Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = preclinical MDR1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
57 pages, 5820 KiB  
Review
Surfactant-Enabled Nanocarriers in Breast Cancer Therapy: Targeted Delivery and Multidrug Resistance Reversal
by Ashirwad Jadhav and Karuppiah Nagaraj
Pharmaceutics 2025, 17(6), 779; https://doi.org/10.3390/pharmaceutics17060779 - 13 Jun 2025
Cited by 1 | Viewed by 764
Abstract
Breast cancer remains a leading cause of cancer-related morbidity and mortality among women worldwide. Its treatment is complicated by molecular heterogeneity and the frequent development of multidrug resistance (MDR). Conventional drug delivery approaches are often limited by poor aqueous solubility, rapid systemic clearance, [...] Read more.
Breast cancer remains a leading cause of cancer-related morbidity and mortality among women worldwide. Its treatment is complicated by molecular heterogeneity and the frequent development of multidrug resistance (MDR). Conventional drug delivery approaches are often limited by poor aqueous solubility, rapid systemic clearance, non-specific biodistribution, and off-target toxicity. This review will critically explore the possibility of surfactant-based drug delivery systems (DDSs) in addressing the constraints of standard breast cancer treatments. It focuses on the mechanisms by which surfactants promote solubility, facilitate cellular uptake, and overcome drug resistance, while also analyzing current therapeutic success and future directions. A thorough review of preclinical and clinical investigations was undertaken, focusing on important surfactant-based DDSs such as polymeric micelles, nanoemulsions, liposomes, and self-emulsifying systems (SEDDSs). Mechanistic insights into surfactant functions, such as membrane permeabilization and efflux pump inhibition, were studied alongside delivery systems incorporating ligands and co-loaded medicines. Pluronic® micelles, TPGS-based systems, biosurfactant-stabilized nanoparticles, and lipid-based carrier surfactant platforms improve medication solubility, stability, and delivery. Genexol® are examples of formulations demonstrating effective use and FDA translational potential. These systems now incorporate stimuli-responsive release mechanisms—such as pH, temperature, redox, immuno- and photodynamic treatment—artificial intelligence treatment design, and tailored treatment advancement, and responsive tailoring. Surfactant-enabled DDSs can improve breast cancer care. Innovative approaches for personalized oncology treatment are countered by the enduring challenges of toxicity, regulatory hurdles, and diminished scalability. Full article
(This article belongs to the Special Issue Natural Nanoparticle for Cancer Diagnosis and Treatment, 2nd Edition)
Show Figures

Graphical abstract

28 pages, 400 KiB  
Review
Emerging Concepts for the Treatment of Biofilm-Associated Bone and Joint Infections with IV Fosfomycin: A Literature Review
by Sara Tedeschi, Efthymia Giannitsioti and Christian Mayer
Microorganisms 2025, 13(5), 963; https://doi.org/10.3390/microorganisms13050963 - 23 Apr 2025
Cited by 1 | Viewed by 1100
Abstract
Due to the involvement of biofilms in the pathogenesis of bone and joint infections (BJI), the treatment of these infections is often challenging, especially when multidrug- or extensively drug-resistant (MDR/XDR) pathogens are involved. Intravenous fosfomycin (FOS) is a phosphoenolpyruvate analogue with a unique [...] Read more.
Due to the involvement of biofilms in the pathogenesis of bone and joint infections (BJI), the treatment of these infections is often challenging, especially when multidrug- or extensively drug-resistant (MDR/XDR) pathogens are involved. Intravenous fosfomycin (FOS) is a phosphoenolpyruvate analogue with a unique mode of action and broad-spectrum activity against both Gram-positive (GP) and Gram-negative (GN) pathogens. It is used in various severe and deep-seated infections, including BJIs. This review article focuses on preclinical and clinical data surrounding the use of FOS for biofilm-related BJIs. Data from several in vitro and animal models of infection demonstrated that FOS, especially in combination with other antibiotics, is effective against biofilms of (methicillin-resistant) Staphylococcus spp., (vancomycin-resistant) Enterococcus spp., carbapenem-resistant and extended-spectrum beta-lactamase-producing Enterobacterales, and MDR Pseudomonas aeruginosa. Data from clinical studies, mostly retrospective observational studies and case reports/case series, revealed that FOS was typically used in combination with other antibiotics for the treatment of various BJI, including acute and chronic osteomyelitis, prosthetic joint infections, and fracture-related infections, in adult and pediatric patients. Success rates often exceeded 80%. FOS exhibits good and fast penetration into bone tissue and is generally well tolerated, with only a few adverse drug reactions, such as gastrointestinal disorders and electrolyte imbalances. Collectively, the data indicate that FOS is a valuable option as part of combination regimens for the treatment of BJIs caused by both GP and GN bacteria. Full article
(This article belongs to the Special Issue Challenges of Biofilm-Associated Bone and Joint Infections)
42 pages, 3164 KiB  
Review
A Comprehensive Overview of Antibacterial Agents for Combating Multidrug-Resistant Bacteria: The Current Landscape, Development, Future Opportunities, and Challenges
by Ina Gajic, Nina Tomic, Bojana Lukovic, Milos Jovicevic, Dusan Kekic, Milos Petrovic, Marko Jankovic, Anika Trudic, Dragana Mitic Culafic, Marina Milenkovic and Natasa Opavski
Antibiotics 2025, 14(3), 221; https://doi.org/10.3390/antibiotics14030221 - 21 Feb 2025
Cited by 6 | Viewed by 5134
Abstract
Background/Objectives: Antimicrobial resistance poses a major public health challenge. The World Health Organization has identified 15 priority pathogens that require prompt development of new antibiotics. This review systematically evaluates the antibacterial resistance of the most significant bacterial pathogens, currently available treatment options, as [...] Read more.
Background/Objectives: Antimicrobial resistance poses a major public health challenge. The World Health Organization has identified 15 priority pathogens that require prompt development of new antibiotics. This review systematically evaluates the antibacterial resistance of the most significant bacterial pathogens, currently available treatment options, as well as complementary approaches for the management of infections caused by the most challenging multidrug-resistant (MDR) bacteria. For carbapenem-resistant Gram-negative bacteria, treatment options include combinations of beta-lactam antibiotics and beta-lactamase inhibitors, a novel siderophore cephalosporin, known as cefiderocol, as well as older antibiotics like polymixins and tigecycline. Treatment options for Gram-positive bacteria are vancomycin, daptomycin, linezolid, etc. Although the development of new antibiotics has stagnated, various agents with antibacterial properties are currently in clinical and preclinical trials. Non-antibiotic strategies encompass antibiotic potentiators, bacteriophage therapy, antivirulence therapeutics, antimicrobial peptides, antibacterial nanomaterials, host-directed therapy, vaccines, antibodies, plant-based products, repurposed drugs, as well as their combinations, including those used alongside antibiotics. Significant challenges exist in developing new antimicrobials, particularly related to scientific and technical issues, along with policy and economic factors. Currently, most of the alternative options are not part of routine treatment protocols. Conclusions and Future Directions: There is an urgent need to expedite the development of new strategies for treating infections caused by MDR bacteria. This requires a multidisciplinary approach that involves collaboration across research, healthcare, and regulatory bodies. Suggested approaches are crucial for addressing this challenge and should be backed by rational antibiotic use, enhanced infection control practices, and improved surveillance systems for emerging pathogens. Full article
Show Figures

Figure 1

17 pages, 974 KiB  
Review
An Overview of Sargassum Seaweed as Natural Anticancer Therapy
by Kelly Johanna Muñoz-Losada, Manuela Gallego-Villada and Miguel Angel Puertas-Mejía
Future Pharmacol. 2025, 5(1), 5; https://doi.org/10.3390/futurepharmacol5010005 - 20 Jan 2025
Viewed by 1946
Abstract
Algae have great therapeutic value and have attracted a great deal of attention due to the abundance of bioactive compounds they contain, which may be the key to fighting diseases of various origins, such as skin cancer, breast cancer, or osteosarcoma. In this [...] Read more.
Algae have great therapeutic value and have attracted a great deal of attention due to the abundance of bioactive compounds they contain, which may be the key to fighting diseases of various origins, such as skin cancer, breast cancer, or osteosarcoma. In this regard, global trends indicate that cancer is likely to become the leading cause of death and the main obstacle to increased life expectancy in the 21st century, which is related to multiple factors, including the various effects of climate change, which will continue to cause afflictions to human health. Then, excess exposure to ultraviolet radiation (UVR) causes damage to DNA, proteins, enzymes, and various cellular structures and leads to the development of cancer, premature aging of the skin (wrinkles, dryness, dilation of blood vessels, and loss of collagen and elastin), or alterations of the immune system. In addition, multidrug resistance (MDR) is characterized by the overexpression of efflux pumps, such as P-glycoprotein or P-gp, that expel chemotherapeutic drugs out of the cancer cell being the main obstacle to their efficacy. Some molecules inhibit efflux pumps when co-administered with antineoplastic agents, such as glycolipids. Mycosporin-like amino acids and glycolipids isolated from Sargassum have shown an important role as potential anticancer agents. The results show that glycolipids and mycosporin-like amino acids present in brown algae of the genus Sargassum exhibit cytotoxic effects on different types of cancer, such as breast cancer, leukemia, and osteosarcoma, which is a key criterion to be considered as a natural anti-cancer strategy; but, more in-depth in vitro studies are needed to represent them at the in vivo level, as well as their validation in preclinical assays. Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2024)
Show Figures

Graphical abstract

35 pages, 4474 KiB  
Review
Repurposed Drugs and Plant-Derived Natural Products as Potential Host-Directed Therapeutic Candidates for Tuberculosis
by Rubhana Raqib and Protim Sarker
Biomolecules 2024, 14(12), 1497; https://doi.org/10.3390/biom14121497 - 24 Nov 2024
Cited by 1 | Viewed by 1770
Abstract
Tuberculosis (TB) is one of the leading causes of death due to infectious disease. It is a treatable disease; however, conventional treatment requires a lengthy treatment regimen with severe side effects, resulting in poor compliance among TB patients. Intermittent drug use, the non-compliance [...] Read more.
Tuberculosis (TB) is one of the leading causes of death due to infectious disease. It is a treatable disease; however, conventional treatment requires a lengthy treatment regimen with severe side effects, resulting in poor compliance among TB patients. Intermittent drug use, the non-compliance of patients, and prescription errors, among other factors, have led to the emergence of multidrug-resistant TB, while the mismanagement of multidrug-resistant TB (MDR-TB) has eventually led to the development of extensively drug-resistant tuberculosis (XDR-TB). Thus, there is an urgent need for new drug development, but due to the enormous expenses and time required (up to 20 years) for new drug research and development, new therapeutic approaches to TB are required. Host-directed therapies (HDT) could be a most attractive strategy, as they target the host defense processes instead of the microbe and thereby may prevent the alarming rise of MDR- and XDR-TB. This paper reviews the progress in HDT for the treatment of TB using repurposed drugs which have been investigated in clinical trials (completed or ongoing) and plant-derived natural products that are in clinical or preclinical trial stages. Additionally, this review describes the existing challenges to the development and future research directions in the implementation of HDT. Full article
(This article belongs to the Special Issue Tuberculosis: Immunopathogenesis and Therapeutic Strategies)
Show Figures

Figure 1

27 pages, 1353 KiB  
Review
New Oxazolidinones for Tuberculosis: Are Novel Treatments on the Horizon?
by Ricky Hao Chen, Andrew Burke, Jin-Gun Cho, Jan-Willem Alffenaar and Lina Davies Forsman
Pharmaceutics 2024, 16(6), 818; https://doi.org/10.3390/pharmaceutics16060818 - 17 Jun 2024
Cited by 4 | Viewed by 2899
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a global health concern. Standard treatment involves the use of linezolid, a repurposed oxazolidinone. It is associated with severe adverse effects, including myelosuppression and mitochondrial toxicity. As such, it is imperative to identify novel alternatives that are better tolerated [...] Read more.
Multidrug-resistant tuberculosis (MDR-TB) is a global health concern. Standard treatment involves the use of linezolid, a repurposed oxazolidinone. It is associated with severe adverse effects, including myelosuppression and mitochondrial toxicity. As such, it is imperative to identify novel alternatives that are better tolerated but equally or more effective. Therefore, this review aims to identify and explore the novel alternative oxazolidinones to potentially replace linezolid in the management of TB. The keywords tuberculosis and oxazolidinones were searched in PubMed to identify eligible compounds. The individual drug compounds were then searched with the term tuberculosis to identify the relevant in vitro, in vivo and clinical studies. The search identified sutezolid, tedizolid, delpazolid, eperezolid, radezolid, contezolid, posizolid and TBI-223, in addition to linezolid. An additional search resulted in 32 preclinical and 21 clinical studies. All novel oxazolidinones except posizolid and eperezolid resulted in positive preclinical outcomes. Sutezolid and delpazolid completed early phase 2 clinical studies with better safety and equal or superior efficacy. Linezolid is expected to continue as the mainstay therapy, with renewed interest in drug monitoring. Sutezolid, tedizolid, delpazolid and TBI-223 displayed promising preliminary results. Further clinical studies would be required to assess the safety profiles and optimize the dosing regimens. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

18 pages, 1148 KiB  
Review
Beyond Psychotropic: Potential Repurposing of Fluoxetine toward Cancer Therapy
by Sultan F. Kadasah, Abdulaziz M. S. Alqahtani, Abdullah Alkhammash and Mohamed O. Radwan
Int. J. Mol. Sci. 2024, 25(12), 6314; https://doi.org/10.3390/ijms25126314 - 7 Jun 2024
Cited by 6 | Viewed by 4194
Abstract
Drug repurposing, rebranding an existing drug for a new therapeutic indication, is deemed a beneficial approach for a quick and cost-effective drug discovery process by skipping preclinical, Phase 1 trials and pharmacokinetic studies. Several psychotropic drugs, including selective serotonin reuptake inhibitors (SSRIs) and [...] Read more.
Drug repurposing, rebranding an existing drug for a new therapeutic indication, is deemed a beneficial approach for a quick and cost-effective drug discovery process by skipping preclinical, Phase 1 trials and pharmacokinetic studies. Several psychotropic drugs, including selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs), were studied for their potential application in different diseases, especially in cancer therapy. Fluoxetine (FLX) is one of the most prescribed psychotropic agents from the SSRIs class for the treatment of several neuropsychiatric disorders with a favorable safety profile. FLX exhibited different oncolytic effects via mechanisms distinct from its main serotonergic activity. Taking advantage of its ability to rapidly penetrate the blood–brain barrier, FLX could be particularly useful in brain tumors. This was proved by different in vitro and in vivo experiments using FLX as a monotherapy or combination with temozolomide (TMZ) or radiotherapy. In this review of the literature, we summarize the potential pleiotropic oncolytic roles of FLX against different cancers, highlighting the multifaceted activities of FLX and its ability to interrupt cancer proliferation via several molecular mechanisms and even surmount multidrug resistance (MDR). We elaborated on the successful synergistic combinations such as FXR/temozolomide and FXR/raloxifene for the treatment of glioblastoma and breast cancer, respectively. We showcased beneficial pharmaceutical trials to load FLX onto carriers to enhance its safety and efficacy on cancer cells. This is the first review article extensively summarizing all previous FLX repurposing studies for the management of cancer. Full article
(This article belongs to the Special Issue Techniques and Strategies in Drug Design and Discovery, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 3283 KiB  
Article
Applicability of MDR1 Overexpressing Abcb1KO-MDCKII Cell Lines for Investigating In Vitro Species Differences and Brain Penetration Prediction
by Emőke Sóskuti, Nóra Szilvásy, Csilla Temesszentandrási-Ambrus, Zoltán Urbán, Olivér Csíkvári, Zoltán Szabó, Gábor Kecskeméti, Éva Pusztai and Zsuzsanna Gáborik
Pharmaceutics 2024, 16(6), 736; https://doi.org/10.3390/pharmaceutics16060736 - 29 May 2024
Cited by 2 | Viewed by 2000
Abstract
Implementing the 3R initiative to reduce animal experiments in brain penetration prediction for CNS-targeting drugs requires more predictive in vitro and in silico models. However, animal studies are still indispensable to obtaining brain concentration and determining the prediction performance of in vitro models. [...] Read more.
Implementing the 3R initiative to reduce animal experiments in brain penetration prediction for CNS-targeting drugs requires more predictive in vitro and in silico models. However, animal studies are still indispensable to obtaining brain concentration and determining the prediction performance of in vitro models. To reveal species differences and provide reliable data for IVIVE, in vitro models are required. Systems overexpressing MDR1 and BCRP are widely used to predict BBB penetration, highlighting the impact of the in vitro system on predictive performance. In this study, endogenous Abcb1 knock-out MDCKII cells overexpressing MDR1 of human, mouse, rat or cynomolgus monkey origin were used. Good correlations between ERs of 83 drugs determined in each cell line suggest limited species specificities. All cell lines differentiated CNS-penetrating compounds based on ERs with high efficiency and sensitivity. The correlation between in vivo and predicted Kp,uu,brain was the highest using total ER of human MDR1 and BCRP and optimized scaling factors. MDR1 interactors were tested on all MDR1 orthologs using digoxin and quinidine as substrates. We found several examples of inhibition dependent on either substrate or transporter abundance. In summary, this assay system has the potential for early-stage brain penetration screening. IC50 comparison between orthologs is complex; correlation with transporter abundance data is not necessarily proportional and requires the understanding of modes of transporter inhibition. Full article
Show Figures

Figure 1

21 pages, 7591 KiB  
Review
Experimental and Computational Methods to Assess Central Nervous System Penetration of Small Molecules
by Mayuri Gupta, Jun Feng and Govinda Bhisetti
Molecules 2024, 29(6), 1264; https://doi.org/10.3390/molecules29061264 - 13 Mar 2024
Cited by 8 | Viewed by 5984
Abstract
In CNS drug discovery, the estimation of brain exposure to lead compounds is critical for their optimization. Compounds need to cross the blood–brain barrier (BBB) to reach the pharmacological targets in the CNS. The BBB is a complex system involving passive and active [...] Read more.
In CNS drug discovery, the estimation of brain exposure to lead compounds is critical for their optimization. Compounds need to cross the blood–brain barrier (BBB) to reach the pharmacological targets in the CNS. The BBB is a complex system involving passive and active mechanisms of transport and efflux transporters such as P-glycoproteins (P-gp) and breast cancer resistance protein (BCRP), which play an essential role in CNS penetration of small molecules. Several in vivo, in vitro, and in silico methods are available to estimate human brain penetration. Preclinical species are used as in vivo models to understand unbound brain exposure by deriving the Kp,uu parameter and the brain/plasma ratio of exposure corrected with the plasma and brain free fraction. The MDCK-mdr1 (Madin Darby canine kidney cells transfected with the MDR1 gene encoding for the human P-gp) assay is the commonly used in vitro assay to estimate compound permeability and human efflux. The in silico methods to predict brain exposure, such as CNS MPO, CNS BBB scores, and various machine learning models, help save costs and speed up compound discovery and optimization at all stages. These methods enable the screening of virtual compounds, building of a CNS penetrable compounds library, and optimization of lead molecules for CNS penetration. Therefore, it is crucial to understand the reliability and ability of these methods to predict CNS penetration. We review the in silico, in vitro, and in vivo data and their correlation with each other, as well as assess published experimental and computational approaches to predict the BBB penetrability of compounds. Full article
(This article belongs to the Special Issue Computational Drug Discovery: Methods and Applications)
Show Figures

Figure 1

22 pages, 1837 KiB  
Article
GATR-3, a Peptide That Eradicates Preformed Biofilms of Multidrug-Resistant Acinetobacter baumannii
by Monique L. van Hoek, Fahad M. Alsaab and Ashley M. Carpenter
Antibiotics 2024, 13(1), 39; https://doi.org/10.3390/antibiotics13010039 - 31 Dec 2023
Cited by 2 | Viewed by 3254
Abstract
Acinetobacter baumannii is a gram-negative bacterium that causes hospital-acquired and opportunistic infections, resulting in pneumonia, sepsis, and severe wound infections that can be difficult to treat due to antimicrobial resistance and the formation of biofilms. There is an urgent need to develop novel [...] Read more.
Acinetobacter baumannii is a gram-negative bacterium that causes hospital-acquired and opportunistic infections, resulting in pneumonia, sepsis, and severe wound infections that can be difficult to treat due to antimicrobial resistance and the formation of biofilms. There is an urgent need to develop novel antimicrobials to tackle the rapid increase in antimicrobial resistance, and antimicrobial peptides (AMPs) represent an additional class of potential agents with direct antimicrobial and/or host-defense activating activities. In this study, we present GATR-3, a synthetic, designed AMP that was modified from a cryptic peptide discovered in American alligator, as our lead peptide to target multidrug-resistant (MDR) A. baumannii. Antimicrobial susceptibility testing and antibiofilm assays were performed to assess GATR-3 against a panel of 8 MDR A. baumannii strains, including AB5075 and some clinical strains. The GATR-3 mechanism of action was determined to be via loss of membrane integrity as measured by DiSC3(5) and ethidium bromide assays. GATR-3 exhibited potent antimicrobial activity against all tested multidrug-resistant A. baumannii strains with rapid killing. Biofilms are difficult to treat and eradicate. Excitingly, GATR-3 inhibited biofilm formation and, more importantly, eradicated preformed biofilms of MDR A. baumannii AB5075, as evidenced by MBEC assays and scanning electron micrographs. GATR3 did not induce resistance in MDR A. baumannii, unlike colistin. Additionally, the toxicity of GATR-3 was evaluated using human red blood cells, HepG2 cells, and waxworms using hemolysis and MTT assays. GATR-3 demonstrated little to no cytotoxicity against HepG2 and red blood cells, even at 100 μg/mL. GATR-3 injection showed little toxicity in the waxworm model, resulting in a 90% survival rate. The therapeutic index of GATR-3 was estimated (based on the HC50/MIC against human RBCs) to be 1250. Overall, GATR-3 is a promising candidate to advance to preclinical testing to potentially treat MDR A. baumannii infections. Full article
(This article belongs to the Special Issue Recent Advances in Antimicrobial Drug Discovery, 2nd Edition)
Show Figures

Figure 1

22 pages, 2025 KiB  
Article
Short Antimicrobial Peptide Derived from the Venom Gland Transcriptome of Pamphobeteus verdolaga Increases Gentamicin Susceptibility of Multidrug-Resistant Klebsiella pneumoniae
by Cristian Salinas-Restrepo, Ana María Naranjo-Duran, Juan Quintana, Julio Bueno, Fanny Guzman, Lina M. Hoyos Palacio and Cesar Segura
Antibiotics 2024, 13(1), 6; https://doi.org/10.3390/antibiotics13010006 - 20 Dec 2023
Cited by 2 | Viewed by 2468
Abstract
Infectious diseases account for nine percent of annual human deaths, and the widespread emergence of antimicrobial resistances threatens to significantly increase this number in the coming decades. The prospect of antimicrobial peptides (AMPs) derived from venomous animals presents an interesting alternative for developing [...] Read more.
Infectious diseases account for nine percent of annual human deaths, and the widespread emergence of antimicrobial resistances threatens to significantly increase this number in the coming decades. The prospect of antimicrobial peptides (AMPs) derived from venomous animals presents an interesting alternative for developing novel active pharmaceutical ingredients (APIs). Small, cationic and amphiphilic peptides were predicted from the venom gland transcriptome of Pamphobeteus verdolaga using a custom database of the arthropod’s AMPs. Ninety-four candidates were chemically synthesized and screened against ATCC® strains of Escherichia coli and Staphylococcus aureus. Among them, one AMP, named PvAMP66, showed broad-spectrum antimicrobial properties with selectivity towards Gram-negative bacteria. It also exhibited activity against Pseudomonas aeruginosa, as well as both an ATCC® and a clinically isolated multidrug-resistant (MDR) strain of K. pneumoniae. The scanning electron microscopy analysis revealed that PvAMP66 induced morphological changes of the MDR K. pneumoniae strain suggesting a potential “carpet model” mechanism of action. The isobologram analysis showed an additive interaction between PvAMP66 and gentamicin in inhibiting the growth of MDR K. pneumoniae, leading to a ten-fold reduction in gentamicin’s effective concentration. A cytotoxicity against erythrocytes or peripheral blood mononuclear cells was observed at concentrations three to thirteen-fold higher than those exhibited against the evaluated bacterial strains. This evidence suggests that PvAMP66 can serve as a template for the development of AMPs with enhanced activity and deserves further pre-clinical studies as an API in combination therapy. Full article
Show Figures

Figure 1

24 pages, 6355 KiB  
Review
Prospects of Topoisomerase Inhibitors as Promising Anti-Cancer Agents
by Prasanna Anjaneyulu Yakkala, Naveen Reddy Penumallu, Syed Shafi and Ahmed Kamal
Pharmaceuticals 2023, 16(10), 1456; https://doi.org/10.3390/ph16101456 - 13 Oct 2023
Cited by 55 | Viewed by 8223
Abstract
Topoisomerases are very important enzymes that regulate DNA topology and are vital for biological actions like DNA replication, transcription, and repair. The emergence and spread of cancer has been intimately associated with topoisomerase dysregulation. Topoisomerase inhibitors have consequently become potential anti-cancer medications because [...] Read more.
Topoisomerases are very important enzymes that regulate DNA topology and are vital for biological actions like DNA replication, transcription, and repair. The emergence and spread of cancer has been intimately associated with topoisomerase dysregulation. Topoisomerase inhibitors have consequently become potential anti-cancer medications because of their ability to obstruct the normal function of these enzymes, which leads to DNA damage and subsequently causes cell death. This review emphasizes the importance of topoisomerase inhibitors as marketed, clinical and preclinical anti-cancer medications. In the present review, various types of topoisomerase inhibitors and their mechanisms of action have been discussed. Topoisomerase I inhibitors, which include irinotecan and topotecan, are agents that interact with the DNA-topoisomerase I complex and avert resealing of the DNA. The accretion of DNA breaks leads to the inhibition of DNA replication and cell death. On the other hand, topoisomerase II inhibitors like etoposide and teniposide, function by cleaving the DNA-topoisomerase II complex thereby effectively impeding the release of double-strand DNA breaks. Moreover, the recent advances in exploring the therapeutic efficacy, toxicity, and MDR (multidrug resistance) issues of new topoisomerase inhibitors have been reviewed in the present review. Full article
(This article belongs to the Special Issue Topoisomerases as Targets for Novel Drug Discovery)
Show Figures

Figure 1

18 pages, 631 KiB  
Review
Recent Advances in Curcumin-Based Combination Nanomedicines for Cancer Therapy
by Amir R. Afshari, Mehdi Sanati, Prashant Kesharwani and Amirhossein Sahebkar
J. Funct. Biomater. 2023, 14(8), 408; https://doi.org/10.3390/jfb14080408 - 2 Aug 2023
Cited by 10 | Viewed by 3010
Abstract
Standard cancer chemotherapeutics often produce significant adverse effects and eventually lose their effectiveness due to the emergence of resistance mechanisms. As a result, patients with malignant tumors experience a poor quality of life and a short lifespan. Thus, combination medication regimens provide various [...] Read more.
Standard cancer chemotherapeutics often produce significant adverse effects and eventually lose their effectiveness due to the emergence of resistance mechanisms. As a result, patients with malignant tumors experience a poor quality of life and a short lifespan. Thus, combination medication regimens provide various advantages, including increased success rate, fewer side effects, and fewer occurrences of resistance. Curcumin (Cur), a potential phytochemical from turmeric, when coupled with traditional chemotherapeutics, has been established to improve the effectiveness of cancer treatment in clinical and preclinical investigations. Cur not only exerts multiple mechanisms resulting in apoptotic cancer cell death but also reduces the resistance to standard chemotherapy drugs, mainly through downregulating the multi-drug resistance (MDR) cargoes. Recent reports showed the beneficial outcomes of Cur combination with many chemotherapeutics in various malignancies. Nevertheless, owing to the limited bioavailability, devising co-delivery strategies for Cur and conventional pharmaceuticals appears to be required for clinical settings. This review summarized various Cur combinations with standard treatments as cancer therapeutics. Full article
(This article belongs to the Special Issue Nanoparticles and Nanocompounds for Cancer Therapy)
Show Figures

Figure 1

41 pages, 1369 KiB  
Review
The Promising Potential of Reverse Vaccinology-Based Next-Generation Vaccine Development over Conventional Vaccines against Antibiotic-Resistant Bacteria
by Kanwal Khalid and Chit Laa Poh
Vaccines 2023, 11(7), 1264; https://doi.org/10.3390/vaccines11071264 - 20 Jul 2023
Cited by 38 | Viewed by 9264
Abstract
The clinical use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, leading to the current antibiotic resistance crisis. To address this issue, next-generation vaccines are being developed to prevent antimicrobial resistance caused by MDR bacteria. Traditional vaccine platforms, such as [...] Read more.
The clinical use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, leading to the current antibiotic resistance crisis. To address this issue, next-generation vaccines are being developed to prevent antimicrobial resistance caused by MDR bacteria. Traditional vaccine platforms, such as inactivated vaccines (IVs) and live attenuated vaccines (LAVs), were effective in preventing bacterial infections. However, they have shown reduced efficacy against emerging antibiotic-resistant bacteria, including MDR M. tuberculosis. Additionally, the large-scale production of LAVs and IVs requires the growth of live pathogenic microorganisms. A more promising approach for the accelerated development of vaccines against antibiotic-resistant bacteria involves the use of in silico immunoinformatics techniques and reverse vaccinology. The bioinformatics approach can identify highly conserved antigenic targets capable of providing broader protection against emerging drug-resistant bacteria. Multi-epitope vaccines, such as recombinant protein-, DNA-, or mRNA-based vaccines, which incorporate several antigenic targets, offer the potential for accelerated development timelines. This review evaluates the potential of next-generation vaccine development based on the reverse vaccinology approach and highlights the development of safe and immunogenic vaccines through relevant examples from successful preclinical and clinical studies. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

15 pages, 3568 KiB  
Article
Antibacterial Activity of the Essential Oil of Piper tuberculatum Jacq. Fruits against Multidrug-Resistant Strains: Inhibition of Efflux Pumps and β-Lactamase
by Lucas Yure Santos da Silva, Cicera Laura Roque Paulo, Talysson Felismino Moura, Daniel Sampaio Alves, Renata Torres Pessoa, Isaac Moura Araújo, Cícera Datiane de Morais Oliveira-Tintino, Saulo Relison Tintino, Carla de Fatima Alves Nonato, José Galberto Martins da Costa, Jaime Ribeiro-Filho, Henrique Douglas Melo Coutinho, Grażyna Kowalska, Przemysław Mitura, Marek Bar, Radosław Kowalski and Irwin Rose Alencar de Menezes
Plants 2023, 12(12), 2377; https://doi.org/10.3390/plants12122377 - 19 Jun 2023
Cited by 14 | Viewed by 2749
Abstract
Antimicrobial resistance has become a growing public health concern in recent decades, demanding a search for new effective treatments. Therefore, this study aimed to elucidate the phytochemical composition and evaluate the antibacterial activity of the essential oil obtained from the fruits of Piper [...] Read more.
Antimicrobial resistance has become a growing public health concern in recent decades, demanding a search for new effective treatments. Therefore, this study aimed to elucidate the phytochemical composition and evaluate the antibacterial activity of the essential oil obtained from the fruits of Piper tuberculatum Jacq. (EOPT) against strains carrying different mechanisms of antibiotic resistance. Phytochemical analysis was performed using gas chromatography–mass spectrometry (GC/MS). The antibacterial activity of EOPT and its ability to inhibit antibiotic resistance was evaluated through the broth microdilution method. The GC-MS analysis identified 99.59% of the constituents, with β-pinene (31.51%), α-pinene (28.38%), and β-cis-ocimene (20.22%) being identified as major constituents. The minimum inhibitory concentration (MIC) of EOPT was determined to assess its antibacterial activity against multidrug-resistant strains of Staphylococcus aureus (IS-58, 1199B, K2068, and K4100). The compound showed a MIC of ≥ 1024 μg/mL, suggesting a lack of intrinsic antibacterial activity. However, when the EOPT was associated with antibiotics and EtBr, a significant decrease in antibiotic resistance was observed, indicating the modulation of efflux pump activity. This evidence was corroborated with the observation of increased fluorescent light emission by the bacterial strains, indicating the involvement of the NorA and MepA efflux pumps. Additionally, the significant potentiation of ampicillin activity against the S. aureus strain K4414 suggests the β-lactamase inhibitory activity of EOPT. These results suggest that the essential oil from P. tuberculatum fruits has antibiotic-enhancing properties, with a mechanism involving the inhibition of efflux pumps and β-lactamase in MDR S. aureus strains. These findings provide new perspectives on the potential use of EOPT against antibiotic resistance and highlight the importance of Piper species as sources of bioactive compounds with promising therapeutic activities against MDR bacteria. Nevertheless, further preclinical (in vivo) studies remain necessary to confirm these in vitro-observed results. Full article
Show Figures

Figure 1

Back to TopTop