Study on Surface Roughness and True Fracture Energy of Recycled Aggregate Concrete Using Fringe Projection Technology
Abstract
1. Introduction
2. Materials and Methodology
2.1. Raw Materials
2.2. Casting and Curing
2.3. Cube Compressive Strength Test
2.4. Cube Splitting Tensile Test
2.5. Three Point Bending Beam Fracture Test
2.6. Microstructure Detection
2.7. Fracture Interface Measurement
2.7.1. Roughness RS and Fractal Dimension D
2.7.2. The True Fracture Energy
2.7.3. Three-Dimensional Measurement
3. Results and Discussion
3.1. Roughness of the Fracture Surface
3.1.1. Effect of the Water-to-Binder (w/b) Ratio
3.1.2. Effect of the Replacement Ratio Ra
3.1.3. Effect of the Maximum Aggregate Particle Size
3.1.4. Relationship Between Rs and D
3.2. Fracture Energy
3.2.1. Comparison
3.2.2. Effect of w/b Ratio
3.2.3. Effect of the Replacement Ratio of RA
3.2.4. Effect of the Maximum Aggregate Particle Size
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, J.; Tang, Y.; Chen, H.; Zhang, H.; Xia, B. Effects of recycled aggregate combinations and recycled powder contents on fracture behavior of fully recycled aggregate concrete. J. Clean. Prod. 2022, 366, 132895. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Q.; Lin, W.; Ou, J. Material and structural properties of recycled coarse aggregate concrete made with seawater and sea-sand: A review. J. Build. Eng. 2024, 87, 109042. [Google Scholar] [CrossRef]
- Ficker, T.; Martišek, D. Digital fracture surfaces and their roughness analysis: Applications to cement-based materials. Cem. Concr. Res. 2012, 42, 827–833. [Google Scholar] [CrossRef]
- Ma, J.; Wang, T.; Li, G.; Zhan, Q.; Wu, D.; Chang, Y.; Xue, Y.; Zhang, Y.; Zuo, J. Concrete surface roughness measurement method based on edge detection. Vis. Comput. 2023, 40, 1553–1564. [Google Scholar] [CrossRef]
- Yan, A. Influence of concrete composition on the characterization of fracture surface. Cem. Concr. Compos. 2003, 25, 153–157. [Google Scholar] [CrossRef]
- Yan, A. Effect of fracture path on the fracture energy of high-strength concrete. Cem. Concr. Res. 2001, 31, 1601–1606. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, D.M. Fractal effect and anisotropic constitutive model for concrete. Theor. Appl. Fract. Mech. 2009, 51, 167–173. [Google Scholar] [CrossRef]
- Issa, M.A.; Issa, M.A.; Islam, M.S.; Chudnovsky, A. Fractal dimension––A measure of fracture roughness and toughness of concrete. Eng. Fract. Mech. 2003, 70, 125–137. [Google Scholar] [CrossRef]
- Tirassa, M.; Fernández Ruiz, M.; Muttoni, A. Influence of cracking and rough surface properties on the transfer of forces in cracked concrete. Eng. Struct. 2020, 225, 111138. [Google Scholar] [CrossRef]
- Santos, P.M.D.; Júlio, E.N.B.S. A state-of-the-art review on roughness quantification methods for concrete surfaces. Constr. Build. Mater. 2013, 38, 912–923. [Google Scholar] [CrossRef]
- Tonietto, L.; Gonzaga, L., Jr.; Veronez, M.R.; Kazmierczak, C.S.; Arnold, D.C.M.; Costa, C.A.D. New Method for Evaluating Surface Roughness Parameters Acquired by Laser Scanning. Sci. Rep. 2019, 9, 15038. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, X.; Zhang, Y.; Zhou, Y. Effects of particle characteristics of lightweight aggregate on mechanical properties of lightweight aggregate concrete. Constr. Build. Mater. 2014, 72, 270–282. [Google Scholar] [CrossRef]
- Dai, M.; Wang, X.; Cheng, C.; Chen, Z.; Deng, J. Efficient Evaluation of Concrete Fracture Surface Roughness Using Fringe Projection Technology. Materials 2023, 16, 4430. [Google Scholar] [CrossRef] [PubMed]
- Grigoriadis, K. Use of laser interferometry for measuring concrete substrate roughness in patch repairs. Autom. Constr. 2016, 64, 27–35. [Google Scholar] [CrossRef]
- Khalilpour, S.; BaniAsad, E.; Dehestani, M. A review on concrete fracture energy and effective parameters. Cem. Concr. Res. 2019, 120, 294–321. [Google Scholar] [CrossRef]
- Peng, J. Comparison of regression analysis for estimation of initial and total fracture energy of concrete. Multiscale Multidiscip. Model. Exp. Des. 2023, 7, 173–190. [Google Scholar] [CrossRef]
- Beygi, M.H.A.; Kazemi, M.T.; Nikbin, I.M.; Vaseghi Amiri, J.; Rabbanifar, S.; Rahmani, E. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete. Cem. Concr. Res. 2014, 66, 75–90. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Liu, J.; Chen, T.; Wu, J. Effect of interface roughness on fracture energy and fracture process zone of rock-concrete specimens. Fatigue Fract. Eng. Mater. Struct. 2022, 46, 574–589. [Google Scholar] [CrossRef]
- Wu, K.-R.; Yan, A.; Liu, J.-y.; Zhang, D.; Yao, W. Reconstruction and analysis of 3-D profile of fracture surface of concrete. Cem. Concr. Res. 2000, 30, 981–987. [Google Scholar] [CrossRef]
- Yan, A.; Wu, K.-r.; Yao, W.; Zhang, D. Study on the Actual Fracture Energy of Concrete Materials. J. Build. Mater. 2001, 4, 346–350. [Google Scholar]
- Mechtcherine, V. Fracture mechanical behavior of concrete and the condition of its fracture surface. Cem. Concr. Res. 2009, 39, 620–628. [Google Scholar] [CrossRef]
- Liu, J.; Wu, K.; Zhang, D. Application of Image Analysis Technology in the Study of Concrete Fracture Surface. China Concr. Cem. Prod. 1999, 2, 6–9. [Google Scholar]
- Xiao, J.; Li, H.; Yuan, J. Application of Digital Image Technique in Behavior Analysis of Recycled Aggregate Concrete. J. Build. Mater. 2014, 17, 459–464. [Google Scholar]
- An, X.-z.; Ma, X.-n.; Shen, Y.-l. Effect of Replacement Rate of Brick-containing Recycled Coarse Aggregates on Fracture Concrete Performance. Sci. Technol. Eng. 2020, 20, 5751–5756. [Google Scholar]
- Lu, Z.; Liu, G.; Wu, Y.; Dai, M.; Jiang, M.; Xie, J. Recycled aggregate seawater–sea sand concrete and its durability after immersion in seawater. J. Build. Eng. 2023, 65, 105780. [Google Scholar] [CrossRef]
- Lee, K.M.; Park, J.H. A numerical model for elastic modulus of concrete considering interfacial transition zone. Cem. Concr. Res. 2008, 38, 396–402. [Google Scholar] [CrossRef]
- Otsuki, N.; Miyazato, S.; Yodsudjai, W. Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. J. Mater. Civ. Eng. 2003, 15, 443–451. [Google Scholar] [CrossRef]
- Muhammad, F.; Harun, M.; Ahmed, A.; Kabir, N.; Khalid, H.R.; Hanif, A. Influence of bonded mortar on recycled aggregate concrete properties: A review. Constr. Build. Mater. 2024, 432, 136564. [Google Scholar] [CrossRef]
- Luo, B.; Wang, D.; Mohamed, E. The process of optimizing the interfacial transition zone in ultra-high performance recycled aggregate concrete through immersion in a water glass solution. Mater. Lett. 2023, 338, 134056. [Google Scholar] [CrossRef]
- Sun, C.; Chen, Q.; Xiao, J.; Ge, W. Study on aggregate interlock behavior of pre-cracked recycled aggregate concrete without stirrups. J. Build. Eng. 2021, 39, 102257. [Google Scholar] [CrossRef]
- Dai, M.; Yang, F.; Liu, C.; He, X. A dual-frequency fringe projection three-dimensional shape measurement system using a DLP 3D projector. Opt. Commun. 2017, 382, 294–301. [Google Scholar] [CrossRef]
- GBT 50081-2019; Code for Design of Concrete Structures. China Standards Press: Beijing, China, 2019.
- DLT 5332-2005; Standard for Inspection and Evaluation of Highway Engineering Construction Quality. China Architecture & Building Press: Beijing, China, 2005.
- Dabbaghi, F.; Fallahnejad, H.; Nasrollahpour, S.; Dehestani, M.; Yousefpour, H. Evaluation of fracture energy, toughness, brittleness, and fracture process zone properties for lightweight concrete exposed to high temperatures. Theor. Appl. Fract. Mech. 2021, 116, 103088. [Google Scholar] [CrossRef]
- Shang, X.; Yang, J.; Wang, S.; Zhang, M. Fractal analysis of 2D and 3D mesocracks in recycled aggregate concrete using X-ray computed tomography images. J. Clean. Prod. 2021, 304, 127083. [Google Scholar] [CrossRef]
- Ben Ftima, M.; Lemery, J. Asymptotic fracture energy for nonlinear simulation of mass concrete structures. Constr. Build. Mater. 2021, 271, 121542. [Google Scholar] [CrossRef]
- Zhou, F.P.; Barr, B.I.G.; Lydon, F.D. Fracture properties of high strength concrete with varying silica fume content and aggregates. Cem. Concr. Res. 1995, 25, 543–552. [Google Scholar] [CrossRef]
- Kumar, C.N.S.; Krishna, P.V.V.S.S.R.; Kumar, D.R. Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete. Adv. Concr. Constr. 2017, 5, 613–624. [Google Scholar]
Concrete Number | Specimen | W/B | Cement (kg) | Sand (kg) | Water (kg) | RA (kg) | NA (kg) |
---|---|---|---|---|---|---|---|
1 | NC-08-16 | 0.80 | 287.04 | 753.33 | 229.63 | 0 | 1130 |
2 | RAC50-08-16 | 565 | 565 | ||||
3 | RAC100-08-16 | 1130 | 0 | ||||
4 | NC-08-31.5 | 0.80 | 287.04 | 753.33 | 229.63 | 0 | 1130 |
5 | RAC50-08-31.5 | 565 | 565 | ||||
6 | RAC100-08-31.5 | 1130 | 0 | ||||
7 | NC-06-16 | 0.60 | 378.97 | 663.65 | 227.38 | 0 | 1130 |
8 | RAC50-06-16 | 565 | 565 | ||||
9 | RAC100-06-16 | 1130 | 0 | ||||
10 | NC-06-31.5 | 0.60 | 378.97 | 663.65 | 227.38 | 0 | 1130 |
11 | RAC50-06-31.5 | 565 | 565 | ||||
12 | RAC100-06-31.5 | 1130 | 0 | ||||
13 | NC-04-16 | 0.40 | 561.22 | 484.29 | 224.49 | 0 | 1130 |
14 | RAC50-04-16 | 565 | 565 | ||||
15 | RAC100-04-16 | 1130 | 0 | ||||
16 | NC-04-31.5 | 0.40 | 561.22 | 484.29 | 224.49 | 0 | 1130 |
17 | RAC50-04-31.5 | 565 | 565 | ||||
18 | RAC100-04-31.5 | 1130 | 0 |
Experiment | Dimension (mm) | Group | Number of Each Group | Total Number |
---|---|---|---|---|
Compressive strength test | 100 × 100 × 100 | 18 | 3 | 54 |
Split tensile strength test | 150 × 150 × 150 | 18 | 3 | 54 |
Fracture test | 100 × 100 × 400 | 18 | 5 | 90 |
Specimen | w/b Ratio | ||
---|---|---|---|
0.8 | 0.6 | 0.4 | |
NC-16 | 30.674 | 37.522 | 48.688 |
RAC50-16 | 25.912 | 34.455 | 48.279 |
RAC100-16 | 24.912 | 32.701 | 46.408 |
NC-31.5 | 35.41 | 45.426 | 57.046 |
RAC50-31.5 | 34.028 | 43.231 | 54.911 |
RAC100-31.5 | 31.892 | 41.663 | 50.78 |
Specimen | w/b Ratio | ||
---|---|---|---|
0.8 | 0.6 | 0.4 | |
NC-16 | 2.673 | 3.404 | 4.676 |
RAC50-16 | 2.659 | 3.315 | 4.608 |
RAC100-16 | 2.636 | 3.224 | 3.942 |
NC-31.5 | 3.313 | 4.014 | 4.804 |
RAC50-31.5 | 3.22 | 3.993 | 4.684 |
RAC100-31.5 | 3.074 | 3.735 | 4.178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, M.; Hu, W.; Hu, C.; Wang, X.; Deng, J.; Chen, J. Study on Surface Roughness and True Fracture Energy of Recycled Aggregate Concrete Using Fringe Projection Technology. Fractal Fract. 2025, 9, 159. https://doi.org/10.3390/fractalfract9030159
Dai M, Hu W, Hu C, Wang X, Deng J, Chen J. Study on Surface Roughness and True Fracture Energy of Recycled Aggregate Concrete Using Fringe Projection Technology. Fractal and Fractional. 2025; 9(3):159. https://doi.org/10.3390/fractalfract9030159
Chicago/Turabian StyleDai, Meiling, Weiyi Hu, Chengge Hu, Xirui Wang, Jiyu Deng, and Jincai Chen. 2025. "Study on Surface Roughness and True Fracture Energy of Recycled Aggregate Concrete Using Fringe Projection Technology" Fractal and Fractional 9, no. 3: 159. https://doi.org/10.3390/fractalfract9030159
APA StyleDai, M., Hu, W., Hu, C., Wang, X., Deng, J., & Chen, J. (2025). Study on Surface Roughness and True Fracture Energy of Recycled Aggregate Concrete Using Fringe Projection Technology. Fractal and Fractional, 9(3), 159. https://doi.org/10.3390/fractalfract9030159