Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (444)

Search Parameters:
Keywords = privacy-preserving technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1010 KiB  
Article
SIBERIA: A Self-Sovereign Identity and Multi-Factor Authentication Framework for Industrial Access
by Daniel Paredes-García, José Álvaro Fernández-Carrasco, Jon Ander Medina López, Juan Camilo Vasquez-Correa, Imanol Jericó Yoldi, Santiago Andrés Moreno-Acevedo, Ander González-Docasal, Haritz Arzelus Irazusta, Aitor Álvarez Muniain and Yeray de Diego Loinaz
Appl. Sci. 2025, 15(15), 8589; https://doi.org/10.3390/app15158589 (registering DOI) - 2 Aug 2025
Abstract
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust [...] Read more.
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust protection of critical services. The system is designed in alignment with European standards and regulations, including EBSI, eIDAS 2.0, and the GDPR. SIBERIA integrates a Self-Sovereign Identity (SSI) framework with a decentralized blockchain-based infrastructure for the issuance and verification of Verifiable Credentials (VCs). It incorporates multi-factor authentication by combining a voice biometric module, enhanced with spoofing-aware techniques to detect synthetic or replayed audio, and a behavioral biometrics module that provides continuous authentication by monitoring user interaction patterns. The system enables secure and user-centric identity management in industrial contexts, ensuring high resistance to impersonation and credential theft while maintaining regulatory compliance. SIBERIA demonstrates that it is possible to achieve both strong security and user autonomy in digital identity systems by leveraging decentralized technologies and advanced biometric verification methods. Full article
(This article belongs to the Special Issue Blockchain and Distributed Systems)
Show Figures

Figure 1

35 pages, 4050 KiB  
Article
Blockchain-Based Secure and Reliable High-Quality Data Risk Management Method
by Chuan He, Yunfan Wang, Tao Zhang, Fuzhong Hao and Yuanyuan Ma
Electronics 2025, 14(15), 3058; https://doi.org/10.3390/electronics14153058 - 30 Jul 2025
Viewed by 144
Abstract
The collaborative construction of large-scale, diverse datasets is crucial for developing high-performance machine learning models. However, this collaboration faces significant challenges, including ensuring data security, protecting participant privacy, maintaining high dataset quality, and aligning economic incentives among multiple stakeholders. Effective risk management strategies [...] Read more.
The collaborative construction of large-scale, diverse datasets is crucial for developing high-performance machine learning models. However, this collaboration faces significant challenges, including ensuring data security, protecting participant privacy, maintaining high dataset quality, and aligning economic incentives among multiple stakeholders. Effective risk management strategies are essential to systematically identify, assess, and mitigate potential risks associated with data collaboration. This study proposes a federated blockchain-based framework designed to manage multiparty dataset collaborations securely and transparently, explicitly incorporating comprehensive risk management practices. The proposed framework involves six core entities—key distribution center (KDC), researcher (RA), data owner (DO), consortium blockchain, dataset evaluation platform, and the orchestrating model itself—to ensure secure, privacy-preserving and high-quality dataset collaboration. In addition, the framework uses blockchain technology to guarantee the traceability and immutability of data transactions, integrating token-based incentives to encourage data contributors to provide high-quality datasets. To systematically mitigate dataset quality risks, we introduced an innovative categorical dataset quality assessment method leveraging label reordering to robustly evaluate datasets. We validated this quality assessment approach using both publicly available (UCI) and privately constructed datasets. Furthermore, our research implemented the proposed blockchain-based management system within a consortium blockchain infrastructure, benchmarking its performance against existing methods to demonstrate enhanced security, reliability, risk mitigation effectiveness, and incentive alignment in dataset collaboration. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

24 pages, 1806 KiB  
Article
Optimization of Cleaning and Hygiene Processes in Healthcare Using Digital Technologies and Ensuring Quality Assurance with Blockchain
by Semra Tebrizcik, Süleyman Ersöz, Elvan Duman, Adnan Aktepe and Ahmet Kürşad Türker
Appl. Sci. 2025, 15(15), 8460; https://doi.org/10.3390/app15158460 - 30 Jul 2025
Viewed by 96
Abstract
Many hospitals still lack digital traceability in hygiene and cleaning management, leading to operational inefficiencies and inconsistent quality control. This study aims to establish cleaning and hygiene processes in healthcare services that are planned in accordance with standards, as well as to enhance [...] Read more.
Many hospitals still lack digital traceability in hygiene and cleaning management, leading to operational inefficiencies and inconsistent quality control. This study aims to establish cleaning and hygiene processes in healthcare services that are planned in accordance with standards, as well as to enhance the traceability and sustainability of these processes through digitalization. This study proposes a Hyperledger Fabric-based blockchain architecture to establish a reliable and transparent quality assurance system in process management. The proposed Quality Assurance Model utilizes digital technologies and IoT-based RFID devices to ensure the transparent and reliable monitoring of cleaning processes. Operational data related to cleaning processes are automatically recorded and secured using a decentralized blockchain infrastructure. The permissioned nature of Hyperledger Fabric provides a more secure solution compared to traditional data management systems in the healthcare sector while preserving data privacy. Additionally, the execute–order–validate mechanism supports effective data sharing among stakeholders, and consensus algorithms along with chaincode rules enhance the reliability of processes. A working prototype was implemented and validated using Hyperledger Caliper under resource-constrained cloud environments, confirming the system’s feasibility through over 100 TPS throughput and zero transaction failures. Through the proposed system, cleaning/hygiene processes in patient rooms are conducted securely, contributing to the improvement of quality standards in healthcare services. Full article
Show Figures

Figure 1

12 pages, 759 KiB  
Article
Privacy-Preserving Byzantine-Tolerant Federated Learning Scheme in Vehicular Networks
by Shaohua Liu, Jiahui Hou and Gang Shen
Electronics 2025, 14(15), 3005; https://doi.org/10.3390/electronics14153005 - 28 Jul 2025
Viewed by 185
Abstract
With the rapid development of vehicular network technology, data sharing and collaborative training among vehicles have become key to enhancing the efficiency of intelligent transportation systems. However, the heterogeneity of data and potential Byzantine attacks cause the model to update in different directions [...] Read more.
With the rapid development of vehicular network technology, data sharing and collaborative training among vehicles have become key to enhancing the efficiency of intelligent transportation systems. However, the heterogeneity of data and potential Byzantine attacks cause the model to update in different directions during the iterative process, causing the boundary between benign and malicious gradients to shift continuously. To address these issues, this paper proposes a privacy-preserving Byzantine-tolerant federated learning scheme. Specifically, we design a gradient detection method based on median absolute deviation (MAD), which calculates MAD in each round to set a gradient anomaly detection threshold, thereby achieving precise identification and dynamic filtering of malicious gradients. Additionally, to protect vehicle privacy, we obfuscate uploaded parameters to prevent leakage during transmission. Finally, during the aggregation phase, malicious gradients are eliminated, and only benign gradients are selected to participate in the global model update, which improves the model accuracy. Experimental results on three datasets demonstrate that the proposed scheme effectively mitigates the impact of non-independent and identically distributed (non-IID) heterogeneity and Byzantine behaviors while maintaining low computational cost. Full article
(This article belongs to the Special Issue Cryptography in Internet of Things)
Show Figures

Figure 1

25 pages, 1047 KiB  
Article
Integrated Blockchain and Federated Learning for Robust Security in Internet of Vehicles Networks
by Zhikai He, Rui Xu, Binyu Wang, Qisong Meng, Qiang Tang, Li Shen, Zhen Tian and Jianyu Duan
Symmetry 2025, 17(7), 1168; https://doi.org/10.3390/sym17071168 - 21 Jul 2025
Viewed by 301
Abstract
The Internet of Vehicles (IoV) operates in an environment characterized by asymmetric security threats, where centralized vulnerabilities create a critical imbalance that can be disproportionately exploited by attackers. This study addresses this imbalance by proposing a symmetrical security framework that integrates Blockchain and [...] Read more.
The Internet of Vehicles (IoV) operates in an environment characterized by asymmetric security threats, where centralized vulnerabilities create a critical imbalance that can be disproportionately exploited by attackers. This study addresses this imbalance by proposing a symmetrical security framework that integrates Blockchain and Federated Learning (FL) to restore equilibrium in the Vehicle–Road–Cloud ecosystem. The evolution toward sixth-generation (6G) technologies amplifies both the potential of vehicle-to-everything (V2X) communications and its inherent security risks. The proposed framework achieves a delicate balance between robust security and operational efficiency. By leveraging blockchain’s symmetrical and decentralized distribution of trust, the framework ensures data and model integrity. Concurrently, the privacy-preserving approach of FL balances the need for collaborative intelligence with the imperative of safeguarding sensitive vehicle data. A novel Cloud Proxy Re-Encryption Offloading (CPRE-IoV) algorithm is introduced to facilitate efficient model updates. The architecture employs a partitioned blockchain and a smart contract-driven FL pipeline to symmetrically neutralize threats from malicious nodes. Finally, extensive simulations validate the framework’s effectiveness in establishing a resilient and symmetrically secure foundation for next-generation IoV networks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

40 pages, 1540 KiB  
Review
A Survey on Video Big Data Analytics: Architecture, Technologies, and Open Research Challenges
by Thi-Thu-Trang Do, Quyet-Thang Huynh, Kyungbaek Kim and Van-Quyet Nguyen
Appl. Sci. 2025, 15(14), 8089; https://doi.org/10.3390/app15148089 - 21 Jul 2025
Viewed by 505
Abstract
The exponential growth of video data across domains such as surveillance, transportation, and healthcare has raised critical challenges in scalability, real-time processing, and privacy preservation. While existing studies have addressed individual aspects of Video Big Data Analytics (VBDA), an integrated, up-to-date perspective remains [...] Read more.
The exponential growth of video data across domains such as surveillance, transportation, and healthcare has raised critical challenges in scalability, real-time processing, and privacy preservation. While existing studies have addressed individual aspects of Video Big Data Analytics (VBDA), an integrated, up-to-date perspective remains limited. This paper presents a comprehensive survey of system architectures and enabling technologies in VBDA. It categorizes system architectures into four primary types as follows: centralized, cloud-based infrastructures, edge computing, and hybrid cloud–edge. It also analyzes key enabling technologies, including real-time streaming, scalable distributed processing, intelligent AI models, and advanced storage for managing large-scale multimodal video data. In addition, the study provides a functional taxonomy of core video processing tasks, including object detection, anomaly recognition, and semantic retrieval, and maps these tasks to real-world applications. Based on the survey findings, the paper proposes ViMindXAI, a hybrid AI-driven platform that combines edge and cloud orchestration, adaptive storage, and privacy-aware learning to support scalable and trustworthy video analytics. Our analysis in this survey highlights emerging trends such as the shift toward hybrid cloud–edge architectures, the growing importance of explainable AI and federated learning, and the urgent need for secure and efficient video data management. These findings highlight key directions for designing next-generation VBDA platforms that enhance real-time, data-driven decision-making in domains such as public safety, transportation, and healthcare. These platforms facilitate timely insights, rapid response, and regulatory alignment through scalable and explainable analytics. This work provides a robust conceptual foundation for future research on adaptive and efficient decision-support systems in video-intensive environments. Full article
Show Figures

Figure 1

31 pages, 4668 KiB  
Article
BLE Signal Processing and Machine Learning for Indoor Behavior Classification
by Yi-Shiun Lee, Yong-Yi Fanjiang, Chi-Huang Hung and Yung-Shiang Huang
Sensors 2025, 25(14), 4496; https://doi.org/10.3390/s25144496 - 19 Jul 2025
Viewed by 295
Abstract
Smart home technology enhances the quality of life, particularly with respect to in-home care and health monitoring. While video-based methods provide accurate behavior analysis, privacy concerns drive interest in non-visual alternatives. This study proposes a Bluetooth Low Energy (BLE)-enabled indoor positioning and behavior [...] Read more.
Smart home technology enhances the quality of life, particularly with respect to in-home care and health monitoring. While video-based methods provide accurate behavior analysis, privacy concerns drive interest in non-visual alternatives. This study proposes a Bluetooth Low Energy (BLE)-enabled indoor positioning and behavior recognition system, integrating machine learning techniques to support sustainable and privacy-preserving health monitoring. Key optimizations include: (1) a vertically mounted Data Collection Unit (DCU) for improved height positioning, (2) synchronized data collection to reduce discrepancies, (3) Kalman filtering to smooth RSSI signals, and (4) AI-based RSSI analysis for enhanced behavior recognition. Experiments in a real home environment used a smart wristband to assess BLE signal variations across different activities (standing, sitting, lying down). The results show that the proposed system reliably tracks user locations and identifies behavior patterns. This research supports elderly care, remote health monitoring, and non-invasive behavior analysis, providing a privacy-preserving solution for smart healthcare applications. Full article
Show Figures

Figure 1

47 pages, 3078 KiB  
Article
Leveraging Blockchain for Ethical AI: Mitigating Digital Threats and Strengthening Societal Resilience
by Chibuzor Udokwu, Roxana Voicu-Dorobanțu, Abiodun Afolayan Ogunyemi, Alex Norta, Nata Sturua and Stefan Craß
Future Internet 2025, 17(7), 309; https://doi.org/10.3390/fi17070309 - 17 Jul 2025
Viewed by 898
Abstract
This position paper proposes a conceptual framework (CF-BIAI-SXT) for integrating blockchain with AI to enhance ethical governance, transparency, and privacy in high-risk AI applications that ensure societal resilience through the mitigation of sexual exploitation. Sextortion is a growing form of digital sexual exploitation, [...] Read more.
This position paper proposes a conceptual framework (CF-BIAI-SXT) for integrating blockchain with AI to enhance ethical governance, transparency, and privacy in high-risk AI applications that ensure societal resilience through the mitigation of sexual exploitation. Sextortion is a growing form of digital sexual exploitation, and the role of AI in its mitigation and the ethical issues that arise provide a good case for this paper. Through a combination of systematic and narrative literature reviews, the paper first explores the ethical shortcomings of existing AI systems in sextortion prevention and assesses the capacity of blockchain operations to mitigate these limitations. It then develops CF-BIAI-SXT, a framework operationalized through BPMN-modeled components and structured into a three-layer implementation strategy composed of technical enablement, governance alignment, and continuous oversight. The framework is then situated within real-world regulatory constraints, including GDPR and the EU AI Act. This position paper concludes that a resilient society needs ethical, privacy-first, and socially resilient digital infrastructures, and integrating two core technologies, such as AI and blockchain, creates a viable pathway towards this desideratum. Mitigating high-risk environments, such as sextortion, may be a fundamental first step in this pathway, with the potential expansion to other forms of online threats. Full article
(This article belongs to the Special Issue AI and Blockchain: Synergies, Challenges, and Innovations)
Show Figures

Figure 1

21 pages, 733 KiB  
Article
A Secure and Privacy-Preserving Approach to Healthcare Data Collaboration
by Amna Adnan, Firdous Kausar, Muhammad Shoaib, Faiza Iqbal, Ayesha Altaf and Hafiz M. Asif
Symmetry 2025, 17(7), 1139; https://doi.org/10.3390/sym17071139 - 16 Jul 2025
Viewed by 430
Abstract
Combining a large collection of patient data and advanced technology, healthcare organizations can excel in medical research and increase the quality of patient care. At the same time, health records present serious privacy and security challenges because they are confidential and can be [...] Read more.
Combining a large collection of patient data and advanced technology, healthcare organizations can excel in medical research and increase the quality of patient care. At the same time, health records present serious privacy and security challenges because they are confidential and can be breached through networks. Even traditional methods with federated learning are used to share data, patient information might still be at risk of interference while updating the model. This paper proposes the Privacy-Preserving Federated Learning with Homomorphic Encryption (PPFLHE) framework, which strongly supports secure cooperation in healthcare and at the same time providing symmetric privacy protection among participating institutions. Everyone in the collaboration used the same EfficientNet-B0 architecture and training conditions and keeping the model symmetrical throughout the network to achieve a balanced learning process and fairness. All the institutions used CKKS encryption symmetrically for their models to keep data concealed and stop any attempts at inference. Our federated learning process uses FedAvg on the server to symmetrically aggregate encrypted model updates and decrease any delays in our server communication. We attained a classification accuracy of 83.19% and 81.27% when using the APTOS 2019 Blindness Detection dataset and MosMedData CT scan dataset, respectively. Such findings confirm that the PPFLHE framework is generalizable among the broad range of medical imaging methods. In this way, patient data are kept secure while encouraging medical research and treatment to move forward, helping healthcare systems cooperate more effectively. Full article
(This article belongs to the Special Issue Exploring Symmetry in Wireless Communication)
Show Figures

Figure 1

36 pages, 1120 KiB  
Article
Triple-Shield Privacy in Healthcare: Federated Learning, p-ABCs, and Distributed Ledger Authentication
by Sofia Sakka, Nikolaos Pavlidis, Vasiliki Liagkou, Ioannis Panges, Despina Elizabeth Filippidou, Chrysostomos Stylios and Anastasios Manos
J. Cybersecur. Priv. 2025, 5(3), 45; https://doi.org/10.3390/jcp5030045 - 12 Jul 2025
Viewed by 464
Abstract
The growing influence of technology in the healthcare industry has led to the creation of innovative applications that improve convenience, accessibility, and diagnostic accuracy. However, health applications face significant challenges concerning user privacy and data security, as they handle extremely sensitive personal and [...] Read more.
The growing influence of technology in the healthcare industry has led to the creation of innovative applications that improve convenience, accessibility, and diagnostic accuracy. However, health applications face significant challenges concerning user privacy and data security, as they handle extremely sensitive personal and medical information. Privacy-Enhancing Technologies (PETs), such as Privacy-Attribute-based Credentials, Differential Privacy, and Federated Learning, have emerged as crucial tools to tackle these challenges. Despite their potential, PETs are not widely utilized due to technical and implementation obstacles. This research introduces a comprehensive framework for protecting health applications from privacy and security threats, with a specific emphasis on gamified mental health apps designed to manage Attention Deficit Hyperactivity Disorder (ADHD) in children. Acknowledging the heightened sensitivity of mental health data, especially in applications for children, our framework prioritizes user-centered design and strong privacy measures. We suggest an identity management system based on blockchain technology to ensure secure and transparent credential management and incorporate Federated Learning to enable privacy-preserving AI-driven predictions. These advancements ensure compliance with data protection regulations, like GDPR, while meeting the needs of various stakeholders, including children, parents, educators, and healthcare professionals. Full article
(This article belongs to the Special Issue Data Protection and Privacy)
Show Figures

Figure 1

28 pages, 781 KiB  
Article
Unlinkable Revocation Lists for Qualified Electronic Attestations: A Blockchain-Based Framework
by Emil Bureacă, Răzvan-Andrei Leancă, Ionuț Ciobanu, Andrei Brînzea and Iulian Aciobăniței
Electronics 2025, 14(14), 2795; https://doi.org/10.3390/electronics14142795 - 11 Jul 2025
Viewed by 416
Abstract
The use of Verifiable Credentials under the new eIDAS Regulation introduces privacy concerns, particularly during revocation status checks. This paper proposes a privacy-preserving revocation mechanism tailored to the European Digital Identity Wallet and its Architecture and Reference Framework. Our method publishes a daily [...] Read more.
The use of Verifiable Credentials under the new eIDAS Regulation introduces privacy concerns, particularly during revocation status checks. This paper proposes a privacy-preserving revocation mechanism tailored to the European Digital Identity Wallet and its Architecture and Reference Framework. Our method publishes a daily randomized revocation list as a cascaded Bloom filter, enhancing unlinkability by randomizing revocation indexes derived from ARF guidelines. The implementation extends open-source components developed by the European Committee. This work demonstrates a practical, privacy-centric approach to revocation in digital identity systems, supporting the advancement of privacy-preserving technologies. Full article
(This article belongs to the Special Issue Advanced Research in Technology and Information Systems, 2nd Edition)
Show Figures

Figure 1

28 pages, 521 KiB  
Article
Provably Secure and Privacy-Preserving Authentication Scheme for IoT-Based Smart Farm Monitoring Environment
by Hyeonjung Jang, Jihye Choi, Seunghwan Son, Deokkyu Kwon and Youngho Park
Electronics 2025, 14(14), 2783; https://doi.org/10.3390/electronics14142783 - 10 Jul 2025
Viewed by 281
Abstract
Smart farming is an agricultural technology integrating advanced technology such as cloud computing, Artificial Intelligence (AI), the Internet of Things (IoT), and robots into traditional farming. Smart farming can help farmers by increasing agricultural production and managing resources efficiently. However, malicious attackers can [...] Read more.
Smart farming is an agricultural technology integrating advanced technology such as cloud computing, Artificial Intelligence (AI), the Internet of Things (IoT), and robots into traditional farming. Smart farming can help farmers by increasing agricultural production and managing resources efficiently. However, malicious attackers can attempt security attacks because communication in smart farming is conducted via public channels. Therefore, an authentication scheme is necessary to ensure security in smart farming. In 2024, Rahaman et al. proposed a privacy-centric authentication scheme for smart farm monitoring. However, we demonstrated that their scheme is vulnerable to stolen mobile device, impersonation, and ephemeral secret leakage attacks. This paper suggests a secure and privacy-preserving scheme to resolve the security defects of the scheme proposed by Rahaman et al. We also verified the security of our scheme through “the Burrows-Abadi-Needham (BAN) logic”, “Real-or-Random (RoR) model”, and “Automated Validation of Internet Security Protocols and Application (AVISPA) tool”. Furthermore, a performance analysis of the proposed scheme compared with related studies was conducted. The comparison result proves that our scheme was more efficient and secure than related studies in the smart farming environment. Full article
(This article belongs to the Special Issue Trends in Information Systems and Security)
Show Figures

Figure 1

13 pages, 1053 KiB  
Opinion
A Framework for the Design of Privacy-Preserving Record Linkage Systems
by Zixin Nie, Benjamin Tyndall, Daniel Brannock, Emily Gentles, Elizabeth Parish and Alison Banger
J. Cybersecur. Priv. 2025, 5(3), 44; https://doi.org/10.3390/jcp5030044 - 9 Jul 2025
Viewed by 354
Abstract
Record linkage can enhance the utility of data by bringing data together from different sources, increasing the available information about data subjects and providing more holistic views. Doing so, however, can increase privacy risks. To mitigate these risks, a family of methods known [...] Read more.
Record linkage can enhance the utility of data by bringing data together from different sources, increasing the available information about data subjects and providing more holistic views. Doing so, however, can increase privacy risks. To mitigate these risks, a family of methods known as privacy-preserving record linkage (PPRL) was developed, using techniques such as cryptography, de-identification, and the strict separation of roles to ensure data subjects’ privacy remains protected throughout the linkage process, and the resulting linked data poses no additional privacy risks. Building privacy protections into the architecture of the system (for instance, ensuring that data flows between different parties in the system do not allow for transmission of private information) is just as important as the technology used to obfuscate private information. In this paper, we present a technology-agnostic framework for designing PPRL systems that is focused on privacy protection, defining key roles, providing a system architecture with data flows, detailing system controls, and discussing privacy evaluations that ensure the system protects privacy. We hope that the framework presented in this paper can both help elucidate how currently deployed PPRL systems protect privacy and help developers design future PPRL systems. Full article
(This article belongs to the Section Privacy)
Show Figures

Figure 1

32 pages, 435 KiB  
Review
Analysis of Data Privacy Breaches Using Deep Learning in Cloud Environments: A Review
by Abdulqawi Mohammed Almosti and M. M. Hafizur Rahman
Electronics 2025, 14(13), 2727; https://doi.org/10.3390/electronics14132727 - 7 Jul 2025
Viewed by 473
Abstract
Despite the advantages of using cloud computing, data breaches and security challenges remain, especially when dealing with sensitive information. The integration of deep learning (DL) techniques in a cloud environment ensures privacy preservation. This review paper analyzes 38 papers published from 2020 to [...] Read more.
Despite the advantages of using cloud computing, data breaches and security challenges remain, especially when dealing with sensitive information. The integration of deep learning (DL) techniques in a cloud environment ensures privacy preservation. This review paper analyzes 38 papers published from 2020 to 2025, focusing on privacy-preserving techniques in DL for cloud environments. Combining different privacy preservation technologies with DL results in improved utility for privacy protection and better security against data breaches than using individual applications such as differential privacy, homomorphic encryption, or federated learning. Further, a discussion is provided on the technical limitations when applying DL with various privacy preservation techniques, which include large communication overhead, lower model accuracy, and high computational cost. Additionally, this review paper presents the latest research in a comprehensive manner and provides directions for future research necessary to develop privacy-preserving DL models. Full article
(This article belongs to the Special Issue Security and Privacy for AI)
Show Figures

Figure 1

21 pages, 1097 KiB  
Article
An Industry Application of Secure Augmentation and Gen-AI for Transforming Engineering Design and Manufacturing
by Dulana Rupanetti, Corissa Uberecken, Adam King, Hassan Salamy, Cheol-Hong Min and Samantha Schmidgall
Algorithms 2025, 18(7), 414; https://doi.org/10.3390/a18070414 - 4 Jul 2025
Viewed by 385
Abstract
This paper explores the integration of Large Language Models (LLMs) and secure Gen-AI technologies within engineering design and manufacturing, with a focus on improving inventory management, component selection, and recommendation workflows. The system is intended for deployment and evaluation in a real-world industrial [...] Read more.
This paper explores the integration of Large Language Models (LLMs) and secure Gen-AI technologies within engineering design and manufacturing, with a focus on improving inventory management, component selection, and recommendation workflows. The system is intended for deployment and evaluation in a real-world industrial environment. It utilizes vector embeddings, vector databases, and Approximate Nearest Neighbor (ANN) search algorithms to implement Retrieval-Augmented Generation (RAG), enabling context-aware searches for inventory items and addressing the limitations of traditional text-based methods. Built on an LLM framework enhanced by RAG, the system performs similarity-based retrieval and part recommendations while preserving data privacy through selective obfuscation using the ROT13 algorithm. In collaboration with an industry sponsor, real-world testing demonstrated strong results: 88.4% for Answer Relevance, 92.1% for Faithfulness, 80.2% for Context Recall, and 83.1% for Context Precision. These results demonstrate the system’s ability to deliver accurate and relevant responses while retrieving meaningful context and minimizing irrelevant information. Overall, the approach presents a practical and privacy-aware solution for manufacturing, bridging the gap between traditional inventory tools and modern AI capabilities and enabling more intelligent workflows in design and production processes. Full article
(This article belongs to the Section Evolutionary Algorithms and Machine Learning)
Show Figures

Figure 1

Back to TopTop