Using the EMFIT Sensor in Geophysical Monitoring
Abstract
1. Introduction
2. EMFIT Transducer and Experimental Tests
2.1. Transducer Characteristics
2.2. Experimental Tests
3. Results
- f = resonant frequency, Hz;
- n = harmonic 1, 3, 5 …;
- v = speed of sound, 340 m/s;
- L = tube length, m;
- d = tube diameter, m;
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kärki, S.; Lekkala, J. A lumped-parameter transducer model for piezoelectric and ferroelectret polymers. Measurement 2012, 45, 453–458. [Google Scholar] [CrossRef]
- Grigorescu, L.; Diaconescu, I. The emfi material and their use. In The Annals of “Dunarea de Jos” University of Galati; Galati University Press: Galati, Romania, 2010; pp. 27–30. [Google Scholar]
- Karki, S.; Kaariainen, M.; Lekkala, J. Measurement of heart sounds with EMFi transducer. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 1683–1686. [Google Scholar] [CrossRef]
- Qiu, X.; Bian, Y.; Liu, J.; Xiang, Y.; Ding, T.; Zhu, W.; Xuan, F. Ferroelectrets: Recent developments. IET Nanodielectrics 2022, 5, 113–124. [Google Scholar] [CrossRef]
- Lekkala, J.; Tuppurainen, J.; Paajanen, M. Material and Operational Properties of Large-Area Membrane Type Sensors for Smart Environments. In Proceedings of the XVII IMEKO World Congress, Dubrovnik, Croatia, 22–27 June 2003; pp. 2045–2048. Available online: http://www.imeko.org/publications/wc-2003/PWC-2003-TC18-005.pdf (accessed on 2 November 2025).
- Kärki, S.; Salpavaara, T.; Lekkala, J. EMFi in wearable audio applications. In Proceedings of the 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), Aachen, Germany, 26–28 March 2007; Springer: Berlin/Heidelberg, Germany, 2007; Volume 13, pp. 86–91. [Google Scholar] [CrossRef]
- Lekkala, J.; Paajanen, M.; Nykänen, H.; Antila, M.; Kataja, J. ElectroMechanical Film (EMFi)–Promising Electret Material for Active Control of Sound Applications. 2000. Available online: https://www.tib.eu/en/search/id/tema%3ATEMA20010904391/ElectroMechanical-film-EMFi-promising-electret/ (accessed on 2 November 2025).
- Lekkala, J.; Salpavaara, T.; Kärki, S. EMFI-Versatile material for monitoring of human functions. In Proceedings of the 18th IMEKO World Congress 2006: Metrology for a Sustainable Development, Rio de Janeiro, Brazil, 17–22 September 2006; Volume 1, pp. 376–381. [Google Scholar]
- Chiselev, A.-M.; Moraru, L. A Study of Far Field Directivity Pattern of Bio-Inspired EMFit Emitters. IEEE Sens. J. 2012, 12, 1372–1376. [Google Scholar] [CrossRef]
- Jiménez, A.; Hernández, Á.; Ureña, J.; Pérez, M.C.; Álvarez, F.J.; De Marziani, C.; García, J.J.; Villadangos, J.M. EMFi-based ultrasonic transducer for robotics applications. Sens. Actuators A Phys. 2008, 148, 342–349. [Google Scholar] [CrossRef]
- Sanomat, H.; Malysz, A.; Tv, T.G. New EMFiT Take-off Force; EMFiTECH Oy Ltd.: Vaajakoski, Finland, 2000. [Google Scholar]
- Walter, M.; Eilebrecht, B.; Wartzek, T.; Leonhardt, S. The smart car seat: Personalized monitoring of vital signs in automotive applications. Pers. Ubiquitous Comput. 2011, 15, 707–715. [Google Scholar] [CrossRef]
- Paajanen, M.; Lekkala, J.; Kirjavainen, K. ElectroMechanical Film (EMFi)—A new multipurpose electret material. Sens. Actuators A Phys. 2000, 84, 95–102. [Google Scholar] [CrossRef]
- Hamdi, O.; Mighri, F.; Rodrigue, D. Piezoelectric cellular polymer films: Fabrication, properties and applications. AIMS Mater. Sci. 2018, 5, 845–869. [Google Scholar] [CrossRef]
- Antila, M.; Jari Kataja, B.P. Controlled directivity emfi panel loudspeaker. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Active 99; International Institute of Noise Control Engineering (I-INCE): Reston, VA, USA, 1999; pp. 1171–1182. [Google Scholar]
- Nykänen, H.; Antila, M.; Kataja, J.; Lekkala, J.; Uosukainen, S. Active control of sound based on utilizing EMFI-technology. In Proceedings of the International Symposium on Active Control of Sound and Vibration, ACTIVE 99, Fort Lauderdale, FL, USA, 2–4 December 1999; Institute of Noise Control Engineering: Reston, VA, USA, 1999; pp. 1159–1170. [Google Scholar]
- Nykanen, H.; Antila, M.; Uosukainen, S.; Lekkala, J. Active increase of sound transmission loss of partitions based on utilizing EMFi panel actuators. J. Acoust. Soc. Am. 2000, 108, 2452. [Google Scholar] [CrossRef]
- Pastell, M.; Kujala, M.; Aisla, A.-M.; Hautala, M.; Poikalainen, V.; Praks, J.; Veermäe, I.; Ahokas, J. Detecting cow’s lameness using force sensors. Comput. Electron. Agric. 2008, 64, 34–38. [Google Scholar] [CrossRef]
- Kressmann, R. New piezoelectric polymer for air-borne and water-borne sound transducers. J. Acoust. Soc. Am. 2001, 109, 1412–1416. [Google Scholar] [CrossRef]
- Bauer, S.; Gerhard-Multhaupt, R.; Sessler, G.M. Ferroelectrets: Soft Electroactive Foams for Transducers. Phys. Today 2004, 57, 37–43. [Google Scholar] [CrossRef]
- Rajala, S.; Lekkala, J. PVDF and EMFi sensor materials—A comparative study. Procedia Eng. 2010, 5, 862–865. [Google Scholar] [CrossRef]
- Döring, J.; Bartusch, J.; Beck, U.; Erhard, A. EMFIT Ferroelectret Film Transducers for Non-Contact Ultrasonic Testing. 2006, pp. 1–10. Available online: https://www.researchgate.net/profile/Uwe_Beck/publication/237643046_EMFIT_Ferroelectret_Film_Transducers_for_Non-Contact_Ultrasonic_Testing/links/0c960526b4c5ac83df000000/EMFIT-Ferroelectret-Film-Transducers-for-Non-Contact-Ultrasonic-Testing.pdf?origin=publication_list (accessed on 2 November 2025).
- Martin, A.J.; Alonso, A.H.; Ruiz, D.; Gude, I.; De Marziani, C.; Perez, M.C.; Alvarez, F.J.; Gutierrez, C.; Urena, J. EMFi-Based Ultrasonic Sensory Array for 3D Localization of Reflectors Using Positioning Algorithms. IEEE Sens. J. 2015, 15, 2951–2962. [Google Scholar] [CrossRef]
- Sotgiu, E.; González-Losada, P.; Pinto, R.M.R.; Yang, H.; Faraji, M.; Vinayakumar, K.B. Pyroelectrically Charged Flexible Ferroelectret-Based Tactile Sensor for Surface Texture Detection. Electronics 2022, 11, 2329. [Google Scholar] [CrossRef]
- Tikander, M.; Penttinen, H. Sound quality differences between electret film (EMFIT) and piezoelectric under-saddle guitar pickups. In Proceedings of the Audio Engineering Society-120th Convention Spring Prepr 2006, Paris, France, 20–23 May 2006; pp. 1221–1231. [Google Scholar]
- Čechák, J. Seismic Sensor Using Piezo-Film. AiMT Adv. Mil. Technol. 2008, 3, 1–12. [Google Scholar]
- Li, M.; Zang, H.; Long, J.; Sun, S.; Zhang, Y. Flexible Pressure Sensors Based on Polyvinylidene Fluoride: A Critical Review. Materials 2025, 18, 615. [Google Scholar] [CrossRef]
- Li, X.; Wong, V.-K.; Yousry, Y.M.; Lim, D.B.K.; Subhodayam, P.T.C.; Yao, K.; Feng, L.; Qian, X.; Fan, Z. Surface Crack Monitoring by Rayleigh Waves with a Piezoelectric-Polymer-Film Ultrasonic Transducer Array. Sensors 2023, 23, 2665. [Google Scholar] [CrossRef]
- Du, Q.; Pan, Y.; Xin, Y. Research and application of Rayleigh wave extraction method based on microtremors signal analysis. Front. Phys. 2023, 11, 1158049. [Google Scholar] [CrossRef]
- Mihai, A.; Petrescu, L.; Moldovan, I.A.; Radulian, M. Investigating Rayleigh Wave Dispersion Across the Carpathian Orogen in Romania. Geosciences 2025, 15, 228. [Google Scholar] [CrossRef]
- Liu, J.; Tang, Y.; Tao, K.; Yu, C.; Chen, J.; Ning, J.; Chen, Y.J.; Feng, Y. A new stacking technique in ambient noise tomography. Earthq. Sci. 2010, 23, 627–636. [Google Scholar] [CrossRef]
- Safarkhani, M.; Shirzad, T. Improving C1 and C3 empirical Green’s functions from ambient seismic noise in NW Iran using RMS ratio stacking method. J. Seismol. 2019, 23, 787–799. [Google Scholar] [CrossRef]
- Foti, S.; Parolai, S.; Albarello, D.; Picozzi, M. Application of Surface-Wave Methods for Seismic Site Characterization. Surv. Geophys. 2011, 32, 777–825. [Google Scholar] [CrossRef]
- Peng, H.; Li, J. Rayleigh wave attenuation tomography based on ambient noise interferometry: Methods and an application to Northeast China. Geophys. J. Int. 2024, 237, 1536–1553. [Google Scholar] [CrossRef]
- Shirzad, T.; Assumpção, M.; Collaço, B.; Calhau, J.; Bianchi, M.B.; Barbosa, J.R.; Prieto, R.F.; Carlos, D.U. Shear wave velocities in the upper crust of the Quadrilátero Ferrífero, Minas Gerais: Rayleigh-wave tomography. Braz. J. Geophys. 2022, 40, 225–239. [Google Scholar] [CrossRef]
- Vassallo, M.; De Matteis, R.; Bobbio, A.; Di Giulio, G.; Adinolfi, G.M.; Cantore, L.; Cogliano, R.; Fodarella, A.; Maresca, R.; Pucillo, S.; et al. Seismic noise cross-correlation in the urban area of Benevento city (Southern Italy). Geophys. J. Int. 2019, 217, 1524–1542. [Google Scholar] [CrossRef]
- Cazzulani, G.; Alexakis, H. Comparison between acoustic emission sensors and piezoelectric patches for damage detection in concrete beams. In Proceedings of the 11th Eur Work Struct Heal Monit EWSHM 2024, Potsdam, Germany, 10–13 June 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Jiao, P.; Egbe, K.-J.I.; Xie, Y.; Nazar, A.M.; Alavi, A.H. Piezoelectric Sensing Techniques in Structural Health Monitoring: A State-of-the-Art Review. Sensors 2020, 20, 3730. [Google Scholar] [CrossRef]
- Wang, G.; Qiu, W.; Liu, Y.; Bai, Y.; Cao, C.; Tang, F.; Wang, X.; Zhang, M. Damage detection for structural health monitoring using ultra-sensitive flexible piezoelectret sensors. Struct. Heal. Monit. 2023, 22, 2800–2812. [Google Scholar] [CrossRef]
- Ferreira, P.M.; Machado, M.A.; Carvalho, M.S.; Vidal, C. Embedded Sensors for Structural Health Monitoring: Methodologies and Applications Review. Sensors 2022, 22, 8320. [Google Scholar] [CrossRef]
- Li, Y.; Guo, S.; Su, Z.; Ding, K.; Loh, X.J. Lightweight and conformal acousto-ultrasonic sensing network for multi-scale structural health monitoring: A review. FlexMat 2025, 2, 4–29. [Google Scholar] [CrossRef]
- Ealo, J.L.; Prieto, J.C.; Seco, F. Dynamic response estimation of multilayer ferroelectret-based transducers using lumped-element electromechanical models. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 2754–2757. [Google Scholar] [CrossRef]
- Räisänen, L.; Räisänen, H. Electro-responsive Polymer and its Sensor Applications. MRS Proc. 2005, 889, 0889-W02-01. [Google Scholar] [CrossRef]
- Paajanen, M. The Cellular Polypropylene Electret Material-Electromechanical Properties. Ph.D. Thesis, Tampere University of Technology (TUT), Tampere, Finland, 2001. ISBN 951-38-5853-7. [Google Scholar]
- Bain, A.K.; Chand, P. Ferroelectrics; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2021. [Google Scholar]
- Shi, J.; Wagih, M. Textile Tactile Senor Based on Ferroelectret for Gesture Recognition. Eng. Proc. 2022, 15, 8. [Google Scholar] [CrossRef]
- Sahu, B.B.; Nayak, A.; Parti, S.K. Ferroelectric Sensor Materials: A short review. Appl. Innov. Res. 2023, 4, 167–175. [Google Scholar]
- Batra, A.K.; Alomari, A. Fundamentals of Ferroelectric Materials. In Power Harvesting via Smart Materials; SPIE: Bellingham, WA USA, 2017; pp. 1–32. [Google Scholar] [CrossRef]
- Thakur, V.N.; Zafer, A.; Yadav, S.; Kumar, A. Ferroelectric-dielectric composite pressure sensor. Sens. Actuators A Phys. 2019, 297, 111536. [Google Scholar] [CrossRef]
- Damjanovic, D.; Muralt, P.; Setter, N. Ferroelectric sensors. IEEE Sens. J. 2001, 1, 191–206. [Google Scholar] [CrossRef]
- Emfit Ltd. Calculating the Output Voltage of Emfit Sensors. Available online: http://www.emfit.com/ (accessed on 26 August 2011).
- Emfit Ltd. Emfit Sensors Linearity; Rev C, 16.3.2003; Emfit Ltd.: Vaajakoski, Finland, 2003. [Google Scholar]
- Tsangouri, E.; Aggelis, D.G. The influence of sensor size on Acoustic Emission waveforms-A numerical study. Appl Sci. 2018, 8, 168. [Google Scholar] [CrossRef]
- Ono, K. Rayleigh Wave Calibration of Acoustic Emission Sensors and Ultrasonic Transducers. Sensors 2019, 19, 3129. [Google Scholar] [CrossRef]
- Ono, K. Calibration methods of acoustic emission sensors. Materials 2016, 9, 508. [Google Scholar] [CrossRef]
- Lan, H.; Yan, L.; Xiao, D.; Jiao, Z.; Chen, I.M. Surface-to-surface calibration of acoustic emission sensors. Sens. Actuators A Phys. 2012, 174, 16–23. [Google Scholar] [CrossRef]
- Hatano, H.; Chaya, T.; Watanabe, S.; Jinbo, K. Reciprocity calibration of impulse responses of acoustic emission transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1998, 45, 1221–1228. [Google Scholar] [CrossRef]
- ISO/TR 13115:2011; Non-Destructive Testing, Subcommittee SC 9 A Emission Testing. Non-Destructive Testing—Methods for Absolute Calibration of Acoustic Emission Transducers by the Reciprocity Technique. ISO: Geneva, Switzerland, 2011.
- Monnier, T.; Seydou, D.; Godin, N.; Zhang, F.; Dia, S. Primary Calibration of Acoustic Emission Sensors by the Method of Reciprocity, Theoretical and Experimental Considerations. J. Acoust. Emiss. 2012, 30, 152–166. [Google Scholar]
- Keprt, J. Method of Acoustic Emission Sensor Calibration. Available online: https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2005_sbornik/03-Doktorske_projekty/03-Kybernetika_a_automatizace/05-xkeprt01.pdf (accessed on 20 October 2025).
- Keprt, J. Reciprocity and Step Function Calibration of Acoustic Emission Sensors. Available online: https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2007_sbornik/03-doktorske_projekty/03-kybernetika_a_automatizace/06-xkeprt01.pdf (accessed on 2 November 2025).
- Kober, J.; Prevorovsky, Z. In situ calibration of acoustic emission sensors. In Proceedings of the VIIIth International Workshop NDT in Progress (NDTP2015), Prague, Czech Republic, 12–14 October 2015; pp. 93–97. [Google Scholar]
- Zaina, M.R.M.; Sama, S.A.; Hussain, A.; Azhari, C.H. Pitch and Timbre Determination of the Angklung. Am. J. Appl. Sci. 2009, 6, 24–29. [Google Scholar] [CrossRef]
- Riggio, A.; Santulin, M. Earthquake forecasting: A review of radon as seismic precursor. Boll. Geofis. Teor. Appl. 2015, 56, 95–114. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Kreinovich, V.; Solopchenko, G.N.; Tao, C.W. Why Two Sigma? A Theoretical Justification. In Soft Computing in Measurement and Information Acquisition; Reznik, L., Kreinovich, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 10–22. [Google Scholar] [CrossRef]
- Mei, W.; Xu, Y.; Liu, L. Multiple model estimation under perspective of random-fuzzy dual interpretation of unknown uncertainty. Signal Process. 2024, 217, 109338. [Google Scholar] [CrossRef]
- Kanshio, S. A review of hydrocarbon allocation methods in the upstream oil and gas industry. J. Pet. Sci. Eng. 2020, 184, 106590. [Google Scholar] [CrossRef]
- Farrance, I.; Frenkel, R. Uncertainty of measurement: A review of the rules for calculating Uncertainty components through functional relationships. Clin. Biochem. Rev. 2012, 33, 49–75. [Google Scholar]
- Morales-Simfors, N.; Wyss, R.A.; Bundschuh, J. Recent progress in radon-based monitoring as seismic and volcanic precursor: A critical review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 979–1012. [Google Scholar] [CrossRef]
- van Dalen, K.N.; Mikesell, T.D.; Ruigrok, E.N.; Wapenaar, K. Retrieving surface waves from ambient seismic noise using seismic interferometry by multidimensional deconvolution. J. Geophys. Res. Solid. Earth. 2015, 120, 944–961. [Google Scholar] [CrossRef]
- Zoran, M.; Savastru, R.; Savastru, D.; Chitaru, C.; Baschir, L.; Tautan, M. Monitoring of radon anomalies in South-Eastern part of Romania for earthquake surveillance. J. Radioanal. Nucl. Chem. 2012, 293, 769–781. [Google Scholar] [CrossRef]
- Galiana-Merino, J.J.; Molina, S.; Kharazian, A.; Toader, V.E.; Moldovan, I.A.; Gómez, I. Analysis of Radon Measurements in Relation to Daily Seismic Activity Rates in the Vrancea Region, Romania. Sensors 2022, 22, 4160. [Google Scholar] [CrossRef]
- Keprt, J.; Benes, P. A Comparison of AE Sensor Calibration Methods. J. Acoust. Emiss. 2008, 26, 60. [Google Scholar]
- ASTM E1106-12(2021); Standard Test Method for Primary Calibration of Acoustic Emission Sensors. ASTM (American Society for Testing and Materials): West Conshohocken, PA, USA, 2012. [CrossRef]













| Property | Symbol | Value | Unit | Tolerance | Conditions |
|---|---|---|---|---|---|
| Storage temperature | Ts | from −40 to +50 | °C | ||
| Operating temperature | Tr | from −20 to +70 | °C | ||
| Thickness | D | 0.4 | mm | ±5% | |
| Sensitivity 1 | Sq | 25 | pC/N | ±20% | normal force |
| Relative permittivity | er | 1.1 | ±10% | @ 10 kHz | |
| Capacitance | C | 22 | pF/cm2 | ±5% | @ 1–150 kHz, EQV |
| Tensile strength at break, TD | 535 | N | ±10% | ISO-527-1 | |
| Elongation at break, TD | 20 | % | ±20% | ||
| Young modulus, TD | 1 | MPa | ±50% | ||
| Operating force range | P | <300 | N/cm2 | ||
| Standard width | W | 290/580 | mm | ±1% | |
| Sample length 2 | L | 300 | mm | ±1% |
| Nominal Sensitivity: Standard | 0.08 Volts/Pa @ 1 Hz, 250 Pa Full Scale Range |
|---|---|
| Output: Output type | Differential |
| Maximum | 20 volts peak-to-peak (signal+ to signal−), 10 volts max signal to ground. With no signal applied, the outputs idle at +5.5 V |
| Frequency Response Self-noise | Flat to within 3 dB from 0.01 Hz to 245 Hz. Less than 1.3 × 10−7 Pa2/Hz @ 1 Hz (−69 dB, relative to 1 Pa), Less than 1.7 mPa RMS 0.1 to 200 Hz, less than 0.5 mPa RMS 0.5 to 2 Hz |
| Dynamic range | 110 dB @ 0.5 Hz to 2 Hz |
| Output Impedance | 150 Ω non-reactive, (recommend load > 10 kΩ) (Recommended less than 1.0 µF capacitive loading). |
| Short circuit protected | Momentary shorts from signal+ to signal−, and signal to ground |
| Power Requirements: DC Source | 12 volts (11.25–20 volts) DC, reverse voltage protected. Battery-powered operation is recommended to optimize noise performance. |
| Current Drain | Less than 15 mA @ 12 V (Less than 168 mW) |
| Physical | The sensor will function in any position or attitude. Sealed to IP-67 with acoustic inlets sealed and mating electrical connector or cap installed. Preferred orientation for proper venting: manifold |
| Operating Temperature | down −40 °C to +65 °C |
| Humidity | 95% (non-condensing). |
| Dimensions | 3.86″ diameter, 3.1″ tall (not including the Garden Hose Inlets) (9.8 cm diameter, 7.8 cm tall) |
| Weight | 1.25 lbs (0.57 kg) |
| Std Acoustic inlets | 3-port manifold, standard US Garden Hose Thread |
| Sensor | cha | pla | s20 | s21 | s22 | tbI | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f(Hz) | RMS | 2StDev | RMS | 2StDev | RMS | 2StDev | RMS | 2StDev | RMS | 2StDev | RMS | 2StDev |
| 5 | 0.0144 | 0.0287 | 0.0285 | 0.057 | 0.057 | 0.0474 | 0.0254 | 0.0508 | 0.0253 | 0.0507 | 0.0246 | 0.0493 |
| 6 | 0.0248 | 0.0496 | 0.0339 | 0.0678 | 0.0321 | 0.0642 | 0.0309 | 0.0618 | 0.0313 | 0.0626 | 0.0349 | 0.0697 |
| 7 | 0.0775 | 0.1551 | 0.0787 | 0.1573 | 0.0738 | 0.1475 | 0.0745 | 0.1491 | 0.0732 | 0.1465 | 0.0808 | 0.1617 |
| 8 | 0.3879 | 0.7759 | 0.3769 | 0.7539 | 0.3434 | 0.6868 | 0.3563 | 0.7126 | 0.349 | 0.6981 | 0.3762 | 0.7525 |
| 9 | 0.1335 | 0.2671 | 0.1289 | 0.2578 | 0.1169 | 0.2337 | 0.1237 | 0.2475 | 0.12 | 0.2399 | 0.1294 | 0.2588 |
| 10 | 0.0855 | 0.171 | 0.0832 | 0.1664 | 0.0747 | 0.1494 | 0.0806 | 0.1613 | 0.0766 | 0.1531 | 0.0842 | 0.1684 |
| 11 | 0.0934 | 0.1868 | 0.0895 | 0.179 | 0.0794 | 0.1589 | 0.0868 | 0.1736 | 0.0808 | 0.1617 | 0.0912 | 0.1825 |
| 12 | 0.1626 | 0.3252 | 0.1536 | 0.3072 | 0.1335 | 0.2671 | 0.1476 | 0.2952 | 0.1345 | 0.2689 | 0.1565 | 0.3129 |
| 13 | 0.1294 | 0.2589 | 0.1212 | 0.2424 | 0.1036 | 0.2072 | 0.1192 | 0.2385 | 0.1035 | 0.207 | 0.1245 | 0.249 |
| 14 | 0.1281 | 0.2563 | 0.1193 | 0.2387 | 0.0987 | 0.1975 | 0.1192 | 0.2385 | 0.0996 | 0.1993 | 0.1238 | 0.2475 |
| 15 | 0.1224 | 0.2449 | 0.1157 | 0.2314 | 0.0954 | 0.1908 | 0.117 | 0.234 | 0.0957 | 0.1913 | 0.1181 | 0.2363 |
| 16 | 0.1164 | 0.2329 | 0.1107 | 0.2215 | 0.0893 | 0.1786 | 0.1132 | 0.2265 | 0.0923 | 0.1847 | 0.113 | 0.2259 |
| 17 | 0.1193 | 0.2386 | 0.1093 | 0.2186 | 0.0866 | 0.1732 | 0.1139 | 0.2278 | 0.0901 | 0.1802 | 0.1131 | 0.2263 |
| 18 | 0.1299 | 0.2598 | 0.1118 | 0.2237 | 0.088 | 0.1761 | 0.1177 | 0.2354 | 0.095 | 0.19 | 0.1222 | 0.2445 |
| 19 | 0.136 | 0.2721 | 0.1141 | 0.2283 | 0.0877 | 0.1755 | 0.1209 | 0.2418 | 0.0946 | 0.1892 | 0.1277 | 0.2554 |
| 20 | 0.1445 | 0.2889 | 0.1176 | 0.2352 | 0.0879 | 0.1759 | 0.1177 | 0.2355 | 0.0937 | 0.1873 | 0.1344 | 0.2688 |
| 21 | 0.1501 | 0.3003 | 0.1198 | 0.2396 | 0.0898 | 0.1795 | 0.1189 | 0.2378 | 0.0889 | 0.1779 | 0.141 | 0.282 |
| 22 | 0.1492 | 0.2984 | 0.1166 | 0.2333 | 0.0843 | 0.1686 | 0.1157 | 0.2314 | 0.0857 | 0.1713 | 0.1393 | 0.2786 |
| 23 | 0.1496 | 0.2993 | 0.116 | 0.232 | 0.0852 | 0.1704 | 0.1129 | 0.2259 | 0.0906 | 0.1812 | 0.1408 | 0.2817 |
| 24 | 0.1611 | 0.3222 | 0.1234 | 0.2467 | 0.0939 | 0.1878 | 0.1147 | 0.2295 | 0.0886 | 0.1772 | 0.1515 | 0.3029 |
| 25 | 0.1742 | 0.3484 | 0.1292 | 0.2584 | 0.0850 | 0.1701 | 0.1198 | 0.2397 | 0.0773 | 0.1546 | 0.1618 | 0.3236 |
| 26 | 0.1584 | 0.3168 | 0.1170 | 0.2340 | 0.0727 | 0.1454 | 0.1076 | 0.2153 | 0.0558 | 0.1116 | 0.1480 | 0.2960 |
| 27 | 0.1753 | 0.3506 | 0.1263 | 0.2526 | 0.0741 | 0.1481 | 0.1134 | 0.2268 | 0.0567 | 0.1134 | 0.1623 | 0.3246 |
| 28 | 0.1819 | 0.3638 | 0.1292 | 0.2585 | 0.0713 | 0.1426 | 0.1141 | 0.2282 | 0.0516 | 0.1033 | 0.1672 | 0.3344 |
| 29 | 0.1817 | 0.3634 | 0.1283 | 0.2567 | 0.0700 | 0.1399 | 0.1087 | 0.2175 | 0.0483 | 0.0966 | 0.1674 | 0.3347 |
| 30 | 0.1894 | 0.3788 | 0.1311 | 0.2622 | 0.0714 | 0.1428 | 0.1038 | 0.2077 | 0.0411 | 0.0822 | 0.1726 | 0.3453 |
| 31 | 0.2032 | 0.4063 | 0.1407 | 0.2814 | 0.0785 | 0.1570 | 0.0984 | 0.1968 | 0.0399 | 0.0798 | 0.1865 | 0.3731 |
| 32 | 0.2475 | 0.4950 | 0.1668 | 0.3337 | 0.0999 | 0.1998 | 0.0995 | 0.1990 | 0.0375 | 0.0751 | 0.2229 | 0.4459 |
| 33 | 0.2881 | 0.5762 | 0.1985 | 0.3970 | 0.1246 | 0.2492 | 0.0842 | 0.1685 | 0.0588 | 0.1177 | 0.2585 | 0.5171 |
| 34 | 0.3197 | 0.6395 | 0.2345 | 0.4691 | 0.1519 | 0.3037 | 0.0837 | 0.1674 | 0.1103 | 0.2206 | 0.2913 | 0.5827 |
| 35 | 0.4783 | 0.9567 | 0.3733 | 0.7466 | 0.2588 | 0.5177 | 0.2131 | 0.4263 | 0.2596 | 0.5193 | 0.4254 | 0.8508 |
| 36 | 0.6502 | 1.3005 | 0.5767 | 1.1536 | 0.4670 | 0.9340 | 0.6738 | 1.3477 | 0.5723 | 1.1446 | 0.5758 | 1.1517 |
| 37 | 0.2426 | 0.4853 | 0.2128 | 0.4257 | 0.2072 | 0.4144 | 0.4438 | 0.8876 | 0.2949 | 0.5899 | 0.2169 | 0.4339 |
| 38 | 0.1829 | 0.3659 | 0.0926 | 0.1852 | 0.1028 | 0.2056 | 0.3145 | 0.6291 | 0.1622 | 0.3243 | 0.1615 | 0.3231 |
| 39 | 0.1870 | 0.3740 | 0.0734 | 0.1468 | 0.0718 | 0.1437 | 0.2488 | 0.4977 | 0.1014 | 0.2028 | 0.1642 | 0.3284 |
| 40 | 0.1688 | 0.3376 | 0.0655 | 0.1310 | 0.0518 | 0.1037 | 0.1934 | 0.3868 | 0.0735 | 0.1470 | 0.1470 | 0.2939 |
| 41 | 0.1447 | 0.2895 | 0.0565 | 0.1129 | 0.0411 | 0.0822 | 0.1444 | 0.2887 | 0.0517 | 0.1033 | 0.1255 | 0.2509 |
| 42 | 0.1064 | 0.2128 | 0.0422 | 0.0843 | 0.0277 | 0.0553 | 0.0997 | 0.1995 | 0.0357 | 0.0714 | 0.0920 | 0.1839 |
| 43 | 0.0710 | 0.1421 | 0.0290 | 0.0581 | 0.0195 | 0.0391 | 0.0639 | 0.1277 | 0.0196 | 0.0391 | 0.0611 | 0.1223 |
| 44 | 0.0359 | 0.0719 | 0.0151 | 0.0301 | 0.0106 | 0.0212 | 0.0302 | 0.0603 | 0.0091 | 0.0181 | 0.0308 | 0.0615 |
| 45 | 0.0180 | 0.0359 | 0.0081 | 0.0161 | 0.0058 | 0.0117 | 0.0147 | 0.0294 | 0.0053 | 0.0107 | 0.0158 | 0.0317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toader, V.-E.; Ionescu, C.; Moldovan, I.-A.; Marmureanu, A. Using the EMFIT Sensor in Geophysical Monitoring. Sensors 2025, 25, 6746. https://doi.org/10.3390/s25216746
Toader V-E, Ionescu C, Moldovan I-A, Marmureanu A. Using the EMFIT Sensor in Geophysical Monitoring. Sensors. 2025; 25(21):6746. https://doi.org/10.3390/s25216746
Chicago/Turabian StyleToader, Victorin-Emilian, Constantin Ionescu, Iren-Adelina Moldovan, and Alexandru Marmureanu. 2025. "Using the EMFIT Sensor in Geophysical Monitoring" Sensors 25, no. 21: 6746. https://doi.org/10.3390/s25216746
APA StyleToader, V.-E., Ionescu, C., Moldovan, I.-A., & Marmureanu, A. (2025). Using the EMFIT Sensor in Geophysical Monitoring. Sensors, 25(21), 6746. https://doi.org/10.3390/s25216746

