Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,822)

Search Parameters:
Keywords = precipitation frequency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 - 1 Aug 2025
Viewed by 217
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

19 pages, 9566 KiB  
Article
A Zenith Tropospheric Delay Modeling Method Based on the UNB3m Model and Kriging Spatial Interpolation
by Huineng Yan, Zhigang Lu, Fang Li, Yu Li, Fuping Li and Rui Wang
Atmosphere 2025, 16(8), 921; https://doi.org/10.3390/atmos16080921 - 30 Jul 2025
Viewed by 182
Abstract
To accurately estimate Zenith Tropospheric Delay (ZTD) for high-precision positioning of the Global Navigation Satellite System (GNSS), this study proposes a modeling method of ZTD based on the UNB3m model and Kriging spatial interpolation, in which the optimal spatial interpolation parameters are determined [...] Read more.
To accurately estimate Zenith Tropospheric Delay (ZTD) for high-precision positioning of the Global Navigation Satellite System (GNSS), this study proposes a modeling method of ZTD based on the UNB3m model and Kriging spatial interpolation, in which the optimal spatial interpolation parameters are determined based on the errors corresponding to different combinations of the interpolation parameters, and the spatial distribution of the GNSS modeling stations is determined by the interpolation errors of the randomly selected GNSS stations for several times. To verify the accuracy and reliability of the proposed model, the ZTD estimates of 132,685 epochs with 1 h or 2 h temporal resolution for 28 years from 1997 to 2025 of the global network of continuously operating GNSS tracking stations are used as inputs; the ZTD results at any position and the corresponding observation moment can be obtained with the proposed model. The experimental results show that the model error is less than 30 mm in more than 85% of the observation epochs, the ZTD estimation results are less affected by the horizontal position and height of the GNSS stations than traditional models, and the ZTD interpolation error is improved by 10–40 mm compared to the GPT3 and UNB3m models at the four GNSS checking stations. Therefore, this technology can provide ZTD estimation results for single- and dual-frequency hybrid deformation monitoring, as well as dense ZTD data for Precipitable Water Vapor (PWV) inversion. Since the proposed method has the advantages of simple implementation, high accuracy, high reliability, and ease of promotion, it is expected to be fully applied in other high-precision positioning applications. Full article
(This article belongs to the Special Issue GNSS Remote Sensing in Atmosphere and Environment (2nd Edition))
Show Figures

Figure 1

17 pages, 3289 KiB  
Article
Significant Attribution of Urbanization to Triggering Extreme Rainfall in the Urban Core—A Case of Dallas–Fort Worth in North Texas
by Junaid Ahmad, Jessica A. Eisma and Muhammad Sajjad
Urban Sci. 2025, 9(8), 295; https://doi.org/10.3390/urbansci9080295 - 29 Jul 2025
Viewed by 325
Abstract
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, [...] Read more.
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, which has minimal orographic and coastal influences, to analyze the urban impact on rainfall. DFW was divided into 256 equal grids (10 km × 10 km) and grouped into four clusters using K-means clustering based on the urbanization ratio. Using Multi-Sensor Precipitation Estimator data (with a spatial resolution of 4 km), we examined rainfall exceeding the 95th percentile (i.e., extreme rainfall) on low synoptic days to highlight localized effects. The urban heat island (UHI) effect was estimated based on the average temperature difference between the urban core and the other three non-urban clusters. Multiple rainfall events were monitored on an hourly basis. Potential linkages between urbanization, the UHI, extreme rainfall, wind speed, wind direction, convective inhibition, and convective available potential energy were evaluated. An intense UHI within the DFW area triggered a tornado, resulting in maximum rainfall in the urban core area under high wind speeds and a dominant wind direction. Our findings further clarify the role of urbanization in generating extreme rainfall events, which is essential for developing better policies for urban planning in response to intensifying extreme events due to climate change. Full article
Show Figures

Figure 1

27 pages, 3840 KiB  
Article
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023
by Pablo O. Canziani, S. Gabriela Lakkis and Adrián E. Yuchechen
Atmosphere 2025, 16(8), 914; https://doi.org/10.3390/atmos16080914 - 29 Jul 2025
Viewed by 243
Abstract
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the [...] Read more.
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the relationships between large-scale climate drivers and monthly rainfall are considered. Results show that, except for Córdoba, the complete anomaly timeseries trend analysis for all other stations yielded null trends over the centennial study period. Considerable month-to-month variability is observed for all locations together with the existence of low-frequency decadal to interdecadal variability, both for monthly precipitation anomalies and for statistically significant excess and deficit months. Linear fits considering oceanic climate indicators as drivers of variability yield significant differences between locations, while not between full records and seasonally sampled. Issues regarding the use of linear analysis to quantify variability, the dispersion along the timeline of record extreme rainy months at each location, together with the evidence of severe daily precipitation events not necessarily coinciding with the ranking of the rainiest months at each location, highlights the challenges of understanding the drivers of variability of both monthly and severe daily precipitation and the need of using extended centennial timeseries whenever possible. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 1855 KiB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Viewed by 216
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

9 pages, 2733 KiB  
Data Descriptor
Investigating Mid-Latitude Lower Ionospheric Responses to Energetic Electron Precipitation: A Case Study
by Aleksandra Kolarski, Vladimir A. Srećković, Zoran R. Mijić and Filip Arnaut
Data 2025, 10(8), 121; https://doi.org/10.3390/data10080121 - 26 Jul 2025
Viewed by 215
Abstract
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to [...] Read more.
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to the localized, transient nature of Energetic Electron Precipitation (EEP) events and the path-dependence of VLF responses, research relies on event-specific case studies to model reflection height and sharpness via numerical simulations. Findings show LIEs are typically under 1000 × 500 km, with varying internal structure. Accumulated case studies and corresponding data across diverse conditions contribute to a broader understanding of ionospheric dynamics and space weather effects. These findings enhance regional modeling, support aerosol–electricity climate research, and underscore the value of VLF-based ionospheric monitoring and collaboration in Europe. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

24 pages, 6552 KiB  
Article
Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling
by Anna M. Jalowska, Daniel E. Line, Tanya L. Spero, J. Jack Kurki-Fox, Barbara A. Doll, Jared H. Bowden and Geneva M. E. Gray
Water 2025, 17(15), 2228; https://doi.org/10.3390/w17152228 - 26 Jul 2025
Viewed by 390
Abstract
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study [...] Read more.
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study presents a novel approach that uses rainfall data from five dynamically and statistically downscaled (DD and SD) global climate models under two scenarios to visualize a potential future extent of flooding in ENC. Here, we use DD data (at 36-km grid spacing) to compute future changes in precipitation intensity–duration–frequency (PIDF) curves at the end of the 21st century. These PIDF curves are further applied to observed rainfall from Hurricane Matthew—a landfalling storm that created widespread flooding across ENC in 2016—to project versions of “Matthew 2100” that reflect changes in extreme precipitation under those scenarios. Each Matthew-2100 rainfall distribution was then used in hydrologic models (HEC-HMS and HEC-RAS) to simulate “2100” discharges and flooding extents in the Neuse River Basin (4686 km2) in ENC. The results show that DD datasets better represented historical changes in extreme rainfall than SD datasets. The projected changes in ENC rainfall (up to 112%) exceed values published for the U.S. but do not exceed historical values. The peak discharges for Matthew-2100 could increase by 23–69%, with 0.4–3 m increases in water surface elevation and 8–57% increases in flooded area. The projected increases in flooding would threaten people, ecosystems, agriculture, infrastructure, and the economy throughout ENC. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

28 pages, 9894 KiB  
Article
At-Site Versus Regional Frequency Analysis of Sub-Hourly Rainfall for Urban Hydrology Applications During Recent Extreme Events
by Sunghun Kim, Kyungmin Sung, Ju-Young Shin and Jun-Haeng Heo
Water 2025, 17(15), 2213; https://doi.org/10.3390/w17152213 - 24 Jul 2025
Viewed by 240
Abstract
Accurate rainfall quantile estimation is critical for urban flood management, particularly given the escalating climate change impacts. This study comprehensively compared at-site frequency analysis and regional frequency analysis for sub-hourly rainfall quantile estimation, using data from 27 sites across Seoul. The analysis focused [...] Read more.
Accurate rainfall quantile estimation is critical for urban flood management, particularly given the escalating climate change impacts. This study comprehensively compared at-site frequency analysis and regional frequency analysis for sub-hourly rainfall quantile estimation, using data from 27 sites across Seoul. The analysis focused on Seoul’s disaster prevention framework (30-year and 100-year return periods). Employing L-moment statistics and Monte Carlo simulations, the rainfall quantiles were estimated, the methodological performance was evaluated, and Seoul’s current disaster prevention standards were assessed. The analysis revealed significant spatio-temporal variability in Seoul’s precipitation, causing considerable uncertainty in individual site estimates. A performance evaluation, including the relative root mean square error and confidence interval, consistently showed regional frequency analysis superiority over at-site frequency analysis. While at-site frequency analysis demonstrated better performance only for short return periods (e.g., 2 years), regional frequency analysis exhibited a substantially lower relative root mean square error and significantly narrower confidence intervals for larger return periods (e.g., 10, 30, 100 years). This methodology reduced the average 95% confidence interval width by a factor of approximately 2.7 (26.98 mm versus 73.99 mm). This enhanced reliability stems from the information-pooling capabilities of regional frequency analysis, mitigating uncertainties due to limited record lengths and localized variabilities. Critically, regionally derived 100-year rainfall estimates consistently exceeded Seoul’s 100 mm disaster prevention threshold across most areas, suggesting that the current infrastructure may be substantially under-designed. The use of minute-scale data underscored its necessity for urban hydrological modeling, highlighting the inadequacy of conventional daily rainfall analyses. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

13 pages, 10728 KiB  
Article
Climate Features Affecting the Management of the Madeira River Sustainable Development Reserve, Brazil
by Matheus Gomes Tavares, Sin Chan Chou, Nicole Cristine Laureanti, Priscila da Silva Tavares, Jose Antonio Marengo, Jorge Luís Gomes, Gustavo Sueiro Medeiros and Francis Wagner Correia
Geographies 2025, 5(3), 36; https://doi.org/10.3390/geographies5030036 - 24 Jul 2025
Viewed by 254
Abstract
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of [...] Read more.
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of the Madeira River Sustainable Development Reserve (MSDR), offering scientific support to efforts to assess the feasibility of implementing adaptation measures to increase the resilience of isolated Amazon communities in the face of extreme climate events. Significant statistical analyses based on time series of observational and reanalysis climate data were employed to obtain a detailed diagnosis of local climate variability. The results show that monthly mean two-meter temperatures vary from 26.5 °C in February, the coolest month, to 28 °C in August, the warmest month. Monthly precipitation averages approximately 250 mm during the rainy season, from December until May. July and August are the driest months, August and September are the warmest months, and September and October are the months with the lowest river level. Cold spells were identified in July, and warm spells were identified between July and September, making this period critical for public health. Heavy precipitation events detected by the R80, Rx1day, and Rx5days indices show an increasing trend in frequency and intensity in recent years. The analyses indicated that the MSDR has no potential for wind-energy generation; however, photovoltaic energy production is viable throughout the year. Regarding the two major commercial crops and their resilience to thermal stress, the region presents suitable conditions for açaí palm cultivation, but Brazil nut production may be adversely affected by extreme drought and heat events. The results of this study may support research on adaptation strategies that includethe preservation of local traditions and natural resources to ensure sustainable development. Full article
Show Figures

Figure 1

19 pages, 2238 KiB  
Article
Productivity, Biodiversity and Forage Value of Meadow Sward Depending on Management Intensity and Silicon Application
by Barbara Borawska-Jarmułowicz and Grażyna Mastalerczuk
Sustainability 2025, 17(15), 6717; https://doi.org/10.3390/su17156717 - 24 Jul 2025
Viewed by 215
Abstract
The efficiency and quality of meadows is affected by, among others, the botanical composition of the sward and the frequency of cutting. The research was conducted in 2023–2024 on the experiment established in 2014 on arable land, where 3-species mixtures of grasses and [...] Read more.
The efficiency and quality of meadows is affected by, among others, the botanical composition of the sward and the frequency of cutting. The research was conducted in 2023–2024 on the experiment established in 2014 on arable land, where 3-species mixtures of grasses and legumes were sown. During the next three years, the sward was fertilized and cut 3-times per year, and then, for five years, was mown twice a year, without fertilization. On the sward formed at that time, in 2023, an experiment was established to evaluate how management intensity (2- or 3-cuts and rate of fertilizer) and silicon application (Si or 0Si) affect botanical composition, yield, and nutrient content in perennial meadow swards under variable precipitation over two years. Species richness rose in the sward in the second year, especially under 3-cut management (from 15 to 21 species). The share of species sown earlier in the mixtures Dactylis glomerata, Festulolium braunii, and Medicago x varia was very high at both management intensities (66–87% DM). Yield and the content of crude protein and nutrients were higher in the 3-cut system in the second and third regrowths. Silicon supplementation increased plant diversity and yield resilience during drought, with more intensive management supporting sustainable forage production. Moreover, the sward contained more nutrients with 3-cuttings in the second and third regrowths. These findings indicate that intensive meadow management and silicon application enhance productivity, forage value, and biodiversity, providing valuable insights for sustainable meadow management strategies. Full article
Show Figures

Figure 1

27 pages, 48299 KiB  
Article
An Extensive Italian Database of River Embankment Breaches and Damages
by Michela Marchi, Ilaria Bertolini, Laura Tonni, Luca Morreale, Andrea Colombo, Tommaso Simonelli and Guido Gottardi
Water 2025, 17(15), 2202; https://doi.org/10.3390/w17152202 - 23 Jul 2025
Viewed by 235
Abstract
River embankments are critical flood defense structures, stretching for thousands of kilometers across alluvial plains. They often originated as natural levees resulting from overbank flows and were later enlarged using locally available soils yet rarely designed according to modern engineering standards. Substantially under-characterized, [...] Read more.
River embankments are critical flood defense structures, stretching for thousands of kilometers across alluvial plains. They often originated as natural levees resulting from overbank flows and were later enlarged using locally available soils yet rarely designed according to modern engineering standards. Substantially under-characterized, their performance to extreme events provides an invaluable opportunity to highlight their vulnerability and then to improve monitoring, management, and reinforcement strategies. In May 2023, two extreme meteorological events hit the Emilia-Romagna region in rapid succession, causing numerous breaches along river embankments and therefore widespread flooding of cities and territories. These were followed by two additional intense events in September and October 2024, marking an unprecedented frequency of extreme precipitation episodes in the history of the region. This study presents the methodology adopted to create a regional database of 66 major breaches and damages that occurred during May 2023 extensive floods. The database integrates multi-source information, including field surveys; remote sensing data; and eyewitness documentation collected before, during, and after the events. Preliminary interpretation enabled the identification of the most likely failure mechanisms—primarily external erosion, internal erosion, and slope instability—often acting in combination. The database, unprecedented in Italy and with few parallels worldwide, also supported a statistical analysis of breach widths in relation to failure mechanisms, crucial for improving flood hazard models, which often rely on generalized assumptions about breach development. By offering insights into the real-scale behavior of a regional river defense system, the dataset provides an important tool to support river embankments risk assessment and future resilience strategies. Full article
(This article belongs to the Special Issue Recent Advances in Flood Risk Assessment and Management)
Show Figures

Figure 1

16 pages, 4815 KiB  
Technical Note
Preliminary Analysis of a Novel Spaceborne Pseudo Tripe-Frequency Radar Observations on Cloud and Precipitation: EarthCARE CPR-GPM DPR Coincidence Dataset
by Zhen Li, Shurui Ge, Xiong Hu, Weihua Ai, Jiajia Tang, Junqi Qiao, Shensen Hu, Xianbin Zhao and Haihan Wu
Remote Sens. 2025, 17(15), 2550; https://doi.org/10.3390/rs17152550 - 23 Jul 2025
Viewed by 254
Abstract
By integrating EarthCARE W-band doppler cloud radar observations with GPM Ku/Ka-band dual-frequency precipitation radar data, this study constructs a novel global “pseudo tripe-frequency” radar coincidence dataset comprising 2886 coincidence events (about one-third of the events detected precipitation), aiming to systematically investigating band-dependent responses [...] Read more.
By integrating EarthCARE W-band doppler cloud radar observations with GPM Ku/Ka-band dual-frequency precipitation radar data, this study constructs a novel global “pseudo tripe-frequency” radar coincidence dataset comprising 2886 coincidence events (about one-third of the events detected precipitation), aiming to systematically investigating band-dependent responses to cloud and precipitation structure. Results demonstrate that the W-band is highly sensitive to high-altitude cloud particles and snowfall (reflectivity < 0 dBZ), yet it experiences substantial signal attenuation under heavy precipitation conditions, and with low-altitude reflectivity reductions exceeding 50 dBZ, its probability density distribution is more widespread, with low-altitude peaks increasing first, and then decreasing as precipitation increases. In contrast, the Ku and Ka-band radars maintain relatively stable detection capabilities, with attenuation differences generally within 15 dBZ, but its probability density distribution exhibits multiple peaks. As the precipitation rate increases, the peak value of the dual-frequency ratio (Ka/W) gradually rises from approximately 10 dBZ to 20 dBZ, and can even reach up to 60 dBZ under heavy rainfall conditions. Several cases analyses reveal clear contrasts: In stratiform precipitation regions, W-band radar reflectivity is higher above the melting layer than below, whereas the opposite pattern is observed in the Ku and Ka bands. Doppler velocities exceeding 5 m s−1 and precipitation rates surpassing 30 mm h−1 exhibit strong positive correlations in convection-dominated regimes. Furthermore, the dataset confirms the impact of ice–water cloud phase interactions and terrain-induced precipitation variability, underscoring the complementary strengths of multi-frequency radar observations for capturing diverse precipitation processes. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

31 pages, 28883 KiB  
Article
Exploring Precipitable Water Vapor (PWV) Variability and Subregional Declines in Eastern China
by Taixin Zhang, Jiayu Xiong, Shunqiang Hu, Wenjie Zhao, Min Huang, Li Zhang and Yu Xia
Sustainability 2025, 17(15), 6699; https://doi.org/10.3390/su17156699 - 23 Jul 2025
Viewed by 322
Abstract
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite [...] Read more.
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite System (GNSS) observations in typical cities in eastern China and proposes a comprehensive multiscale frequency-domain analysis framework that integrates the Fourier transform, Bayesian spectral estimation, and wavelet decomposition to extract the dominant PWV periodicities. Time-series analysis reveals an overall increasing trend in PWV across most regions, with notably declining trends in Beijing, Wuhan, and southern Taiwan, primarily attributed to groundwater depletion, rapid urban expansion, and ENSO-related anomalies, respectively. Frequency-domain results indicate distinct latitudinal and coastal–inland differences in the PWV periodicities. Inland stations (Beijing, Changchun, and Wuhan) display annual signals alongside weaker semi-annual components, while coastal stations (Shanghai, Kinmen County, Hong Kong, and Taiwan) mainly exhibit annual cycles. High-latitude stations show stronger seasonal and monthly fluctuations, mid-latitude stations present moderate-scale changes, and low-latitude regions display more diverse medium- and short-term fluctuations. In the short-term frequency domain, GNSS stations in most regions demonstrate significant PWV periodic variations over 0.5 days, 1 day, or both timescales, except for Changchun, where weak diurnal patterns are attributed to local topography and reduced solar radiation. Furthermore, ERA5-derived vertical temperature profiles are incorporated to reveal the thermodynamic mechanisms driving these variations, underscoring region-specific controls on surface evaporation and atmospheric moisture capacity. These findings offer novel insights into how human-induced environmental changes modulate the behavior of atmospheric water vapor. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 175
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 50503 KiB  
Article
Quantifying the Influence of Sea Surface Temperature Anomalies on the Atmosphere and Precipitation in the Southwestern Atlantic Ocean and Southeastern South America
by Mylene Cabrera, Luciano Pezzi, Marcelo Santini and Celso Mendes
Atmosphere 2025, 16(7), 887; https://doi.org/10.3390/atmos16070887 - 19 Jul 2025
Viewed by 243
Abstract
Oceanic mesoscale activity influences the atmosphere in the southwestern and southern sectors of the Atlantic Ocean. However, the influence of high latitudes, specifically sea ice, on mid-latitudes and a better understanding of mesoscale ocean–atmosphere thermodynamic interactions still require further study. To quantify the [...] Read more.
Oceanic mesoscale activity influences the atmosphere in the southwestern and southern sectors of the Atlantic Ocean. However, the influence of high latitudes, specifically sea ice, on mid-latitudes and a better understanding of mesoscale ocean–atmosphere thermodynamic interactions still require further study. To quantify the effects of oceanic mesoscale activity during the periods of maximum and minimum Antarctic sea ice extent (September 2019 and February 2020), numerical experiments were conducted using a coupled regional model and an online two-dimensional spatial filter to remove high-frequency sea surface temperature (SST) oscillations. The largest SST anomalies were observed in the Brazil–Malvinas Confluence and along oceanic fronts in September, with maximum SST anomalies reaching 4.23 °C and −3.71 °C. In February, the anomalies were 2.18 °C and −3.06 °C. The influence of oceanic mesoscale activity was evident in surface atmospheric variables, with larger anomalies also observed in September. This influence led to changes in the vertical structure of the atmosphere, affecting the development of the marine atmospheric boundary layer (MABL) and influencing the free atmosphere above the MABL. Modulations in precipitation patterns were observed, not only in oceanic regions, but also in adjacent continental areas. This research provides a novel perspective on ocean–atmosphere thermodynamic coupling, highlighting the mesoscale role and importance of its representation in the study region. Full article
Show Figures

Figure 1

Back to TopTop