecological environment risk management and the development of green building materials. Full article
Show Figures

Figure 1

20 pages, 5172 KiB  
Article
Interfacial Shear Behavior of Novel Connections Between Concrete Bridge Piers and Anti-Overturning Steel Supporting Joists
by Gongyong Mei, Chengan Zhou, Shengze Wu, Lifeng Zhang, Jie Xiao, Peisen Li, Zhenkan Chen, Quan Shi, Jiaxin Hu and Haibo Jiang
Buildings 2025, 15(8), 1299; https://doi.org/10.3390/buildings15081299 - 15 Apr 2025
Viewed by 376
Abstract
Additional steel supporting joists (ASSJs) can effectively enhance the anti-overturning capacity of the existing solo-column concrete pier (SCP) bridges. Although the interface consists of bolt connections between steel and concrete is the crucial load-transmitting portion, the design of the interface between the ASSJ [...] Read more.
Additional steel supporting joists (ASSJs) can effectively enhance the anti-overturning capacity of the existing solo-column concrete pier (SCP) bridges. Although the interface consists of bolt connections between steel and concrete is the crucial load-transmitting portion, the design of the interface between the ASSJ and SCP still mainly relies on practical experiences. In an actual bridge rehabilitation project with ASSJs in China, a novel connection comprising large-diameter bolts and an epoxy resin layer was adopted to overcome the shortcomings of the initial design. In this study, connections composited with large-diameter bolts and different interfacial treatments were investigated. Four push-out tests on the interfacial shear performance of steel–concrete connections were carried out. The experimental parameters encompassed the interface treatment method (barely roughened surface, smearing epoxy resin, and filling epoxy mortar) and the number of bolts (single row and double rows). The failure modes were unveiled. According to the experimental results, the interfacial treatment method with filling epoxy mortar could uniformly transfer stress between concrete and steel and improve the shear stiffness and shear resistance of the steel–concrete connections. Compared with specimens with barely roughened interfaces, epoxy mortar and epoxy resin employed at the steel–concrete interface can increase the shear-bearing capacity of connections by approximately 47.71% and 43.46%, respectively. However, the interfacial treatment method with smearing epoxy resin resulted in excessive stiffness of the shear members and brittle failure mode. As the number of the bolts increased from a single row to a double row, the shear-bearing capacity of a single bolt in the specimen exhibited approximately an 8% reduction. In addition, by comparing several theoretical formulae with experimental results, the accurate formula for predicting the shear-bearing capacity of bolts was recommended. Furthermore, the load-bearing capacity of an ASSJ in the actual engineering rehabilitation was verified by the recommended formula GB50017-2017, which was found to accurately predict the shear-bearing capacity of large-diameter bolt connectors with an epoxy mortar layer. Full article
Show Figures

Figure 1

23 pages, 13614 KiB  
Article
Study on Fatigue Characteristics of Cement-Emulsified Asphalt Mortar Under Coupled Effects of Humidity and Freeze–Thaw
by Shanshan Jin, Pengfei Liu, Zhen Wang, Daxing Zhou, Xiang Li, Zengmiao Xu, Yang Zhang, Yuling Yan and Yaodong Zhao
Coatings 2025, 15(4), 369; https://doi.org/10.3390/coatings15040369 - 21 Mar 2025
Viewed by 355
Abstract
Cement-emulsified asphalt mortar (CA mortar) is an organic–inorganic composite material composed of cement, emulsified asphalt, fine sand, water, and various admixtures. It is mainly used as the cushion layer for high-speed railway ballastless tracks. CA mortar cushion layers in North China often have [...] Read more.
Cement-emulsified asphalt mortar (CA mortar) is an organic–inorganic composite material composed of cement, emulsified asphalt, fine sand, water, and various admixtures. It is mainly used as the cushion layer for high-speed railway ballastless tracks. CA mortar cushion layers in North China often have to withstand the coupling effects of humidity and freeze–thaw, which has a very important impact on the fatigue performance of CA mortar. Based on the big data statistical results, the temperature conditions and cycle times of the CA mortar layer Freeze–Thaw cycle in North China were determined. Also, a fatigue performance test under humidity–freeze–thaw coupling conditions was designed and carried out. The fitting curve equations of fatigue stress and fatigue life under different humidity conditions and freeze–thaw coupling were established. The relationship between fatigue performance parameters K and n and humidity conditions was analyzed. This study shows that with the increase in humidity, the fatigue life of CA mortar under different humidity conditions shows an overall downward trend. The fatigue performance and fatigue life stress level sensitivity of CA mortar decrease with increasing humidity. The proportion of water damage and freeze–thaw damage to total damage increases with increasing humidity, which means that the humidity and freeze–thaw have a more significant impact on the fatigue properties of CA mortar. When the humidity is low, the fatigue cracks of CA mortar are mostly generated across the cement paste, and the macroscopic damage presents as longitudinal cracking. When the humidity is high, the fatigue cracks of CA mortar are mostly generated at the interface between aggregate and paste, and the macroscopic damage presents as oblique cracking. Based on the analysis of the damage mechanism, it is suggested that the humidity of CA mortar should be controlled below 25% in the actual project to ensure its durability. Full article
Show Figures

Figure 1

26 pages, 11141 KiB  
Article
Study on Surface Roughness and True Fracture Energy of Recycled Aggregate Concrete Using Fringe Projection Technology
by Meiling Dai, Weiyi Hu, Chengge Hu, Xirui Wang, Jiyu Deng and Jincai Chen
Fractal Fract. 2025, 9(3), 159; https://doi.org/10.3390/fractalfract9030159 - 4 Mar 2025
Viewed by 750
Abstract
This paper investigates the fracture surfaces and fracture performance of recycled aggregate concrete (RAC) using fringe projection technology. This non-contact, point-by-point, and full-field scanning technique allows precise measurement of RAC’s fracture surface characteristics. This research focuses on the effects of recycled aggregate replacement [...] Read more.
This paper investigates the fracture surfaces and fracture performance of recycled aggregate concrete (RAC) using fringe projection technology. This non-contact, point-by-point, and full-field scanning technique allows precise measurement of RAC’s fracture surface characteristics. This research focuses on the effects of recycled aggregate replacement rate, water-to-binder (w/b) ratio, and maximum aggregate size on RAC’s fracture properties. A decrease in the w/b ratio significantly reduces surface roughness (Rs) and fractal dimension (D), due to increased cement mortar bond strength at lower w/b ratios, causing cracks to propagate through aggregates and resulting in smoother fracture surfaces. At higher w/b ratios (0.8 and 0.6), both surface roughness and fractal dimension decrease as the recycled aggregate replacement rate increases. At a w/b ratio of 0.4, these parameters are not significantly affected by the replacement rate, indicating stronger cement mortar. Larger aggregates result in slightly higher surface roughness compared to smaller aggregates, due to more pronounced interface changes. True fracture energy is consistently lower than nominal fracture energy, with the difference increasing with higher recycled aggregate replacement rates and larger aggregate sizes. It increases as the w/b ratio decreases. These findings provide a scientific basis for optimizing RAC mix design, enhancing its fracture performance and supporting its practical engineering applications. Full article
(This article belongs to the Special Issue Fracture Analysis of Materials Based on Fractal Nature)
Show Figures

Figure 1

26 pages, 8874 KiB  
Article
Radiocarbon Dating of Mortar Fragments from the Fresco of a Romanian Monastery: A Field Study
by Marioara Abrudeanu, Corina Anca Simion, Adriana Elena Valcea, Maria Valentina Ilie, Elena Alexandra Ispas, Maria Loredana Marin, Dragos Alexandru Mirea, Dan Cristian Olteanu, Cristian Manailescu, Alexandru Razvan Petre, Denis Aurelian Negrea, Sorin Georgian Moga, Izabela Maris, Dorin Grecu, Gheorghe Garbea, Flavio Nicolae Finta and Mircea Ionut Petrescu
Materials 2025, 18(5), 1149; https://doi.org/10.3390/ma18051149 - 4 Mar 2025
Viewed by 832
Abstract
The stone Ensemble from Corbii de Piatrǎ Romania arouses a continuous scientific interest, with the final goal being to obtain an exhaustive and multidisciplinary package of results that will become the support of an extensive restoration project. The cave painting stands out as [...] Read more.
The stone Ensemble from Corbii de Piatrǎ Romania arouses a continuous scientific interest, with the final goal being to obtain an exhaustive and multidisciplinary package of results that will become the support of an extensive restoration project. The cave painting stands out as the most important and most affected by the advanced degradation among the historical monuments in Romania. This article provides for the first time a radiocarbon dating of the first forms of painting by establishing the age of the mortar/plaster used as a pictorial support. Being a very complex context from the point of view of the type of datable material and the disappearance over time through degradation of other elements that would ensure a simpler and more reliable radiocarbon dating (such as the straws used to form the material), it was necessary to use a multidisciplinary approach for the selection of samples and for supporting the radiocarbon results. The set of analyses consisted of visualization techniques through microscopy and compositional analysis, providing information on the similarities/differences between the samples, the degradation mechanisms/impurities and the quality of the calcium carbonate dated by the Accelerator Mass Spectrometry (AMS) technique. The results supported each other, ensured the selection of reliable radiocarbon data and established the most probable moment of the early interventions, namely the two phases corresponding to the 14th century. Full article
(This article belongs to the Special Issue Materials in Cultural Heritage: Analysis, Testing, and Preservation)
Show Figures

Figure 1

17 pages, 5856 KiB  
Article
Methodology for the Study and Analysis of Concrete in a Heritage Façade: The Ateneu Sueco Del Socorro (Spain)
by Luis Cortés-Meseguer and Pablo Monzón Bello
Eng 2025, 6(2), 33; https://doi.org/10.3390/eng6020033 - 10 Feb 2025
Viewed by 961
Abstract
The Ateneo Sueco del Socorro, built in 1927 in Sueca, Spain, is a prime example of the 20th-century architectural transformation, using reinforced concrete. Designed by architect Juan Guardiola, it reflects the Art Deco style, incorporating ornamental elements from Eastern civilizations. The building’s structure [...] Read more.
The Ateneo Sueco del Socorro, built in 1927 in Sueca, Spain, is a prime example of the 20th-century architectural transformation, using reinforced concrete. Designed by architect Juan Guardiola, it reflects the Art Deco style, incorporating ornamental elements from Eastern civilizations. The building’s structure includes masonry walls, concrete columns, and vaulted ceilings. The building displayed a high level of damage due to the oxidation and corrosion of the reinforcements that compose the façade, which led to the definition of the most appropriate study and intervention methodology, applying contemporary tests for reinforced concrete. The original project’s structural design reflects the construction methods of its time, with sculptural elements using Fallas modeling techniques, resulting in various concrete and mortar types. After the façade presented a pathological condition in the early 21st century that made its restoration urgent, a study methodology was followed with current tests to accurately determine the lesions, their degree of damage, and compatible materials for restoration. Corrosion on the façade is mainly triggered by carbonation and the depassivation of reinforcements, exacerbated by environmental issues like moisture retention and oxygen permeability. Repairs should use compatible pre-mixed mortars, with surface inhibitors recommended to extend the lifespan of reinforcements. Full article
(This article belongs to the Special Issue Emerging Trends in Inorganic Composites for Structural Enhancement)
Show Figures

Figure 1

16 pages, 2132 KiB  
Article
Piping Material Selection in Water Distribution Network Using an Improved Decision Support System
by Xing Wei, Ming Wang, Qun Wei and Xiangmeng Ma
Water 2025, 17(3), 342; https://doi.org/10.3390/w17030342 - 25 Jan 2025
Cited by 1 | Viewed by 1472
Abstract
This study introduces an integrated Multi-Criteria Decision Making (MCDM) methodology combining the Analytic Hierarchy Process (AHP), Entropy Weight Method (EWM), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to optimize the selection of municipal water supply pipeline materials. A [...] Read more.
This study introduces an integrated Multi-Criteria Decision Making (MCDM) methodology combining the Analytic Hierarchy Process (AHP), Entropy Weight Method (EWM), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to optimize the selection of municipal water supply pipeline materials. A comprehensive evaluation system encompassing thirteen criteria across technical, economic, and safety dimensions was developed to ensure balanced decision-making. The method employs a weight determination model based on Jaynes’ maximum entropy theory to harmonize subjective AHP-derived weights with objective EWM-derived weights, addressing inconsistencies in traditional evaluation approaches. This framework was validated in a case study involving a DN400 pipeline project in Jiaxing, Zhejiang Province, China, where five materials—steel, ductile iron, reinforced concrete, High-Density Polyethylene (HDPE), and Unplasticized Polyvinyl Chloride (UPVC)—were assessed using quantitative and qualitative criteria. Results identified HDPE as the most suitable material, followed by UPVC and reinforced concrete, with steel ranking lowest. Comparative analysis with alternative MCDM techniques demonstrated the robustness of the proposed method in balancing diverse factors, dynamically adjusting to project-specific priorities. The study highlights the flexibility of this approach, which can extend to other infrastructure applications, such as drainage systems or the adoption of innovative materials like glass fiber-reinforced plastic (GFRP) mortar pipes. By integrating subjective and objective perspectives, the methodology offers a robust tool for designing sustainable, efficient, and cost-effective municipal water supply networks. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

21 pages, 4833 KiB  
Article
Remote Sensing and Assessment of Compound Groundwater Flooding Using an End-to-End Wireless Environmental Sensor Network and Data Model at a Coastal Cultural Heritage Site in Portsmouth, NH
by Michael R. Routhier, Benjamin R. Curran, Cynthia H. Carlson and Taylor A. Goddard
Sensors 2024, 24(20), 6591; https://doi.org/10.3390/s24206591 - 13 Oct 2024
Cited by 1 | Viewed by 1547
Abstract
The effects of climate change in the forms of rising sea levels and increased frequency of storms and storm surges are being noticed across many coastal communities around the United States. These increases are impacting the timing and frequency of tidal and rainfall [...] Read more.
The effects of climate change in the forms of rising sea levels and increased frequency of storms and storm surges are being noticed across many coastal communities around the United States. These increases are impacting the timing and frequency of tidal and rainfall influenced compound groundwater flooding events. These types of events can be exemplified by the recent and ongoing occurrence of groundwater flooding within building basements at the historic Strawbery Banke Museum (SBM) living history campus in Portsmouth, New Hampshire. Fresh water and saline groundwater intrusion within basements of historic structures can be destructive to foundations, mortar, joists, fasteners, and the overlaying wood structure. Although this is the case, there appears to be a dearth of research that examines the use of wireless streaming sensor networks to monitor and assess groundwater inundation within historic buildings in near-real time. Within the current study, we designed and deployed a three-sensor latitudinal network at the SBM. This network includes the deployment and remote monitoring of water level sensors in the basements of two historic structures 120 and 240 m from the river, as well as one sensor within the river itself. Groundwater salinity levels were also monitored within the basements of the two historic buildings. Assessments and model results from the recorded sensor data provided evidence of both terrestrial rainfall and tidal influences on the flooding at SBM. Understanding the sources of compound flooding within historic buildings can allow site managers to mitigate better and adapt to the effects of current and future flooding events. Data and results of this work are available via the project’s interactive webpage and through a public touchscreen kiosk interface developed for and deployed within the SBM Rowland Gallery’s “Water Has a Memory” exhibit. Full article
Show Figures

Figure 1

21 pages, 5948 KiB  
Article
Predicting the Compressive Strength of Sustainable Portland Cement–Fly Ash Mortar Using Explainable Boosting Machine Learning Techniques
by Hongwei Wang, Yuanbo Ding, Yu Kong, Daoyuan Sun, Ying Shi and Xin Cai
Materials 2024, 17(19), 4744; https://doi.org/10.3390/ma17194744 - 27 Sep 2024
Cited by 4 | Viewed by 1306
Abstract
Unconfined compressive strength (UCS) is a critical property for assessing the engineering performances of sustainable materials, such as cement–fly ash mortar (CFAM), in the design of construction engineering projects. The experimental determination of UCS is time-consuming and expensive. Therefore, the present study aims [...] Read more.
Unconfined compressive strength (UCS) is a critical property for assessing the engineering performances of sustainable materials, such as cement–fly ash mortar (CFAM), in the design of construction engineering projects. The experimental determination of UCS is time-consuming and expensive. Therefore, the present study aims to model the UCS of CFAM with boosting machine learning methods. First, an extensive database consisting of 395 experimental data points derived from the literature was developed. Then, three typical boosting machine learning models were employed to model the UCS based on the database, including gradient boosting regressor (GBR), light gradient boosting machine (LGBM), and Ada-Boost regressor (ABR). Additionally, the importance of different input parameters was quantitatively analyzed using the SHapley Additive exPlanations (SHAP) approach. Finally, the best boosting machine learning model’s prediction accuracy was compared to ten other commonly used machine learning models. The results indicate that the GBR model outperformed the LGBM and ABR models in predicting the UCS of the CFAM. The GBR model demonstrated significant accuracy, with no significant difference between the measured and predicted UCS values. The SHAP interpretations revealed that the curing time (T) was the most critical feature influencing the UCS values. At the same time, the chemical composition of the fly ash, particularly Al2O3, was more influential than the fly-ash dosage (FAD) or water-to-binder ratio (W/B) in determining the UCS values. Overall, this study demonstrates that SHAP boosting machine learning technology can be a useful tool for modeling and predicting UCS values of CFAM with good accuracy. It could also be helpful for CFAM design by saving time and costs on experimental tests. Full article
Show Figures

Figure 1

20 pages, 10763 KiB  
Article
Research on the Gap Effect of Circular Concrete-Filled Steel Tubes Using the Improved Cohesive Zone Model
by Jiang Yu, Bin Gong and Chenrui Cao
Appl. Sci. 2024, 14(18), 8361; https://doi.org/10.3390/app14188361 - 17 Sep 2024
Viewed by 1108
Abstract
Understanding the influence of gap distribution characteristics on the mechanical properties of circular concrete-filled steel tubes (CCFSTs) under bending load is important for stability and support design in engineering projects. In this study, the improved cohesive zone model considering friction was used to [...] Read more.
Understanding the influence of gap distribution characteristics on the mechanical properties of circular concrete-filled steel tubes (CCFSTs) under bending load is important for stability and support design in engineering projects. In this study, the improved cohesive zone model considering friction was used to describe the mechanical behavior of mortar interfaces. Meanwhile, the concrete damage plastic model and isotropic elastoplastic model were applied for core concrete and steel tubes. The improved cohesive zone model has a unified potential function that governs the Mode I and Mode II failure processes of mortar interfaces to realize the mechanical interaction between concrete and steel. A smooth frictional function was utilized in the elastic stage to calculate the accurate frictional effect. Furthermore, the capability of the model in addressing unloading and reloading was verified, and the fracture energy varied accordingly during the cyclic loading. Then, the mechanical response of CCFSTs was investigated under bending loads by setting different gap sizes and angles between the gap and loading direction. The results show that under three-point bending, the equivalent plastic strains at the middle part of CCFSTs are much larger and the peak bearing forces are much lower than the other degrees when the angles between the coronal gap axis and loading direction equal 0° and 180°. In addition, the order of the peak bearing forces, from highest to lowest, is when the height of the coronal-cap gap increases from 0.0 mm to 2.5 mm, 5.0 mm, and 7.5 mm. The significant effect makes it inappropriate to ignore the weakening of the structural performance caused by coronal gaps in structural design. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 11898 KiB  
Review
The ‘Nature’ of Vertical School Design—An Evolving Concept
by Alan J. Duffy
Architecture 2024, 4(3), 730-744; https://doi.org/10.3390/architecture4030038 - 12 Sep 2024
Cited by 2 | Viewed by 3044
Abstract
Successful urban school design includes green space to counterpoint the built form in cities, where parks and reserves are well frequented. Further integration of landscape and buildings is an aspect of urban development that could improve how architecture is experienced by the wider [...] Read more.
Successful urban school design includes green space to counterpoint the built form in cities, where parks and reserves are well frequented. Further integration of landscape and buildings is an aspect of urban development that could improve how architecture is experienced by the wider community. Above all, evidence shows that it enhances the health and wellbeing of inhabitants. By providing green space in buildings, nature can be accessed more directly by its occupants and allow connection with nature to occur more easily. Integrating nature with architecture can improve a building’s self-regulation, energy consumption, and overall performance. Architecture that integrates nature can have a distinctive appearance and character. The co-existence of bricks and mortar with plants and vegetation is one example of integration, whereas the use of natural materials such as timber as part of the building fabric can create distinctive architecture. It is this individuality that can provide a sense of identity to local communities. Access to the outdoors in urban settings is a critical requirement for successful urban school design. This paper focuses on the architectural practise of designing biophilic schools and illustrates how optimising playground opportunities can provide the highly sought-after connection between architecture and nature. Connecting classrooms and pedagogy to the outside environment during the design phases of projects can create unique responses to a place, enhancing the learning experience in environments where architecture and nature can be informed by emerging biophilic evidence. This study strives to develop a strategy where educational clients can be convinced to actively embrace a biophilic school approach. It also seeks to convince architects to adopt a biophilic approach to school design across design studios using the emerging evidence based on biophilia and biomimicry. Full article
(This article belongs to the Special Issue Biophilic School Design for Health and Wellbeing)
Show Figures

Figure 1

20 pages, 7666 KiB  
Article
Study on the Reuse of Shield Mud from Clay Stratum in Synchronous Grouting Slurry
by Ying Fan, Yang Gao, Weilong Tao and Sihong Huang
Buildings 2024, 14(8), 2537; https://doi.org/10.3390/buildings14082537 - 18 Aug 2024
Cited by 3 | Viewed by 1110
Abstract
The purpose of this study is to investigate the feasibility of replacing the fly ash in synchronous grouting material by reusing the shield mud produced in the clay stratum during the shield construction of Wuhan Rail Transit Line 11. The test utilizes the [...] Read more.
The purpose of this study is to investigate the feasibility of replacing the fly ash in synchronous grouting material by reusing the shield mud produced in the clay stratum during the shield construction of Wuhan Rail Transit Line 11. The test utilizes the shield mud from the clay stratum to replace the fly ash material in synchronous grouting at percentages of 20%, 40%, 60%, 80%, and 100%, and research and analyses are conducted on the fluidity, stability, strength, and resistance to water dispersion of the slurry after the replacement; at the same time, improvements in the undesirable phenomenon produced by the synchronous grouting slurry are also examined after the replacement. The results show that, when the fly ash is replaced by shield mud at 80%, the mortar still has good stability and strength performance, but, at the same time, the initial value of consistency and the phenomenon of flow time loss is too large. Through the adjustment of the water–binder ratio and the addition of an appropriate amount of a polycarboxylate superplasticizer agent, the adverse phenomenon of the slurry is effectively improved, and the compressive strength and ease of the slurry are also improved. At the same time, when adding an appropriate amount of hydroxyethyl methyl cellulose (HEMC), the slurry has good water dispersion resistance, but, with the gradual increase in HEMC, the fluidity of the slurry deteriorates and the compressive strength decreases. The test proves that the shield mud in the clay stratum can be used to replace most of the fly ash in an appropriate proportion, which not only solves the problem of the shield mud being difficult to work with, but also provides more valuable insights for tunneling projects. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

14 pages, 6263 KiB  
Article
Spatio-Temporal Compressive Behaviors of River Pebble Concrete and Sea Pebble Concrete in Island Offshore Engineering
by Yuan Yuan, Yian Zhao, Xiaotian Feng, Yanhua Lei and Wenbing Zhang
J. Mar. Sci. Eng. 2024, 12(8), 1395; https://doi.org/10.3390/jmse12081395 - 14 Aug 2024
Cited by 2 | Viewed by 1222
Abstract
Obtaining river or sea pebbles from local resources for concrete production is considered an economical and eco-friendly alternative, particularly in marine and island-offshore engineering. However, the resulting changes in the mechanical properties of these concrete have attracted attention. This study investigates the compressive [...] Read more.
Obtaining river or sea pebbles from local resources for concrete production is considered an economical and eco-friendly alternative, particularly in marine and island-offshore engineering. However, the resulting changes in the mechanical properties of these concrete have attracted attention. This study investigates the compressive behavior of concretes where river or sea pebbles partially (i.e., 33% and 67%) or fully (i.e., 100%) replace traditional gravel as coarse aggregate, using a noncontact full-field deformation measurement system based on digital image correlation (DIC). Compared to the traditional gravel concrete (GC), compressive strengths of the river pebble concrete (RPC) at constitution rates of 33%, 67%, and 100% decreased by 6.5%, 29.8%, and 38.9% while those values of the sea pebble concrete (SPC) decreased by 13.1%, 32.7%, and 44.3%, respectively. Meanwhile, SPC exhibited slightly lower compressive strength than RPC. The peak strains of both SPC and RPC decreased at lower substitution rates, although their stress-strain curves resembled those of GC. In contrast, RPC and SPC at higher substitution rates exhibited a noticeable stage of load hardening. Full-field deformation data and interfacial characteristics indicated that the compressive failure modes of both RPC and SPC showed significant interfacial slipping between pebbles and mortar with increasing coarse aggregate substitution rates. In comparison, fractures in coarse aggregate and mortar were observed in damaged GC. The study demonstrated that the spatio-temporal compressive deformation response and failure modes of SPC and RPC were distinct due to the introduction of pebbles, providing insights for engineering applications of river/sea pebble concrete in practical offshore or island construction projects. Full article
(This article belongs to the Special Issue Advance in Marine Geotechnical Engineering)
Show Figures

Figure 1

Back to TopTop