Remote Sensing and Assessment of Compound Groundwater Flooding Using an End-to-End Wireless Environmental Sensor Network and Data Model at a Coastal Cultural Heritage Site in Portsmouth, NH
Abstract
:1. Introduction
1.1. Background
1.2. Objectives
- (1)
- Build an end-to-end groundwater sensing network at the Strawbery Banke Museum coastal cultural heritage site.
- (2)
- Assess variations in the timing and amount of groundwater intrusion and salinity levels within historic buildings at the Strawbery Banke Museum.
- (3)
- Develop simple statistical models to understand better and parse the levels of influence that tidal forcing and rain event drivers have on groundwater basement flooding at the Strawbery Banke Museum.
- (4)
- Promote public engagement and community decision making about coastal flooding and adaptation and mitigation strategies.
1.3. Hypotheses
2. Materials and Methods
2.1. Study Area
2.2. The Network and Assessment
2.2.1. The Network Design, Deployment, and Use
2.2.2. Data Assessment
- Data Preparation:
- Timing and Quantities:
- Modeling Component Flooding:
- All high tides;
- High tides > 1.2 m (4 feet);
- Precipitation alone;
- Precipitation and all high tides;
- Precipitation and high tides > 1.2 m (4 feet).
- R2 to estimate the influence of each flood driver.
- p-value to measure the likelihood that any observed correlation between water level, seepage, tidal levels, and precipitation are occurring by random chance.
- Slope to enable prediction of future water levels at each house.
- BP value and associated p-value to measure the skew/heteroscedasticity of the model’s error term residuals.
3. Results
3.1. Time and Quantity Results
3.1.1. Piscataqua River Time and Quantity Results
3.1.2. Shapley Drisco Pridham (SDP) House Time and Quantity Results
3.1.3. Jones House Time and Quantity Results
3.2. Compound Flooding Model Results
3.2.1. Shapley Drisco Pridham (SDP) House Model Results
3.2.2. Jones House Model Results
4. Discussion
4.1. Potential Benefits of Sensor Networks to Cultural Heritage and Preservation
4.2. The Network
4.3. Time and Quantities
4.4. Compound Flood Models
4.5. Public-Facing Interfaces
4.6. Recommendations for Strawbery Banke Museum
4.7. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNESCO. Cultural Heritage: 7 Successes of UNESCO’s Preservation Work, United Nations Educational, Science, Cultural, Organization. 2023. Available online: https://www.unesco.org/en/cultural-heritage-7-successes-unescos-preservation-work (accessed on 1 August 2024).
- USDOI. Heritage, United States Department of Interior. 2024. Available online: https://www.doi.gov/international/what-we-do/heritage (accessed on 1 August 2024).
- Vafeidis, A.; Neumann, B.; Zimmermann, J.; Nicholls, R.J. Analysis of Land Area and Population in the Low-Elevation Coastal zone (LECZ), Government Office for Science. 2011. Available online: https://api.semanticscholar.org/CorpusID:131739488 (accessed on 1 August 2024).
- Marzeion, B.; Levermann, A. Loss of cultural world heritage and currently inhabited places to sea-level rise. Environ. Res. Lett. 2014, 9, 034001. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban 2017, 19, 17–37. [Google Scholar] [CrossRef]
- Anderson, D.G.; Bissett, T.G.; Yerka, S.J.; Wells, J.J.; Kansa, E.C.; Kansa, S.W.; Myers, K.N.; DeMuth, R.C.; White, D.A. Sea-level rise and archaeological site destruction: An example from the south-eastern United States using DINAA (Digital Index of North American Archaeology). PLoS ONE 2017, 12, e0188142. [Google Scholar] [CrossRef] [PubMed]
- Wahl, T.; Haigh, I.D.; Nicholls, R.J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.B.A. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat. Commun. 2017, 8, 16075. [Google Scholar] [CrossRef]
- Taherkhani, M.; Vitousek, S.; Barnard, P.L.; Frazer, N.; Anderson, T.R.; Fletcher, C.H. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 2022, 10, 6466. [Google Scholar] [CrossRef]
- Buchanan, M.K.; Oppenheimer, M.; Kopp, R.E. Amplification of flood frequencies with local sea level rise and emerging flood regimes. Environ. Res. Lett. 2017, 12, 64009. [Google Scholar] [CrossRef]
- Moftakhari, H.R.; Salvadori, G.; AghaKouchak, A.; Sanders, B.F.; Matthew, R.A. Compounding effects of sea level rise and fluvial flooding. Proc. Natl. Acad. Sci. USA 2017, 114, 9785–9790. [Google Scholar] [CrossRef]
- Peña, F.; Obeysekera, J.; Jane, R.; Nardi, R.; Maran, C.; Cadogan, A.; de Groen, F.; Melesse, A. Investigating compound flooding in a low elevation coastal karst environment using multivariate statistical and 2D hydrodynamic modeling. Weather Clim. Extrem. 2023, 39, 100534. [Google Scholar] [CrossRef]
- Rotzoll, K.; El-Kadi, A.I.; Gingerich, S.B. Analysis of an Unconfined Aquifer Subject to Asynchronous Dual-Tide Propagation. Ground Water 2008, 46, 239–250. [Google Scholar] [CrossRef]
- Hoover, D.J.; Odigie, K.O.; Swarzenski, P.W.; Barnard, P. Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA. J. Hydrol. Reg. Stud. 2017, 11, 234–249. [Google Scholar] [CrossRef]
- Plane, E.; Hill, K.; May, C. A Rapid Assessment Method to Identify Potential Groundwater Flooding Hotspots as Sea Levels Rise in Coastal Cities. Water 2019, 11, 2228. [Google Scholar] [CrossRef]
- Davtalab, R.; Mirchi, A.; Harris, R.J.; Troilo, M.X.; Madani, K. Sea Level Rise Effect on Groundwater Rise and Stormwater Retention Pond Reliability. Water 2020, 12, 1129. [Google Scholar] [CrossRef]
- Kelman, I.; Spence, R. An overview of flood actions on buildings. Eng. Geol. 2004, 73, 297–309. Available online: https://e-tarjome.com/storage/btn_uploaded/2022-02-08/1644301350_12182-English.pdf (accessed on 1 August 2024). [CrossRef]
- Kreibich, H.; Thieken, A.H. Assessment of damage caused by high groundwater inundation. Water Resour. Res. 2008, 44, 1–14. [Google Scholar] [CrossRef]
- Drdácký, M.F. Flood Damage to Historic Buildings and Structures. J. Perform. Constr. Facil. 2010, 24, 439–445. [Google Scholar] [CrossRef]
- Price, C.A.; Doehne, E. Stone Conservation; An Overview of Current Research; Getty Publications: Los Angeles, CA, USA, 2011; Available online: https://www.getty.edu/publications/resources/virtuallibrary/9781606060469.pdf (accessed on 1 August 2024).
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. Wiley Interdisciplinary Reviews. Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Hiscox, J.; O’Leary, J.; Boddy, L. Fungus wars: Basidiomycete battles in wood decay. Stud. Mycol. 2018, 89, 117–124. [Google Scholar] [CrossRef]
- Větrovský, T.; Kohout, P.; Kopecký, M.; Machac, A.; Man, M.; Bahnmann, B.D.; Brabcová, V.; Choi, J.; Meszárošová, L.; Baldrian, P.; et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019, 10, 5142. [Google Scholar] [CrossRef]
- Flyen, A.C.; Thuestad, A.E. A Review of Fungal Decay in Historic Wooden Structures in Polar Regions. Conserv. Manag. Archaeol. Sites 2022, 24, 3–35. [Google Scholar] [CrossRef]
- Berenfeld, M.L. Climate change and cultural heritage: Local evidence, global responses. Georg. Wright Forum 2008, 25, 66–82. Available online: http://www.jstor.org/stable/43598076 (accessed on 30 August 2024).
- Sabbioni, C.; Cassar, M.; Brimblecombe, P.; Lefevre, R.A. Vulnerability of Cultural Heritage to Climate Change. European and Mediterranean Major Hazards Agreement (EUR-OPA) Report. 2008. Available online: https://www.coe.int/t/dg4/majorhazards/activites/2009/Ravello15-16may09/Ravello_APCAT2008_44_Sabbioni-Jan09_EN.pdf (accessed on 30 August 2024).
- Buczkowski, G.; Bertelsmeier, C. Invasive termites in a changing climate: A global perspective. Ecol. Evol. 2017, 7, 974–985. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.M.; Haynes, K.J. Spatiotemporal dynamics of forest insect populations under climate change. Curr. Opin. Insect Sci. 2023, 56, 101020. [Google Scholar] [CrossRef] [PubMed]
- Brimblecombe, P. Temporal humidity variations in the heritage climate of south east England. Herit. Sci. 2013, 1, 3. [Google Scholar] [CrossRef]
- Huijbregts, Z.; Martens, M.H.J.; van Schijndel, A.W.M.; Schellen, H.L. Computer modeling to evaluate the risks of damage to objects exposed to varying indoor climate conditions in the past, present, and future. In Contributions to Building Physics, Proceedings of the 2nd Central European Conference on Building Physics, Vienna, Austria, 9–11 September 2013; Mahdavi, A., Mertens, B., Eds.; Vienna University of Technology: Vienna, Austria, 2013; pp. 335–342. Available online: https://pure.tue.nl/ws/portalfiles/portal/3642277/617170802382487.pdf (accessed on 30 August 2024).
- Camuffo, D. Climate change, human factor, and risk assessment. In Microclimate for Cultural Heritage; Camuffo, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 303–340. [Google Scholar] [CrossRef]
- Abdelhafez, M.A.; Ellingwood, B.; Mahmoud, H. Hidden costs to building foundations due to sea level rise in a changing climate. Sci. Rep. 2022, 12, 14020. [Google Scholar] [CrossRef]
- Espinosa, R.M.; Franke, L.; Deckelmann, G. Phase changes of salts in porous materials: Crystallization, hydration and deliquescence. Constr. Build. Mater. 2008, 22, 1758–1773. [Google Scholar] [CrossRef]
- Haugen, A.; Mattsson, J. Preparations for climate change’s influences on cultural heritage. Int. J. Clim. Chang. Strateg. Manag. 2011, 3, 386–401. [Google Scholar] [CrossRef]
- Rahimi, R.; Tavakol-Davani, H.; Graves, C.; Gomez, A.; Fazel Valipour, M. Compound Inundation Impacts of Coastal Climate Change: Sea-Level Rise, Groundwater Rise, and Coastal Precipitation. Water 2020, 12, 2776. [Google Scholar] [CrossRef]
- Park, S.C. Moisture in Historic Buildings and Preservation Guidance. In Moisture Control in Buildings—The Key Factor in Mold Prevention. ASTM Int. 2009, 2, 442–462. [Google Scholar] [CrossRef]
- Fedosov, S.V.; Aleksandrova, O.V.; Bulgakov, B.I.; Lukyanova, N.A.; Ngeyen Duc Vinh, Q. Corrosion-resistant concretes for coastal underground structures. Mag. Civ. Eng. 2024, 17, 2. [Google Scholar] [CrossRef]
- Gokee, A. “Already Underwater:” Strawbery Banke Adapts to Climate Change to Preserve History. New Hampshire Bulletin. 19 July 2022. Available online: https://www.seacoastonline.com/story/news/local/2022/07/19/strawbery-banke-adapts-climate-change-save-history-portsmouth/10085958002/ (accessed on 1 August 2024).
- Mittal, R.; Bhatia, M.P.S. Wireless sensor networks for monitoring the environmental activities. In Proceedings of the 2010 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 28–29 December 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Hart, J.K.; Martinez, K. Environmental Sensor Networks: A revolution in the earth system science? Earth-Sci. Rev. 2006, 78, 177–191. [Google Scholar] [CrossRef]
- SWLN. SECOORA, Southeast Water Level Network Dashboard. 2024. Available online: https://secoora.org/southeast-water-level-network/ (accessed on 1 August 2024).
- USGS. National Water Dashboard, United States Geological Survey. 2024. Available online: https://www.usgs.gov/tools/national-water-dashboard-nwd (accessed on 1 August 2024).
- Loftis, J.D.; Forrest, D.; Katragadda, S.; Spencer, K.; Organski, T.; Nguyen, C.; Rhee, S. StormSense: A New Integrated Network of IoT Water Level Sensors in the Smart Cities of Hampton Roads, VA. Mar. Technol. Soc. J. 2018, 52, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Cano, O.; Aquino-Santos, R.; López-de la Cruz, J.; Edwards, R.M.; Khouakhi, A.; Pattison, I.; Rangel-Licea, V.; Castellanos-Berjan, E.; Martinez-Preciado, M.A.; Rincón-Avalos, P.; et al. Experiments of an IoT-based wireless sensor network for flood monitoring in Colima, Mexico. J. Hydroinform. 2021, 23, 385–401. [Google Scholar] [CrossRef]
- Yuyan, X.; Ramamurthy, B.; Burbach, M. A two-tier Wireless Sensor Network infrastructure for large-scale real-time groundwater monitoring. In Proceedings of the IEEE Local Computer Network Conference, Denver, CO, USA, 10–14 October 2010; pp. 874–881. [Google Scholar] [CrossRef]
- Knott, J.F.; Jacobs, J.M.; Daniel, J.S.; Kirshen, P. Modeling Groundwater Rise Caused by Sea-Level Rise in Coastal New Hampshire. J. Coast. Res. 2019, 35, 143–157. [Google Scholar] [CrossRef]
- Grammalidis, N.; Cetin, E.; Dimitropoulos, K.; Tsalakanidou, F.; Kose, K.; Gunay, O.; Gouverneur, B.; Torri, D.; Kuruoglu, E.; Tozzi, S.; et al. A multi-sensor network for the protection of cultural heritage. In Proceedings of the 2011 19th European Signal Processing Conference, Barcelona, Spain, 29 August–2 September 2011; pp. 889–893. Available online: https://ieeexplore.ieee.org/document/7074150 (accessed on 1 August 2024).
- Klein, L.J.; Bermudez, S.A.; Schrott, A.G.; Tsukada, M.; Dionisi-Vici, P.; Kargere, L.; Marianno, F.; Hamann, H.F.; López, V.; Leona, M. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System. Sensors 2017, 179, 1998. [Google Scholar] [CrossRef] [PubMed]
- Curran, B.; Routhier, M.; Mulukutla, G. Sea-Level Rise Vulnerability Assessment of Coastal Resources in New Hampshire. APT Bull. 2016, 47, 23–30. Available online: https://www.apti.org/assets/docs/47.1Curran%20Sample%20Article%20APT%20Website.pdf (accessed on 1 August 2024).
- Placework. Strawbery Banke Museum Stormwater Management Report, Placework Architecture and Planning, Horsley Witten Group. 30 June 2023. Available online: https://issuu.com/placework/docs/21-013_sbm_stormwater_management_plan_report_23063 (accessed on 1 August 2024).
- Trimble. Trimble TSC7 Data Collector, Trimble Geospatial. 2024. Available online: https://geospatial.trimble.com/en/products/hardware/trimble-tsc7 (accessed on 8 September 2024).
- Trimble. Trimble R12i GNSS Receiver, Trimble Geospatial. 2024. Available online: https://geospatial.trimble.com/en/products/hardware/trimble-r12i (accessed on 8 September 2024).
- OnSet. MX2001-SS-S Water Level Sensor, Onset Computer Corporation. 2024. Available online: https://www.onsetcomp.com/products/sensors/mx2001-s (accessed on 8 September 2024).
- pHionics. STs Series Conductivity Sensor, pHionics Water Quality Sensors. 2024. Available online: https://www.phionics.com/product/4-20-ma-sts-series-conductivity-sensor-transmitter (accessed on 8 September 2024).
- OnSet. RX3000 Remote Monitoring Station, Onset Computer Corporation. 2024. Available online: https://www.onsetcomp.com/products/data-loggers/rx3000 (accessed on 8 September 2024).
- OnSet. MicroRX Water Level Station, Onset Computer Corporation. 2024. Available online: https://www.onsetcomp.com/products/data-loggers/rx2100-wl (accessed on 8 September 2024).
- Onset. Standard 4G HOBOlink Service Plan, Onset Computer Corporation. 2024. Available online: https://www.onsetcomp.com/hobolink-service-plans?srsltid=AfmBOoo3PYho8U8wlbMlw5v_V-Cy4NekAZKbeNjH1H3WOzu-knuqIibP (accessed on 8 September 2024).
- Ubuntu. Ubuntu Operating System, Canonical Ubuntu. 2024. Available online: https://ubuntu.com/ (accessed on 8 September 2024).
- PostgreSQL. PostgreSQL Open Source Relational Database, PostgreSQL.org. 2024. Available online: https://www.postgresql.org/ (accessed on 8 September 2024).
- Django. Django Web Framework, Djangoproject.com. 2024. Available online: https://www.djangoproject.com/ (accessed on 8 September 2024).
- Open Layers. OpenLayers, OpenLayers.org. 2024. Available online: https://openlayers.org/ (accessed on 8 September 2024).
- ELO. 2702L 27” Touchscreen Monitor, elotouch.com. 2024. Available online: https://www.elotouch.com/touchscreen-monitors-2702l.html (accessed on 8 September 2024).
- ELO. Backpack 4. 2024. Available online: https://www.elotouch.com/accessories-backpack-4.html (accessed on 8 September 2024).
- Android. Android 10. 2024. Available online: https://www.android.com/android-10/ (accessed on 8 September 2024).
- NOAA. PORTSMOUTH PEASE AFB, NH US, WBAN:04743, Local Climatological Data (LCD), National Centers for Environmental Information’s Integrated Surface Data (ISD). 2024. Available online: https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:04743/detail (accessed on 23 August 2024).
- Wang, X.; Wang, C. Time Series Data Cleaning with Regular and Irregular Time Intervals. arXiv 2020, arXiv:2004.08284. [Google Scholar]
- Heiss, J.W.; Mase, B.; Shen, C. Effects of future increases in tidal flooding on salinity and groundwater dynamics in coastal aquifers. Water Resour. Res. 2022, 58, e2022WR033195. [Google Scholar] [CrossRef]
- Callaghan, D.P.; Bouma, T.J.; Klaassen, P.; van der Wal, D.; Stive, M.J.F.; Herman, P.M.J. Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows. Estuar. Coast. Shelf Sci. 2010, 89, 73–88. [Google Scholar] [CrossRef]
- Kantack, N.; Langevin, S.; VanVolkenburg, T.; Skerritt Benzing, J.; Zhiyong, X.; Hoheisel, R.; MacMahan, J.; Brown, S. Robust Ocean Salinity Sensing. In Proceedings of the OCEANS 2021: San Diego—Porto, San Diego, CA, USA, 20–23 September 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Wilson, A.M.; Morris, J.T. The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry 2012, 108, 27–38. [Google Scholar] [CrossRef]
- Santiago-Collazo, F.L.; Bilskie, M.V.; Hagen, S.C. A Comprehensive Review of Compound Inundation Models in Low-Gradient Coastal Watersheds. Environ. Model. Softw. Environ. Data News 2019, 119, 166–181. [Google Scholar] [CrossRef]
- Wahl, T.; Serafin, K.A.; Jane, R.A.; Malagon-Santos, V.; Rashid, M.M.; Doebele, L.; Timmers, S.R.; Schmied, L.; Lindemer, C. When forces collide: Developing a scalable framework for compound flood risk assessment. Coast. Sediments 2023, 2898–2902. [Google Scholar] [CrossRef]
- Feng, D.; Tan, Z.; Xu, D.; Leung, L.R. Understanding the compound flood risk along the coast of the contiguous United States. Eur. Geosci. Union 2023, 27, 3911–3934. [Google Scholar] [CrossRef]
Schema | R2 | p-Value | Slope | BP Value | BP p-Value | Results |
---|---|---|---|---|---|---|
All high tides | 0.895 | 2.2 × 10−16 | 0.751 | 27.88 | 1.28 × 10−7 | Heteroscedastic |
High tides > 1.2 m | 0.9406 | 2.2 × 10−16 | 0.884 | 1.0174 | 0.3131 | Homoscedastic |
Weekly rain along | 0.1173 | 9.31 × 10−16 | 0.239 | 3.554 | 0.0594 | Homoscedastic |
Rain and all high tides | 0.8998 | 2.2 × 10−16 | Rain: 0.050 Tide: 0.735 | 23.563 | 7.65 × 10−6 | Heteroscedastic |
Rain and high tides > 1.2 m | 0.9408 | 2.2 × 10−16 | Rain: −0.009 Tide:0.890 | 1.3809 | 0.5013 | Homoscedastic |
Schema | R2 | p-Value | Slope | BP Value | BP p-Value | Results |
---|---|---|---|---|---|---|
All high tides | 0.0863 | 5.62 × 10−6 | 0.0809 | 18.555 | 1.65 × 10−5 | Heteroscedastic |
High tides > 1.2 m | 0.168 | 3.36 × 10−7 | 0.1811 | 25.386 | 4.69 × 10−7 | Heteroscedastic |
Weekly rain along | 0.0247 | 0.01688 | 0.038 | 10.2 | 1.41 × 10−3 | Heteroscedastic |
Rain and all high tides | 0.0918 | 1.71 × 10−5 | Tide: 0.075 Rain: 0.019 | 22.81 | 1.11 × 10−5 | Heteroscedastic |
Rain and high tides > 1.2 m | 0.172 | 1.66 × 10−6 | Tide: 0.169 Rain: 0.019 | 26.393 | 1.86 × 10−6 | Heteroscedastic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Routhier, M.R.; Curran, B.R.; Carlson, C.H.; Goddard, T.A. Remote Sensing and Assessment of Compound Groundwater Flooding Using an End-to-End Wireless Environmental Sensor Network and Data Model at a Coastal Cultural Heritage Site in Portsmouth, NH. Sensors 2024, 24, 6591. https://doi.org/10.3390/s24206591
Routhier MR, Curran BR, Carlson CH, Goddard TA. Remote Sensing and Assessment of Compound Groundwater Flooding Using an End-to-End Wireless Environmental Sensor Network and Data Model at a Coastal Cultural Heritage Site in Portsmouth, NH. Sensors. 2024; 24(20):6591. https://doi.org/10.3390/s24206591
Chicago/Turabian StyleRouthier, Michael R., Benjamin R. Curran, Cynthia H. Carlson, and Taylor A. Goddard. 2024. "Remote Sensing and Assessment of Compound Groundwater Flooding Using an End-to-End Wireless Environmental Sensor Network and Data Model at a Coastal Cultural Heritage Site in Portsmouth, NH" Sensors 24, no. 20: 6591. https://doi.org/10.3390/s24206591
APA StyleRouthier, M. R., Curran, B. R., Carlson, C. H., & Goddard, T. A. (2024). Remote Sensing and Assessment of Compound Groundwater Flooding Using an End-to-End Wireless Environmental Sensor Network and Data Model at a Coastal Cultural Heritage Site in Portsmouth, NH. Sensors, 24(20), 6591. https://doi.org/10.3390/s24206591