Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,692)

Search Parameters:
Keywords = preservation technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 (registering DOI) - 3 Aug 2025
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

17 pages, 5314 KiB  
Review
Hydrogel Applications for Cultural Heritage Protection: Emphasis on Antifungal Efficacy and Emerging Research Directions
by Meijun Chen, Shunyu Xiang and Huan Tang
Gels 2025, 11(8), 606; https://doi.org/10.3390/gels11080606 (registering DOI) - 2 Aug 2025
Abstract
Hydrogels, characterized by their high water content, tunable mechanical properties, and excellent biocompatibility, have emerged as a promising material platform for the preservation of cultural heritage. Their unique physicochemical features enable non-invasive and adaptable solutions for environmental regulation, structural stabilization, and antifungal protection. [...] Read more.
Hydrogels, characterized by their high water content, tunable mechanical properties, and excellent biocompatibility, have emerged as a promising material platform for the preservation of cultural heritage. Their unique physicochemical features enable non-invasive and adaptable solutions for environmental regulation, structural stabilization, and antifungal protection. This review provides a comprehensive overview of recent progress in hydrogel-based strategies specifically developed for the conservation of cultural relics, with a particular focus on antifungal performance—an essential factor in preventing biodeterioration. Current hydrogel systems, composed of natural or synthetic polymer networks integrated with antifungal agents, demonstrate the ability to suppress fungal growth, regulate humidity, alleviate mechanical stress, and ensure minimal damage to artifacts during application. This review also highlights future research directions, such as the application prospects of novel materials, including stimuli-responsive hydrogels and self-dissolving hydrogels. As an early exploration of the use of hydrogels in antifungal protection and broader cultural heritage conservation, this work is expected to promote the wider application of this emerging technology, contributing to the effective preservation and long-term transmission of cultural heritage worldwide. Full article
(This article belongs to the Special Issue Properties and Structure of Hydrogel-Related Materials (2nd Edition))
21 pages, 10814 KiB  
Article
Exploring How Micro-Computed Tomography Imaging Technology Impacts the Preservation of Paleontological Heritage
by Michela Amendola, Andrea Barucci, Andrea Baucon, Chiara Zini, Claudia Borrelli, Simone Casati, Andrea di Cencio, Sandra Fiore, Salvatore Siano, Juri Agresti, Carlos Neto de Carvalho, Federico Bernardini, Girolamo Lo Russo, Alberto Collareta and Giulia Bosio
Heritage 2025, 8(8), 310; https://doi.org/10.3390/heritage8080310 (registering DOI) - 2 Aug 2025
Abstract
Museums play an essential role in preserving both cultural and natural heritage, safeguarding samples that offer invaluable insights into our history and scientific understanding. The integration of micro-computed tomography (micro-CT) has significantly advanced the study, restoration, and conservation of these priceless objects. This [...] Read more.
Museums play an essential role in preserving both cultural and natural heritage, safeguarding samples that offer invaluable insights into our history and scientific understanding. The integration of micro-computed tomography (micro-CT) has significantly advanced the study, restoration, and conservation of these priceless objects. This work explores the application of micro-CT across three critical areas of museum practice: sample virtualization, restoration assessment, and the analysis of fossil specimens. Specifically, micro-CT scanning was applied to fossils stored in the G.A.M.P.S. collection (Scandicci, Italy), enabling the creation of highly detailed non-invasive 3D models for digital archiving and virtual exhibitions. At the Opificio delle Pietre Dure in Florence, micro-CT was employed to evaluate fossil bone restoration treatments, focusing on the internal impact of menthol as a consolidant and its effects on the structural integrity of the material. Furthermore, micro-CT was utilized to investigate a sealed bee preserved in its cocoon within a paleosol in Costa Vicentina (Portugal), providing unprecedented insights into its internal anatomy and state of preservation, all while maintaining the integrity of the specimen. The results of this study underscore the versatility of micro-CT as a powerful non-destructive tool for advancing the fields of conservation, restoration, and scientific analysis of cultural and natural heritage. By integrating high-resolution imaging with both virtual and hands-on conservation strategies, micro-CT empowers museums to enhance research capabilities, improve preservation methodologies, and foster greater public engagement with their collections. Full article
36 pages, 1010 KiB  
Article
SIBERIA: A Self-Sovereign Identity and Multi-Factor Authentication Framework for Industrial Access
by Daniel Paredes-García, José Álvaro Fernández-Carrasco, Jon Ander Medina López, Juan Camilo Vasquez-Correa, Imanol Jericó Yoldi, Santiago Andrés Moreno-Acevedo, Ander González-Docasal, Haritz Arzelus Irazusta, Aitor Álvarez Muniain and Yeray de Diego Loinaz
Appl. Sci. 2025, 15(15), 8589; https://doi.org/10.3390/app15158589 (registering DOI) - 2 Aug 2025
Abstract
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust [...] Read more.
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust protection of critical services. The system is designed in alignment with European standards and regulations, including EBSI, eIDAS 2.0, and the GDPR. SIBERIA integrates a Self-Sovereign Identity (SSI) framework with a decentralized blockchain-based infrastructure for the issuance and verification of Verifiable Credentials (VCs). It incorporates multi-factor authentication by combining a voice biometric module, enhanced with spoofing-aware techniques to detect synthetic or replayed audio, and a behavioral biometrics module that provides continuous authentication by monitoring user interaction patterns. The system enables secure and user-centric identity management in industrial contexts, ensuring high resistance to impersonation and credential theft while maintaining regulatory compliance. SIBERIA demonstrates that it is possible to achieve both strong security and user autonomy in digital identity systems by leveraging decentralized technologies and advanced biometric verification methods. Full article
(This article belongs to the Special Issue Blockchain and Distributed Systems)
Show Figures

Figure 1

25 pages, 830 KiB  
Article
Writing Is Coding for Sustainable Futures: Reimagining Poetic Expression Through Human–AI Dialogues in Environmental Storytelling and Digital Cultural Heritage
by Hao-Chiang Koong Lin, Ruei-Shan Lu and Tao-Hua Wang
Sustainability 2025, 17(15), 7020; https://doi.org/10.3390/su17157020 (registering DOI) - 1 Aug 2025
Abstract
In the era of generative artificial intelligence, writing has evolved into a programmable practice capable of generating sustainable narratives and preserving cultural heritage through poetic prompts. This study proposes “Writing Is Coding ” as a paradigm for sustainability education, exploring how students engage [...] Read more.
In the era of generative artificial intelligence, writing has evolved into a programmable practice capable of generating sustainable narratives and preserving cultural heritage through poetic prompts. This study proposes “Writing Is Coding ” as a paradigm for sustainability education, exploring how students engage with AI-mediated multimodal creation to address environmental challenges. Using grounded theory methodology with 57 twelfth-grade students from technology-integrated high schools, we analyzed their experiences creating environmental stories and digital cultural artifacts using MidJourney, Kling, and Sora. Data collection involved classroom observations, semi-structured interviews, and reflective journals, analyzed through systematic coding procedures (κ = 0.82). Five central themes emerged: writing as algorithmic design for sustainability (89.5%), emotional scaffolding for environmental awareness (78.9%), aesthetics of imperfection in cultural preservation (71.9%), collaborative dynamics in sustainable creativity (84.2%), and pedagogical value of prompt literacy (91.2%). Findings indicate that AI deepens environmental consciousness and reframes writing as a computational process for addressing global issues. This research contributes a theoretical framework integrating expressive writing with algorithmic thinking in AI-assisted sustainability education, aligned with SDGs 4, 11, and 13. Full article
38 pages, 959 KiB  
Review
Emerging Trends in Active Packaging for Food: A Six-Year Review
by Mariana A. Andrade, Cássia H. Barbosa, Regiane Ribeiro-Santos, Sidney Tomé, Ana Luísa Fernando, Ana Sanches Silva and Fernanda Vilarinho
Foods 2025, 14(15), 2713; https://doi.org/10.3390/foods14152713 (registering DOI) - 1 Aug 2025
Viewed by 42
Abstract
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, [...] Read more.
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, and phenolic compounds as active agents. Primarily plant-derived, these compounds exhibit significant antioxidant and antimicrobial activities, extending shelf life and enhancing food quality. Technological strategies such as encapsulation and polymer blending have been increasingly adopted to overcome challenges related to volatility, solubility, and sensory impact. Integrating bio-based polymers, including chitosan, starch, and polylactic acid, further supports the development of environmentally friendly packaging systems. This review also highlights trends in compound-specific research, release mechanisms, and commercial applications, including a detailed analysis of patents and case studies across various food matrices. These developments have already been translated into practical applications, such as antimicrobial sachets for meat and essential oil-based pads for fresh produce. Moreover, by promoting the valorization of agro-industrial by-products and the use of biodegradable materials, emission-type active packaging contributes to the principles of the circular economy. This comprehensive overview underscores the potential of natural bioactive compounds in advancing sustainable and functional food packaging technologies. Full article
13 pages, 371 KiB  
Review
Dentistry in the Era of Artificial Intelligence: Medical Behavior and Clinical Responsibility
by Fabio Massimo Sciarra, Giovanni Caivano, Antonino Cacioppo, Pietro Messina, Enzo Maria Cumbo, Emanuele Di Vita and Giuseppe Alessandro Scardina
Prosthesis 2025, 7(4), 95; https://doi.org/10.3390/prosthesis7040095 (registering DOI) - 1 Aug 2025
Viewed by 30
Abstract
Objectives: Digitalization has revolutionized dentistry, introducing advanced technological tools that improve diagnostic accuracy and access to healthcare. This study aims to examine the effects of integrating digital technologies into the dental field, analyzing the associated benefits and risks, with particular paid attention to [...] Read more.
Objectives: Digitalization has revolutionized dentistry, introducing advanced technological tools that improve diagnostic accuracy and access to healthcare. This study aims to examine the effects of integrating digital technologies into the dental field, analyzing the associated benefits and risks, with particular paid attention to the therapeutic relationship and decision-making autonomy. Materials and Methods: A literature search was conducted in PubMed, Scopus, Web of Science, and Cochrane Library, complemented by Google Scholar for non-indexed studies. The selection criteria included peer-reviewed studies published in English between 2014 and 2024, focusing on digital dentistry, artificial intelligence, and medical ethics. This is a narrative review. Elements of PRISMA guidelines were applied to enhance transparency in reporting. Results: The analysis highlighted that although digital technologies and AI offer significant benefits, such as more accurate diagnoses and personalized treatments, there are associated risks, including the loss of empathy in the dentist–patient relationship, the risk of overdiagnosis, and the possibility of bias in the data. Conclusions: The balance between technological innovation and the centrality of the dentist is crucial. A human and ethical approach to digital medicine is essential to ensure that technologies improve patient care without compromising the therapeutic relationship. To preserve the quality of dental care, it is necessary to integrate digital technologies in a way that supports, rather than replaces, the therapeutic relationship. Full article
Show Figures

Figure 1

18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 (registering DOI) - 1 Aug 2025
Viewed by 42
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

19 pages, 4759 KiB  
Article
Research on User Experience and Continuous Usage Mechanism of Digital Interactive Installations in Museums from the Perspective of Distributed Cognition
by Aili Zhang, Yanling Sun, Shaowen Wang and Mengjuan Zhang
Appl. Sci. 2025, 15(15), 8558; https://doi.org/10.3390/app15158558 (registering DOI) - 1 Aug 2025
Viewed by 111
Abstract
With the increasing application of digital interactive installations in museums, their role in enhancing audience engagement and cultural dissemination effectiveness has become prominent. However, ensuring the sustained use of these technologies remains challenging. Based on distributed cognition and perceived value theories, this study [...] Read more.
With the increasing application of digital interactive installations in museums, their role in enhancing audience engagement and cultural dissemination effectiveness has become prominent. However, ensuring the sustained use of these technologies remains challenging. Based on distributed cognition and perceived value theories, this study investigates key factors influencing users’ continuous usage of digital interactive installations using the Capital Museum in Beijing as a case study. A theoretical model was constructed and empirically validated through Bayesian Structural Equation Modeling (Bayesian-SEM) with 352 valid samples. The findings reveal that perceived ease of use plays a critical direct predictive role in continuous usage intention. Environmental factors and peer interaction indirectly influence user behavior through learner engagement, while user satisfaction serves as a core mediator between perceived ease of use and continuous usage intention. Notably, perceived usefulness and entertainment showed no direct effects, indicating that convenience and social experience outweigh functional benefits in this context. These findings emphasize the importance of optimizing interface design, fostering collaborative environments, and enhancing user satisfaction to promote sustained participation. This study provides practical insights for aligning digital innovation with audience needs in museums, thereby supporting the sustainable integration of technology in cultural heritage education and preservation. Full article
Show Figures

Figure 1

17 pages, 13918 KiB  
Article
Occurrence State and Controlling Factors of Methane in Deep Marine Shale: A Case Study from Silurian Longmaxi Formation in Sichuan Basin, SW China
by Junwei Pu, Tongtong Luo, Yalan Li, Hongwei Jiang and Lin Qi
Minerals 2025, 15(8), 820; https://doi.org/10.3390/min15080820 (registering DOI) - 1 Aug 2025
Viewed by 86
Abstract
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas [...] Read more.
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas exploitation. The temperature and pressure conditions in deep shale exceed the operating limits of experimental equipment; thus, few studies have discussed the microscopic occurrence mechanism of shale gas in deep marine shale. This study applies molecular simulation technology to reveal the methane’s microscopic occurrence mechanism, particularly the main controlling factor of adsorbed methane in deep marine shale. Two types of simulation models are also proposed. The Grand Canonical Monte Carlo (GCMC) method is used to simulate the adsorption behavior of methane molecules in these two models. The results indicate that the isosteric adsorption heat of methane in both models is below 42 kJ/mol, suggesting that methane adsorption in deep shale is physical adsorption. Adsorbed methane concentrates on the pore wall surface and forms a double-layer adsorption. Furthermore, adsorbed methane can transition to single-layer adsorption if the pore size is less than 1.6 nm. The total adsorption capacity increases with rising pressure, although the growth rate decreases. Excess adsorption capacity is highly sensitive to pressure and can become negative at high pressures. Methane adsorption capacity is determined by pore size and adsorption potential, while accommodation space and adsorption potential are influenced by pore size and mineral type. Under deep marine shale reservoir burial conditions, with burial depth deepening, the effect of temperature on shale gas occurrence is weaker than pressure. Higher temperatures inhibit shale gas occurrence, and high pressure enhances shale gas preservation. Smaller pores facilitate the occurrence of adsorbed methane, and larger pores have larger total methane adsorption capacity. Deep marine shale with high formation pressure and high clay mineral content is conducive to the microscopic accumulation of shale gas in deep marine shale reservoirs. This study discusses the microscopic occurrence state of deep marine shale gas and provides a reference for the exploration and development of deep shale gas. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

31 pages, 419 KiB  
Review
Neoadjuvant Treatment for Locally Advanced Rectal Cancer: Current Status and Future Directions
by Masayoshi Iwamoto, Kazuki Ueda and Junichiro Kawamura
Cancers 2025, 17(15), 2540; https://doi.org/10.3390/cancers17152540 - 31 Jul 2025
Viewed by 190
Abstract
Locally advanced rectal cancer (LARC) remains a major clinical challenge due to its high risk of local recurrence and distant metastasis. Although total mesorectal excision (TME) has been established as the gold standard surgical approach, high recurrence rates associated with surgery alone have [...] Read more.
Locally advanced rectal cancer (LARC) remains a major clinical challenge due to its high risk of local recurrence and distant metastasis. Although total mesorectal excision (TME) has been established as the gold standard surgical approach, high recurrence rates associated with surgery alone have driven the development of multimodal preoperative strategies, such as radiotherapy and chemoradiotherapy. More recently, total neoadjuvant therapy (TNT)—which integrates systemic chemotherapy and radiotherapy prior to surgery—and non-operative management (NOM) for patients who achieve a clinical complete response (cCR) have further expanded treatment options. These advances aim not only to improve oncologic outcomes but also to enhance quality of life (QOL) by reducing long-term morbidity and preserving organ function. However, several unresolved issues persist, including the optimal sequencing of therapies, precise risk stratification, accurate evaluation of treatment response, and effective surveillance protocols for NOM. The advent of molecular biomarkers, next-generation sequencing, and artificial intelligence (AI) presents new opportunities for individualized treatment and more accurate prognostication. This narrative review provides a comprehensive overview of the current status of preoperative treatment for LARC, critically examines emerging strategies and their supporting evidence, and discusses future directions to optimize both oncological and patient-centered outcomes. By integrating clinical, molecular, and technological advances, the management of rectal cancer is moving toward truly personalized medicine. Full article
(This article belongs to the Special Issue Multidisciplinary Management of Rectal Cancer)
28 pages, 7472 KiB  
Article
Small but Mighty: A Lightweight Feature Enhancement Strategy for LiDAR Odometry in Challenging Environments
by Jiaping Chen, Kebin Jia and Zhihao Wei
Remote Sens. 2025, 17(15), 2656; https://doi.org/10.3390/rs17152656 (registering DOI) - 31 Jul 2025
Viewed by 101
Abstract
LiDAR-based Simultaneous Localization and Mapping (SLAM) serves as a fundamental technology for autonomous navigation. However, in complex environments, LiDAR odometry often experience degraded localization accuracy and robustness. This paper proposes a computationally efficient enhancement strategy for LiDAR odometry, which improves system performance by [...] Read more.
LiDAR-based Simultaneous Localization and Mapping (SLAM) serves as a fundamental technology for autonomous navigation. However, in complex environments, LiDAR odometry often experience degraded localization accuracy and robustness. This paper proposes a computationally efficient enhancement strategy for LiDAR odometry, which improves system performance by reinforcing high-quality features throughout the optimization process. For non-ground features, the method employs statistical geometric analysis to identify stable points and incorporates a contribution-weighted optimization scheme to strengthen their impact in point-to-plane and point-to-line constraints. In parallel, for ground features, locally stable planar surfaces are fitted to replace discrete point correspondences, enabling more consistent point-to-plane constraint formulation during ground registration. Experimental results on the KITTI and M2DGR datasets demonstrated that the proposed method significantly improves localization accuracy and system robustness, while preserving real-time performance with minimal computational overhead. The performance gains were particularly notable in scenarios dominated by unstructured environments. Full article
(This article belongs to the Special Issue Laser Scanning in Environmental and Engineering Applications)
Show Figures

Figure 1

48 pages, 8533 KiB  
Systematic Review
Eco-Efficient Retrofitting of Rural Heritage: A Systematic Review of Sustainable Strategies
by Stefano Bigiotti, Mariangela Ludovica Santarsiero, Anna Irene Del Monaco and Alvaro Marucci
Energies 2025, 18(15), 4065; https://doi.org/10.3390/en18154065 (registering DOI) - 31 Jul 2025
Viewed by 113
Abstract
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural [...] Read more.
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural contexts embodies historical, cultural, and typological values worthy of preservation, while remaining adaptable to reuse through eco-efficient solutions and technological innovation. Using the PRISMA protocol, 115 scientific contributions were selected from 1711 initial records and classified into four macro-groups: landscape relationships; seismic and energy retrofitting; construction techniques and innovative materials; and morphological–typological analysis. Results show a predominance (over 50%) of passive design strategies, compatible materials, and low-impact techniques, while active systems are applied more selectively to protect cultural integrity. The study identifies replicable methodological models combining sustainability, cultural continuity, and functional adaptation, offering recommendations for future operational guidelines. Conscious eco-efficient retrofitting thus emerges as a strategic tool for the integrated valorization of rural landscapes and heritage. Full article
(This article belongs to the Special Issue Sustainable Building Energy and Environment: 2nd Edition)
Show Figures

Figure 1

26 pages, 4899 KiB  
Article
Material Perception in Virtual Environments: Impacts on Thermal Perception, Emotions, and Functionality in Industrial Renovation
by Long He, Minjia Wu, Yue Ma, Di Cui, Yongjiang Wu and Yang Wei
Buildings 2025, 15(15), 2698; https://doi.org/10.3390/buildings15152698 (registering DOI) - 31 Jul 2025
Viewed by 188
Abstract
Industrial building renovation is a sustainable strategy to preserve urban heritage while meeting modern needs. However, how interior material scenes affect users’ emotions, thermal perception, and functional preferences remains underexplored in adaptive reuse contexts. This study used virtual reality (VR) to examine four [...] Read more.
Industrial building renovation is a sustainable strategy to preserve urban heritage while meeting modern needs. However, how interior material scenes affect users’ emotions, thermal perception, and functional preferences remains underexplored in adaptive reuse contexts. This study used virtual reality (VR) to examine four common material scenes—wood, concrete, red brick, and white-painted surfaces—within industrial renovation settings. A total of 159 participants experienced four Lumion-rendered VR environments and rated them on thermal perception (visual warmth, thermal sensation, comfort), emotional response (arousal, pleasure, restoration), and functional preference. Data were analyzed using repeated measures ANOVA and Pearson correlation. Wood and red brick scenes were associated with warm visuals; wood scenes received the highest ratings for thermal comfort and pleasure, white-painted scenes for restoration and arousal, and concrete scenes, the lowest scores overall. Functional preferences varied by space: white-painted and concrete scenes were most preferred in study/work settings, wood in social spaces, wood and red brick in rest areas, and concrete in exhibition spaces. By isolating material variables in VR, this study offers a novel empirical approach and practical guidance for material selection in adaptive reuse to enhance user comfort, emotional well-being, and spatial functionality in industrial heritage renovations. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

35 pages, 4050 KiB  
Article
Blockchain-Based Secure and Reliable High-Quality Data Risk Management Method
by Chuan He, Yunfan Wang, Tao Zhang, Fuzhong Hao and Yuanyuan Ma
Electronics 2025, 14(15), 3058; https://doi.org/10.3390/electronics14153058 - 30 Jul 2025
Viewed by 163
Abstract
The collaborative construction of large-scale, diverse datasets is crucial for developing high-performance machine learning models. However, this collaboration faces significant challenges, including ensuring data security, protecting participant privacy, maintaining high dataset quality, and aligning economic incentives among multiple stakeholders. Effective risk management strategies [...] Read more.
The collaborative construction of large-scale, diverse datasets is crucial for developing high-performance machine learning models. However, this collaboration faces significant challenges, including ensuring data security, protecting participant privacy, maintaining high dataset quality, and aligning economic incentives among multiple stakeholders. Effective risk management strategies are essential to systematically identify, assess, and mitigate potential risks associated with data collaboration. This study proposes a federated blockchain-based framework designed to manage multiparty dataset collaborations securely and transparently, explicitly incorporating comprehensive risk management practices. The proposed framework involves six core entities—key distribution center (KDC), researcher (RA), data owner (DO), consortium blockchain, dataset evaluation platform, and the orchestrating model itself—to ensure secure, privacy-preserving and high-quality dataset collaboration. In addition, the framework uses blockchain technology to guarantee the traceability and immutability of data transactions, integrating token-based incentives to encourage data contributors to provide high-quality datasets. To systematically mitigate dataset quality risks, we introduced an innovative categorical dataset quality assessment method leveraging label reordering to robustly evaluate datasets. We validated this quality assessment approach using both publicly available (UCI) and privately constructed datasets. Furthermore, our research implemented the proposed blockchain-based management system within a consortium blockchain infrastructure, benchmarking its performance against existing methods to demonstrate enhanced security, reliability, risk mitigation effectiveness, and incentive alignment in dataset collaboration. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

Back to TopTop