Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = pressure measurement transducers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4653 KB  
Article
Design, Fabrication, and Characterization of a Piezoelectric Micromachined Ultrasonic Transducer with a Suspended Cantilever Beam-like Structure with Enhanced SPL for Air Detection Applications
by Yanyuan Ba, Yiming Li and Yuanhang Zhou
Micromachines 2025, 16(11), 1280; https://doi.org/10.3390/mi16111280 - 13 Nov 2025
Abstract
Air-coupled ultrasonic detection demands high transmission performance from piezoelectric micromachined ultrasonic transducers (PMUTs). However, existing microelectromechanical system (MEMS)-based PMUTs deliver limited output, which compromises measurement accuracy and constrains further development. This work proposes a novel PMUT design with a cantilevered, boundary-suspended diaphragm that [...] Read more.
Air-coupled ultrasonic detection demands high transmission performance from piezoelectric micromachined ultrasonic transducers (PMUTs). However, existing microelectromechanical system (MEMS)-based PMUTs deliver limited output, which compromises measurement accuracy and constrains further development. This work proposes a novel PMUT design with a cantilevered, boundary-suspended diaphragm that relieves residual stress, relaxes edge constraints, increases the mechanical degrees of freedom, and enables larger vibration amplitudes. Additionally, this work develops an accurate air-coupling model to predict device performance and a streamlined micro-nanofabrication process for device realization. Experimental results show that under a 1 Vpp (−5 Voffset) drive, the device achieves a peak acoustic pressure of 4.004 Pa at 69.3 kHz, measured at 10 cm distance in air, corresponding to a maximum sound pressure level of 106.02 dB (re 2 × 10−5 Pa). Compared to a traditional PMUT at 98.45 dB, this represents a 7.57 dB improvement and, to our knowledge, the highest reported sound pressure level at 10 cm for a single PMUT operating near 70 kHz under a 1 Vpp excitation. These results validate the significant enhancement in transmission performance achieved by the proposed topological structure, offering a solution to overcome the common bottleneck of insufficient output in PMUTs, and indicate strong potential for broader air-coupled sensing applications. Full article
Show Figures

Figure 1

22 pages, 4342 KB  
Article
Differential Single-Crystal Waveguide Ultrasonic Temperature Measurements Based on Magnetostriction
by Yanlong Wei, Gang Yang, Gao Wang, Haijian Liang, Hui Qi, Xiaofang Mu, Zhen Tian, Fujiang Yuan and Qianxiang Zhang
Micromachines 2025, 16(11), 1274; https://doi.org/10.3390/mi16111274 - 13 Nov 2025
Viewed by 88
Abstract
In extremely harsh high-temperature environments in aerospace, industrial manufacturing and other fields, traditional ultrasonic temperature measurement technology has certain limitations. This paper proposes a differential single crystal sapphire ultrasonic temperature measurement method based on the magnetostrictive effect. This method abandons the traditional sensitive [...] Read more.
In extremely harsh high-temperature environments in aerospace, industrial manufacturing and other fields, traditional ultrasonic temperature measurement technology has certain limitations. This paper proposes a differential single crystal sapphire ultrasonic temperature measurement method based on the magnetostrictive effect. This method abandons the traditional sensitive flexural structure and uses two single-crystal sapphire waveguides of the same material, same diameter, and slightly different lengths as sensing elements. By measuring the time delay difference between their end-face echoes, the sound velocity is inverted and the temperature is measured. COMSOL multi-physics v6.1 simulation was used to optimize the bias magnetic field design of the magnetostrictive transducer, which improved the system’s energy conversion efficiency and high-temperature stability. Experimental results show that in the range of 300–1200 °C, the sensor delay increases monotonically with increasing temperature, the sound speed shows a downward trend, and the repeatability error is less than 5%; the differential processing method effectively suppresses common mode noise in the range of 300–700 °C, and still shows high sensitivity above 800 °C. This research offers a technical solution with high reliability and accuracy for temperature monitoring in extreme environments such as those characterized by high temperatures and high pressures. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

23 pages, 2823 KB  
Article
Using the EMFIT Sensor in Geophysical Monitoring
by Victorin-Emilian Toader, Constantin Ionescu, Iren-Adelina Moldovan and Alexandru Marmureanu
Sensors 2025, 25(21), 6746; https://doi.org/10.3390/s25216746 - 4 Nov 2025
Viewed by 423
Abstract
EMFIT, also referred to as EMFi, is a ferroelectret film related to polyvinylidene fluoride (PVDF) sensors. It is an electroactive polymer (EAP) based on a polyolefin structure and consists of three layers of polyester film. Its application in geophysical monitoring has not been [...] Read more.
EMFIT, also referred to as EMFi, is a ferroelectret film related to polyvinylidene fluoride (PVDF) sensors. It is an electroactive polymer (EAP) based on a polyolefin structure and consists of three layers of polyester film. Its application in geophysical monitoring has not been reported in the literature. At present, EMFIT is mainly employed in ballistocardiography and medical sleep monitoring, as developed by the manufacturer Emfit Ltd. (Vaajakoski, Finland). Within the multidisciplinary monitoring network of the National Institute for Earth Physics (NIEP), EMFIT is used as a pressure sensor in combination with infrasound transducers and microphones deployed in seismic areas. The primary aim of this study is to evaluate its suitability for detecting seismic noise that precedes earthquakes, generated by rock fracturing associated with crustal deformation. Although similar studies have been reported, they have not involved the use of EMFIT sensors. The novelty of this approach lies in the large surface area and mechanical flexibility of the material. Beyond seismic forecasting, the research also examines whether this type of sensor can contribute to seismic monitoring as a complement to conventional instruments such as accelerometers, seismometers, and microbarometers. Data analysis relies primarily on spectral time-series methods and incorporates measurements from other acoustic sensors (microphones and microbarometers) as well as a weather station. The working hypothesis is the potential correlation between the recorded data and the presence of enhanced noise prior to the detection of seismic waves by standard seismic sensors. The target area for this investigation is Vrancea, specifically the Vrâncioaia seismic station, where multidisciplinary monitoring includes infrasound, radon, thoron, soil temperature, and atmospheric electrical discharges. Preliminary tests suggest that the EMFIT sensor may function as a highly sensitive device, effectively serving as an “ear” for detecting ground noise. Full article
(This article belongs to the Special Issue Sensing Technologies for Geophysical Monitoring)
Show Figures

Figure 1

7 pages, 9296 KB  
Data Descriptor
Groundwater Table Depth Monitoring Dataset (2023–2025) from an Extracted Kaigu Peatland Section in Central Latvia
by Normunds Stivrins, Jānis Bikše, Sabina Alta and Inga Grinfelde
Data 2025, 10(11), 176; https://doi.org/10.3390/data10110176 - 1 Nov 2025
Viewed by 203
Abstract
Extracted peatlands experience strong hydrological fluctuations due to drainage, vegetation succession, and climatic variability, yet long-term, high-frequency groundwater data remain scarce in Northern Europe. Our dataset presents two years (June 2023–May 2025) of 30-min groundwater table depth (WTD) measurements from six wells installed [...] Read more.
Extracted peatlands experience strong hydrological fluctuations due to drainage, vegetation succession, and climatic variability, yet long-term, high-frequency groundwater data remain scarce in Northern Europe. Our dataset presents two years (June 2023–May 2025) of 30-min groundwater table depth (WTD) measurements from six wells installed across contrasting Greenhouse Gass Emission Site Types (GEST 5, 6, 15, 20) in the Kaigu peatlands, central Latvia. Each well was equipped with an automatic pressure transducer (TD-Diver, van Essen Instruments) recording absolute pressure (m H2O). The dataset also includes metadata on coordinates, installation elevation, well construction, and manual control measurements. All values are unprocessed, i.e., they represent original logger outputs without atmospheric or elevation correction, enabling users to apply their own calibration or referencing methods. This is the first openly available high-frequency extracted peatland groundwater pressure dataset from the Baltic region and provides a foundation for hydrological modelling and rewetting designs. Full article
Show Figures

Figure 1

24 pages, 3652 KB  
Article
A Modern Ultrasonic Cleaning Tank Developed for the Jewelry Manufacturing Process and Its Cleaning Efficiency
by Chatchapat Chaiaiad, Pawantree Borthai and Jatuporn Thongsri
Inventions 2025, 10(5), 90; https://doi.org/10.3390/inventions10050090 - 7 Oct 2025
Viewed by 551
Abstract
This research details the development and evaluation of a Modern Ultrasonic Cleaning Tank (MUCT) designed to enhance cleaning efficiency in jewelry manufacturing, particularly for silver jewelry, replacing the traditional method, which was less efficient and had higher operating costs. The MUCT offers capabilities [...] Read more.
This research details the development and evaluation of a Modern Ultrasonic Cleaning Tank (MUCT) designed to enhance cleaning efficiency in jewelry manufacturing, particularly for silver jewelry, replacing the traditional method, which was less efficient and had higher operating costs. The MUCT offers capabilities of single- or dual-frequency ultrasonic operation (28 kHz and 40 kHz) and adjustable transducer positioning. An advanced method involving computer simulations, utilizing harmonic response analysis and transient dynamic analysis, was employed to determine the acoustic pressure inside the MUCT, thereby indicating the cavitation intensity required to achieve high cleaning efficiency. Simulation results confirm that this design can distribute acoustic pressure throughout the MUCT, as intended. A prototype MUCT was assembled, and its operation was validated through foil corrosion tests, ultrasonic power concentration (UPC) measurements, and jewelry cleaning tests. The results revealed that the MUCT’s center provided the maximum UPC of 28 W/L and an acoustic pressure of 30.43 MPa, effectively operating at single and dual frequencies, and achieving superior dirt removal. The highest cleaning efficiency of 100% was achieved using dual frequency with a 97% water and 3% dishwashing liquid mixture at 60 °C, exceeding the 23.52% obtained with water at 27 °C without ultrasonic treatment. The MUCT, successfully integrated into the manufacturing process, offers customizable features to meet various cleaning needs, providing flexibility, improved performance, and cost savings. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

23 pages, 2058 KB  
Article
Inductive Displacement Sensor Operating in an LC Oscillator System Under High Pressure Conditions—Basic Design Principles
by Janusz Nurkowski and Andrzej Nowakowski
Sensors 2025, 25(19), 6078; https://doi.org/10.3390/s25196078 - 2 Oct 2025
Viewed by 490
Abstract
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the [...] Read more.
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the pressure chamber, in which it serves as the inductive component. The specimen’s deformation changes the coil’s length and inductance, thereby altering the oscillator’s resonant frequency. Paired with a reference coil, the system achieves strain resolution of ~100 nm at pressures exceeding 400 MPa. Sensor design challenges include both electrical parameters (inductance and resistance of the sensor, capacitance of the resonant circuit) and mechanical parameters (number and diameter of coil turns, their positional stability, wire diameter). The basic requirement is to achieve stable oscillations (i.e., a high Q-factor of the resonant circuit) while maintaining maximum sensor sensitivity. Miniaturization of the sensor and minimizing the tensile force at its mounting points on the specimen are also essential. Improvement of certain sensor parameters often leads to the degradation of others; therefore, the design requires a compromise depending on the specific measurement conditions. This article presents the mathematical interdependencies among key sensor parameters, facilitating optimized sensor design. Full article
(This article belongs to the Topic AI Sensors and Transducers)
Show Figures

Figure 1

20 pages, 4657 KB  
Article
Experimental and Numerical Analysis of Nozzle-Induced Cavitating Jets: Optical Instrumentation, Pressure Fluctuations and Anisotropic Turbulence Modeling
by Luís Gustavo Macêdo West, André Jackson Ramos Simões, Leandro do Rozário Teixeira, Igor Silva Moreira dos Anjos, Antônio Samuel Bacelar de Freitas Devesa, Lucas Ramalho Oliveira, Juliane Grasiela de Carvalho Gomes, Leonardo Rafael Teixeira Cotrim Gomes, Lucas Gomes Pereira, Luiz Carlos Simões Soares Junior, Germano Pinto Guedes, Geydison Gonzaga Demetino, Marcus Vinícius Santos da Silva, Vitor Leão Filardi, Vitor Pinheiro Ferreira, André Luiz Andrade Simões, Luciano Matos Queiroz and Iuri Muniz Pepe
Fluids 2025, 10(9), 223; https://doi.org/10.3390/fluids10090223 - 26 Aug 2025
Cited by 1 | Viewed by 717
Abstract
Cavitation has been widely explored to enhance physical and chemical processes across various applications. This study aimed to model the key characteristics of a cavitation jet, induced by a triangular-orifice nozzle, using both experimental and numerical methods. Optical instrumentation, a pressure transducer and [...] Read more.
Cavitation has been widely explored to enhance physical and chemical processes across various applications. This study aimed to model the key characteristics of a cavitation jet, induced by a triangular-orifice nozzle, using both experimental and numerical methods. Optical instrumentation, a pressure transducer and the Reynolds-Averaged Navier–Stokes (RANS) equations were employed. Optical instrumentation and high-speed photography detected the two-phase flow generated by water vaporization, revealing a mean decay pattern. Irradiance fluctuations and photographic evidence provided results about the light transmission dynamics through cavitating jets. Pressure fluctuations exhibited similar growth and decay, supporting optical instrumentation as a viable method for assessing cavitation intensity. Experimental data showed a strong relationship between irradiance and flow rate (R2 = 0.998). This enabled the correlation of the standard deviation of instantaneous pressure measurements and normalized flow rate (R2 = 0.977). Furthermore, vapor volume fraction and normalized flow rate reached a correlation coefficient of 0.999. On the simulation side, the SSG-RSM turbulence mode showed better agreement with experimental data, with relative deviations ranging from 2.1% to 6.6%. The numerical results suggest that vapor jet length is related to vapor fraction through a power law, enabling the development of new equations. These results demonstrated that anisotropic turbulence modeling is essential to reproduce experimental observations compared to mean flow properties. Based on the agreement between the numerical model and the experimental data for mean flow quantities, a formulation is proposed to estimate the jet length originating from the nozzle, offering a predictive approach for cavitating jet behavior. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

20 pages, 4410 KB  
Article
Experimental Investigation on the Hydraulic Characteristics of Self-Rotating Flood Barrier
by Jooyeon Lee, Byoungjoon Na and Sang-Ho Oh
J. Mar. Sci. Eng. 2025, 13(8), 1542; https://doi.org/10.3390/jmse13081542 - 11 Aug 2025
Viewed by 1264
Abstract
This study investigated the hydraulic characteristics of a self-rotating flood barrier (SRFB) by performing laboratory experiments. The SRFB is proposed as a secure solution to withstand both waves and sudden water level rise, thereby protecting the coastal area behind it. The SRFB is [...] Read more.
This study investigated the hydraulic characteristics of a self-rotating flood barrier (SRFB) by performing laboratory experiments. The SRFB is proposed as a secure solution to withstand both waves and sudden water level rise, thereby protecting the coastal area behind it. The SRFB is designed to rotate and rise automatically by buoyancy when the water level exceeds a certain threshold or waves start to overtop the crest level of the caisson, where the barrier is enclosed. The barrier begins to rise when the chamber is filled with enough water for the buoyancy force to exceed its own weight. The performance of the structure was tested under various regular wave conditions at different water depths. Pressure transducers were placed along the front face of the barrier to measure the wave pressures acting on it. The barrier’s angular displacement was also identified using synchronized video footage during the measurements. The results showed that the overall magnitude of the measured pressures increased with water depth due to the larger volume of water inflow from overtopping waves. During the rise in the barrier, the pressure profiles dynamically varied with the rotation angle as the pattern of water flow into the chamber changed depending on the test cases. Analysis results showed how the pressures are distributed along the barrier at the moment of peak wave force. These findings would provide fundamental information for estimating design wave forces on the structure. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Structures)
Show Figures

Figure 1

27 pages, 3540 KB  
Article
Multi-Objective Optimization of IME-Based Acoustic Tweezers for Mitigating Node Displacements
by Hanjui Chang, Yue Sun, Fei Long and Jiaquan Li
Polymers 2025, 17(15), 2018; https://doi.org/10.3390/polym17152018 - 24 Jul 2025
Viewed by 532
Abstract
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded [...] Read more.
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded electronics (IMEs) technology to fabricate piezoelectric micro-ultrasonic transducers with micron-scale precision, addressing the critical issue of acoustic node displacement caused by thermal–mechanical coupling in injection molding—a problem that impairs wave transmission efficiency and operational stability. To optimize the IME process parameters, a hybrid multi-objective optimization framework integrating NSGA-II and MOPSO is developed, aiming to simultaneously minimize acoustic node displacement, volumetric shrinkage, and residual stress distribution. Key process variables—packing pressure (80–120 MPa), melt temperature (230–280 °C), and packing time (15–30 s)—are analyzed via finite element modeling (FEM) and validated through in situ tie bar elongation measurements. The results show a 27.3% reduction in node displacement amplitude and a 19.6% improvement in wave transmission uniformity compared to conventional methods. This methodology enhances acoustic tweezers’ operational stability and provides a generalizable framework for multi-physics optimization in MEMS manufacturing, laying a foundation for next-generation applications in single-cell manipulation, lab-on-a-chip systems, and nanomaterial assembly. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

27 pages, 2101 KB  
Article
Optimizing Essential Oil Mixtures: Synergistic Effects on Cattle Rumen Fermentation and Methane Emission
by Memoona Nasir, María Rodríguez-Prado, Marica Simoni, Susana M. Martín-Orúe, José Francisco Pérez and Sergio Calsamiglia
Animals 2025, 15(14), 2105; https://doi.org/10.3390/ani15142105 - 16 Jul 2025
Cited by 1 | Viewed by 1950
Abstract
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. [...] Read more.
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. Exp. 1 screened five oils using two triad combinations. Triad 1 tested 10 combinations of thyme (THY), peppermint (PPM), and cinnamon leaf (CIN) oils. Triad 2 tested 10 combinations of anise (ANI), clove leaf (CLO), and peppermint (PPM) oils. Each blend was tested at 400 mg/L, using batch culture methods measuring: pH, ammonia-N (NH3-N), and volatile fatty acids (VFAs). The two most effective blends, designated as T1 and T2, were selected for Exp. 2 to assess total gas and methane (CH4) production using pressure transducer methods. All treatments were incubated in a rumen fluid–buffer mix with a 50:50 forage-to-concentrate substrate (pH 6.6). In Exp. 1, data were analyzed according to the Simplex Centroid Design using R-Studio. In Exp. 2, an analysis was conducted using the MIXED procedure in SAS. Mean comparisons were assessed through Tukey’s test. The results from Exp. 1 identified CIN+PPM (80:20) and ANI+CLO (80:20) as optimal combinations, both increasing total VFAs while reducing acetate/propionate ratios and NH3-N concentrations. In Exp. 2, both combinations significantly reduced total gas and CH4 productions compared to the control, with CIN+PPM achieving the greatest methane reduction (similar to monensin, the positive control). Specific essential oil combinations demonstrated synergistic effects in modulating rumen fermentation and reducing methane emissions, offering potential for sustainable livestock production. Further in vivo validation is required to optimize dosing and assess long-term effects on animal performance. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Ruminants)
Show Figures

Figure 1

29 pages, 8416 KB  
Article
WSN-Based Multi-Sensor System for Structural Health Monitoring
by Fatih Dagsever, Zahra Sharif Khodaei and M. H. Ferri Aliabadi
Sensors 2025, 25(14), 4407; https://doi.org/10.3390/s25144407 - 15 Jul 2025
Viewed by 3752
Abstract
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. [...] Read more.
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. However, developing a miniaturized, cost-effective, and multi-sensor solution based on Wireless Sensor Networks (WSNs) remains a significant challenge, particularly for SHM applications in weight-sensitive aerospace structures. To address this, the present study introduces a novel WSN-based Multi-Sensor System (MSS) that integrates multiple sensing capabilities onto a 3 × 3 cm flexible Printed Circuit Board (PCB). The proposed system combines a Piezoelectric Transducer (PZT) for impact detection; a strain gauge for mechanical deformation monitoring; an accelerometer for capturing dynamic responses; and an environmental sensor measuring temperature, pressure, and humidity. This high level of functional integration, combined with real-time Data Acquisition (DAQ) and precise time synchronization via Bluetooth Low Energy (LE), distinguishes the proposed MSS from conventional SHM systems, which are typically constrained by bulky hardware, single sensing modalities, or dependence on wired communication. Experimental evaluations on composite panels and aluminum specimens demonstrate reliable high-fidelity recording of PZT signals, strain variations, and acceleration responses, matching the performance of commercial instruments. The proposed system offers a low-power, lightweight, and scalable platform, demonstrating strong potential for on-board SHM in aircraft applications. Full article
Show Figures

Figure 1

24 pages, 11256 KB  
Article
Indoor Measurement of Contact Stress Distributions for a Slick Tyre at Low Speed
by Gabriel Anghelache and Raluca Moisescu
Sensors 2025, 25(13), 4193; https://doi.org/10.3390/s25134193 - 5 Jul 2025
Viewed by 597
Abstract
The paper presents results of experimental research on tyre–road contact stress distributions, measured indoors for a motorsport slick tyre. The triaxial contact stress distributions have been measured using the complex transducer containing a transversal array of 30 sensing pins covering the entire contact [...] Read more.
The paper presents results of experimental research on tyre–road contact stress distributions, measured indoors for a motorsport slick tyre. The triaxial contact stress distributions have been measured using the complex transducer containing a transversal array of 30 sensing pins covering the entire contact patch width. Wheel displacement in the longitudinal direction was measured using a rotary encoder. The parameters allocated for the experimental programme have included different values of tyre inflation pressure, vertical load, camber angle and toe angle. All measurements were performed at low longitudinal speed in free-rolling conditions. The influence of tyre functional parameters on the contact patch shape and size has been discussed. The stress distributions on each orthogonal direction are presented in multiple formats, such as 2D graphs in which the curves show the stresses measured by each sensing element versus contact length; surfaces with stress values plotted as vertical coordinates versus contact patch length and width; and colour maps for stress distributions and orientations of shear stress vectors. The effects of different parameter types and values on stress distributions have been emphasised and analysed. Furthermore, the magnitude and position of local extreme values for each stress distribution have been investigated with respect to the above-mentioned tyre functional parameters. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

24 pages, 7263 KB  
Article
Biocompatible and Hermetic Encapsulation of PMUTs: Effects of Parylene F-VT4 and ALD Stacks on Membrane Vibration and Acoustic Performance
by Esmaeil Afshari, Samer Houri, Rik Verplancke, Veronique Rochus, Maarten Cauwe, Pieter Gijsenbergh and Maaike Op de Beeck
Sensors 2025, 25(13), 4074; https://doi.org/10.3390/s25134074 - 30 Jun 2025
Viewed by 3396
Abstract
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over [...] Read more.
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over time, biocompatible and hermetic encapsulation is essential. This study investigates the impact of Parylene F-VT4 layers of various thicknesses as well as the effect of multilayer stacks of Parylene F-VT4 combined with atomic layer-deposited nanolayers of Al2O3 and HfO2 on the mechanical and acoustic properties of PMUTs. PMUTs with various diameters (40 µm, 60 µm, and 80 µm) are fabricated and tested both as stand-alone devices and as arrays. The mechanical behavior of single stand-alone PMUT devices is characterized in air and in water using laser Doppler vibrometry (LDV), while the acoustic output of arrays is evaluated by pressure measurements in water. Experimental results reveal a non-monotonic change in resonance frequency as a function of increasing encapsulation thickness due to the competing effects of added mass and increased stiffness. The performance of PMUT arrays is clearly influenced by the encapsulation. For certain array designs, the encapsulation significantly improved the arrays’ pressure output, a change that is attributed to the change in the acoustic wavelength and inter-element coupling. These findings highlight the impact of encapsulation in modifying and potentially enhancing PMUT performance. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 3620 KB  
Article
A Novel Wearable Device for Continuous Blood Pressure Monitoring Utilizing Strain Gauge Technology
by Justin P. McMurray, Aubrey DeVries, Kendall Frazee, Bailey Sizemore, Kimberly L. Branan, Richard Jennings and Gerard L. Coté
Biosensors 2025, 15(7), 413; https://doi.org/10.3390/bios15070413 - 27 Jun 2025
Cited by 1 | Viewed by 5586
Abstract
Cardiovascular disease (CVD) is the leading cause of global mortality, with hypertension affecting over one billion people. Current noninvasive blood pressure (BP) systems, like cuffs, suffer from discomfort and placement errors and lack continuous monitoring. Wearable solutions promise improvements, but technologies like photoplethysmography [...] Read more.
Cardiovascular disease (CVD) is the leading cause of global mortality, with hypertension affecting over one billion people. Current noninvasive blood pressure (BP) systems, like cuffs, suffer from discomfort and placement errors and lack continuous monitoring. Wearable solutions promise improvements, but technologies like photoplethysmography (PPG) and bioimpedance (BIOZ) face usability and clinical accuracy limitations. PPG is sensitive to skin tone and body mass index (BMI) variability, while BIOZ struggles with electrode contact and reusability. We present a novel, strain gauge-based wearable BP device that directly quantifies pressure via a dual transducer system, compensating for tissue deformation and external forces to enable continuous, accurate BP measurement. The reusable, energy-efficient, and compact design suits long-term daily use. A novel leg press protocol across 10 subjects (systolic: 71.04–241.42 mmHg, diastolic: 53.46–123.84 mmHg) validated its performance under dynamic conditions, achieving mean absolute errors of 2.45 ± 3.99 mmHg (systolic) and 1.59 ± 2.08 mmHg (diastolic). The device showed enhanced robustness compared to the Finapres, with less motion-induced noise. This technology significantly advances current methods by delivering continuous, real-time BP monitoring without reliance on electrodes, independent of skin tone, while maintaining a high accuracy and user comfort. Full article
Show Figures

Figure 1

19 pages, 3708 KB  
Article
Multiple Ring Electrode-Based PMUT with Tunable Deflections
by Jan Helmerich, Manfred Wich, Annika Hofmann, Thomas Schaechtle and Stefan Johann Rupitsch
Micromachines 2025, 16(6), 623; https://doi.org/10.3390/mi16060623 - 25 May 2025
Cited by 2 | Viewed by 2947
Abstract
Ultrasonic applications such as non-destructive testing, biomedical imaging or range measurements are currently based on piezoelectric bulk transducers. Yet, these kinds of transducers with their mm to cm dimensions are rather impractical in fields in which both frequencies in the kHz region and [...] Read more.
Ultrasonic applications such as non-destructive testing, biomedical imaging or range measurements are currently based on piezoelectric bulk transducers. Yet, these kinds of transducers with their mm to cm dimensions are rather impractical in fields in which both frequencies in the kHz region and small-feature sizes are required. This fact mainly relates to the inverse relationship between the resonance frequency constant and the transducers’ dimension, yielding a higher frequency and attenuation with a decreasing size. Piezoelectric micromachined ultrasonic transducers (PMUTs), in comparison, incorporate a small-scale µm design while preserving the operating frequency in the desired kHz range. This contribution presents the detailed manufacturing of such a PMUT with a multiple ring electrode‑based structure to additionally adjust the sound pressure fields. The PMUT will be characterized by its deflection in air along with the characterization of the piezoelectric material lead zirconate titanate (PZT) itself. The measurements showed a maximum polarization of 21.8 µC/cm2 at 50 kV/cm, the PMUT’s displacement of 30.50 nm/V in air when all electrodes are driven, and an adjustable deflection via different electrode excitations without the need for additional hardware. The ring design also offered the possibility to emit two distinct frequencies simultaneously. These results demonstrate the potential of the designs for small-feature-size applications as they are in high demand for implantable devices, miniaturized ultrasonic-based communication or drug delivery. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers)
Show Figures

Figure 1

Back to TopTop