Spatiotemporal Characteristics of Extreme Precipitation Events in Central Asia: Insights from an Event-Based Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. CATPD
2.2.2. MSWEP
2.3. The Definition and Characteristics of the EPEs
2.4. Types of EPEs
2.5. Trend Analysis Method
3. Results
3.1. Analysis of Spatiotemporal Characteristics of Annual Average Extreme Precipitation in Central Asia
3.2. Analysis of the Characteristics of EPEs at the Decadal Scale in Central Asia
3.3. Analysis of the Dominant Types of EPEs in Central Asia
3.4. Analysis of the Correlation of Extreme Precipitation Characteristics in Central Asia
4. Discussion
4.1. Spatial Heterogeneity of the TDPs in Central Asia
4.2. Analysis of the Changing Trend of EPEs’ Characteristics in Central Asia
4.3. Uncertainties
5. Conclusions
- (1)
- Extreme precipitation is more prevalent in high-altitude regions. The characteristic indicators of EPEs are significantly higher in the SM region, particularly in the Tianshan Mountains and the Pamir Plateau. Within the SM region, the event duration reaches up to 12.76 days. The highest values of the ES and ExtES are recorded in Tajikistan, measuring 62.15 mm and 36.20 mm, respectively. The cumulative frequency of EPEs generally appears to be higher in the high-altitude areas of the SM than in other regions of Central Asia, amounting to 698 events. Due to the smaller spatial variability in the cumulative frequency of the EPEs in the NK region, the average event frequency is higher than for the SM region, with the NK region experiencing approximately seven more EPEs on average.
- (2)
- On an interdecadal scale, the extreme precipitation characteristics illustrate rather pronounced phase changes, with substantial regional trend disparities. During 1979–1991, the frequency of the EPEs across Central Asia declined (−1.742 events per 13 years), while the event duration instead increased (0.52 days per 13 years). The period from 1992 to 2009 has undergone the most significant and pronounced a decline in the magnitude of extreme precipitation indicators. Compared to 1979–1991, it increased by a factor of 36 during the time frame 1992–2009, with 63.44% of the region experiencing EF values exceeding 180. Except for ED and ExtED, all other EPE characteristics showed significant downward trends. From 2010 to 2023, apart from EF and EI, most other EPE characteristics displayed augmenting tendencies across Central Asia.
- (3)
- The dominant types of EPEs exhibit regional differences. Using the proportion of the extreme precipitation frequency as a criterion, the regions dominated by the TDP2 account for a large part of Central Asia spatially. The SD and NK regions are characterized by a more prominent combination of the “TDP2 + TDP1”, while the SM region is dominated by the “TDP2 + TDP3” combination. Based on the total amount of extreme precipitation, 99.48% of Central Asia primarily features the “TDP2 + TDP3” combination. Temporally, the frequency of the TDP3 events demonstrates a decreasing tendency across the region.
- (4)
- The frequency and duration of the EPEs are closely related to DEM and AI. From the perspective of the elevation, the mountainous areas at 2000–3000 m are identified as peak zones for the EPEs’ frequency, while the regions at 4000–5000 m correspond to the peak values of the EPEs’ duration. In terms of AI, the peak values of the EF and ED are detected in the sub-humid zone. Additionally, there is a strong correlation visible between the EF and ED across Central Asia. The high-frequency areas of the EPEs are predominantly concentrated in the areas where the ED ranges between 6 and 7 days, mainly spread along the fringes of the Tianshan Mountains in the SM region and the Altai Mountains in the NK region.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dommo, A.; Aloysius, N.; Lupo, A.; Hunt, S. Spatial and temporal analysis and trends of extreme precipitation over the Mississippi River Basin, USA during 1988–2017. J. Hydrol. Reg. Stud. 2024, 56, 101954. [Google Scholar] [CrossRef]
- Swain, S.; Mishra, S.K.; Pandey, A.; Dayal, D. Spatiotemporal assessment of precipitation variability, seasonality, and extreme characteristics over a Himalayan catchment. Theor. Appl. Climatol. 2021, 147, 817–833. [Google Scholar] [CrossRef]
- Kumar, A.; Malla, M.K.; Arya, D.S. Spatiotemporal variation and teleconnections of extreme precipitation in the Upper Indus Basin: Insights for natural hazard assessment. J. Water Clim. Change 2024, 15, 4952–4967. [Google Scholar] [CrossRef]
- Zhu, G.; Zhao, X. Changes of extreme climate indices on the Mongolian Plateau during 1981–2020 based on ERA5 reanalysis. Theor. Appl. Climatol. 2023, 154, 467–482. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, S.; Cao, L.; Wang, Y.; Zhao, Y.; Zhang, W. Spatial distribution and temporal trends in precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012. Quat. Int. 2014, 349, 346–356. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, D.; Wang, Y.; Lu, F.; Wu, D. Changes in extreme precipitation in the Huang-Huai-Hai River basin of China during 1960–2010. Theor. Appl. Climatol. 2014, 120, 195–209. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Zhu, W.; Ren, H.; Zhang, L.; Zhu, L. Spatiotemporal variations of extreme precipitation and its potential driving factors in China’s North-South Transition Zone during 1960–2017. Atmos. Res. 2021, 252, 105429. [Google Scholar]
- Wang, Y.; Peng, Z.; Wu, H.; Wang, P. Spatiotemporal Variability in Precipitation Extremes in the Jianghuai Region of China and the Analysis of Its Circulation Features. Sustainability 2022, 14, 6680. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, J.; Lei, X. Spatial-Temporal Variations of Extreme Precipitation Indices in the Xinjiang Cold Area over the Past 60 Years. J. Hydrol. Eng. 2023, 28, 5807. [Google Scholar] [CrossRef]
- Darwish, M.D.; Tye, M.R.; Prein, A.F.; Fowler, H.J.; Blenkinsop, S.; Dale, M.; Faulkner, D. New hourly extreme precipitation regions and regional annual probability estimates for the UK. Int. J. Climatol. 2021, 41, 582–600. [Google Scholar]
- Douka, M.; Karacostas, T. Statistical analyses of extreme rainfall events in Thessaloniki, Greece. Atmos. Res. 2018, 208, 60–77. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, K.; Liu, C. Time distribution pattern and spatial heterogeneity of hourly scale event-based extreme precipitation in China. J. Hydrol. 2023, 622, 129712. [Google Scholar] [CrossRef]
- Shang, W.; Li, S.; Ren, X.; Duan, K. Event-based extreme precipitation in Central-Eastern China: Large-scale anomalies and teleconnections. Clim. Dyn. 2020, 54, 2347–2360. [Google Scholar] [CrossRef]
- She, D.; Shao, Q.; Xia, J.; Taylor, J.A.; Zhang, Y.; Zhang, L.; Zhang, X.; Lei, Z. Investigating the variation and non-stationarity in precipitation extremes based on the concept of event-based extreme precipitation. J. Hydrol. 2015, 530, 785–798. [Google Scholar] [CrossRef]
- Wu, X.; Guo, S.; Yin, J.; Yang, G.; Zhong, Y.; Liu, D. On the event-based extreme precipitation across China: Time distribution patterns, trends, and return levels. J. Hydrol. 2018, 562, 305–317. [Google Scholar] [CrossRef]
- Li, W.; Li, T.; Zhao, J.; Cao, Y.; Li, Z.; Zhong, D. Revealing Circulation Patterns Responsible for Extreme Precipitation Events Over the Hai River Basin From Moisture Transport Perspective. J. Geophys. Res. Atmos. 2024, 129, 040993. [Google Scholar] [CrossRef]
- Malla, M.K.; Arya, D.S. Even-tbased extreme precipitation variability analysis over a part of the Hindu Kush Himalayan region. Int. J. Climatol. 2023, 43, 4196–4219. [Google Scholar] [CrossRef]
- Liu, Y.; Geng, X.; Hao, Z.; Zheng, J. Changes in Climate Extremes in Central Asia under 1.5 and 2 °C Global Warming and their Impacts on Agricultural Productions. Atmosphere 2020, 11, 1076. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Li, W.; Deng, H.; Fang, G. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. Atmos. 2015, 120, 12345–12356. [Google Scholar] [CrossRef]
- Guan, X.; Yao, J.; Schneider, C. Variability of the precipitation over the Tianshan Mountains, Central Asia. Part II: Multi-decadal precipitation trends and their association with atmospheric circulation in both the winter and summer seasons. Climatology 2022, 42, 139–156. [Google Scholar] [CrossRef]
- Chen, F.; Huang, W.; Jin, L.; Chen, J.; Wang, J. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci. China Earth Sci. 2011, 54, 1812–1821. [Google Scholar] [CrossRef]
- Guan, X.; Yao, J.; Schneider, C. Variability of the precipitation over the Tianshan Mountains, Central Asia. Part I: Linear and nonlinear trends of the annual and seasonal precipitation. Int. J. Climatol. 2022, 42, 118–138. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Shen, Y.; Li, B. Tracking climate change in Central Asia through temperature and precipitation extremes. J. Geogr. Sci. 2019, 29, 3–28. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Chen, J.; Zhao, Y.; Tuoliewubieke, D.; Li, J.; Mao, W. Intensification of extreme precipitation in arid Central Asia. J. Hydrol. 2021, 598, 125760. [Google Scholar] [CrossRef]
- Chen, J.; Yao, J.; Dilinuer, T.; Li, J.; Li, S.; Yang, L.; Mao, W. Central Asia daily extreme precipitation in observations and gridded datasets: A threshold criteria perspective. Front. Environ. Sci. 2022, 10, 1007365. [Google Scholar] [CrossRef]
- Eurasianet. Available online: https://eurasianet.org/kazakhstan-rainy-season-causes-major-floods (accessed on 15 March 2025).
- UNDRR. Available online: https://www.preventionweb.net/news/gender-and-disasters-measures-kyrgyzstan-remain-paper (accessed on 16 March 2025).
- Hu, Z.; Hu, Q.; Zhang, C.; Chen, X.; Li, Q. Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in central Asia. Geophys. Res.-Atmos. 2016, 121, 5648–5663. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Ma, X. Simulation of extreme precipitation changes in Central Asia using CMIP6 under different climate scenarios. Theor. Appl. Climatol. 2024, 155, 3203–3219. [Google Scholar] [CrossRef]
- Xu, P.; Wang, L.; Ming, J. Central Asian Precipitation Extremes Affected by an Intraseasonal Planetary Wave Pattern. J. Clim. 2022, 35, 2603–2616. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, T.; Zhang, L.; Zhang, W.; Chen, X. Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5 °C less global warming. Clim. Dyn. 2019, 54, 543–560. [Google Scholar] [CrossRef]
- Lai, S.; Xie, Z.; Bueh, C.; Gong, Y. Fidelity of the APHRODITE Dataset in Representing Extreme Precipitation over Central Asia. Adv. Atmos. Sci. 2020, 37, 1405–1416. [Google Scholar] [CrossRef]
- Zhang, S.; Meng, L.; Zhao, Y.; Yang, X.; Huang, A. The Influence of the Tibetan Plateau Monsoon on Summer Precipitation in Central Asia. Front. Earth Sci. 2022, 10, 771104. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Shen, Y.; Li, Y. Changes of precipitation extremes in arid Central Asia. Quat. Int. 2017, 436, 16–27. [Google Scholar] [CrossRef]
- Schiemann, R.; Lüthi, D.; Vidale, P.; Schär, C. The precipitation climate of Central Asia: Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol. 2008, 28, 295–314. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, T.; Zhang, L.; Wu, B. Human Contribution to the Increasing Summer Precipitation in Central Asia from 1961 to 2013. J. Clim. 2018, 31, 8005–8021. [Google Scholar] [CrossRef]
- Zhang, Y.; Enomoto, H.; Ohata, T.; Kitabata, H.; Kadota, T.; Hirabayashi, Y. Glacier mass balance and its potential impacts in the Altai Mountains over the period 1990–2011. J. Hydrol. 2017, 553, 662–677. [Google Scholar] [CrossRef]
- Gao, J.; Yao, J.; Zhao, Y.; Meng, L. Dominant modes and mechanisms of the interannual variability of atmospheric water vapor content during winter over Central Asia. Atmos. Res. 2023, 295, 107015. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, F.; Wang, Y.; Li, Y.; Hu, R. Characteristics of the eco-geographical pattern in arid land of Central Asia. Arid Zone Res. 2013, 30, 385–390. [Google Scholar]
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Shinoda, M.; Ma, Z.; Guo, W.; Li, Z.; et al. Dryland climate change: Recent progress and challenges. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
- Hu, Y.; Duan, W.; Chen, Y.; Zou, S.; Kayumba, P.M.; Qin, J. Exploring the changes and driving forces of water footprint in Central Asia: A global trade assessment. J. Clean. Prod. 2022, 375, 134062. [Google Scholar] [CrossRef]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef]
- Oala, M.; Owczarek, P. Dry and humid periods reconstructed from tree rings in the former territory of Sogdiana (Central Asia) and their socio-economic consequences over the last millennium. In Socio-Environmental Dynamics Along the Historical Silk Road; Springer: Berlin/Heidelberg, Germany, 2019; pp. 195–214. [Google Scholar]
- Guo, H.; Li, M.; Nzabarinda, V.; Bao, A.; Meng, X.; Zhu, L.; Philippe, D.M. Assessment of Three Long-Term Satellite-Based Precipitation Estimates against Ground Observations for Drought Characterization in Northwestern China. Remote Sens. 2022, 14, 828. [Google Scholar] [CrossRef]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. 2017, 37, 4896–4914. [Google Scholar] [CrossRef]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of remotely sensed precipitation estimates using PERSIANN-CDR and MSWEP for spatio-temporal drought assessment over Iran. J. Hydrol. 2019, 579, 124189. [Google Scholar] [CrossRef]
- Amir, A.; Felicia, C.; Laurie, S.H.; Charlotte, A.L.; Iman, M.; Omid, M.; Hamed, M.; Simon, M.P.; Elisa, R.; Mojtaba, S. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef]
- Li, M.; Lv, X.; Zhu, L.; Friday, U.O.; Guo, H. Evaluation and Application of MSWEP in Drought Monitoring in Central Asia. Atmosphere 2022, 13, 1053. [Google Scholar] [CrossRef]
- Guo, C.; Ning, N.; Guo, H.; Tian, Y.; Bao, A.; Philippe, D.M. Does ERA5-Land Effectively Capture Extreme Precipitation in the Yellow River Basin? Atmosphere 2024, 15, 1254. [Google Scholar] [CrossRef]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Şen, Z.; Şişman, E. Risk attachment Sen’s Slope calculation in hydrometeorological trend analysis. Nat. Hazards 2023, 120, 3239–3252. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Hafner Publishing Company: New York, NY, USA, 1962; Volume 199. [Google Scholar]
- Yue, S.; Pilon, P. A comparison of the power of thettest, Mann-Kendall and bootstrap tests for trend detection/Une comparaison de la puissance des teststde Student, de Mann-Kendall et du bootstrap pour la détection de tendance. Hydrol. Sci. J. 2011, 49, 21–37. [Google Scholar] [CrossRef]
- Cigizoglu, H.K.; Bayazit, M.; Önöz, B. Trends in the maximum, mean, and low flows of Turkish rivers. J. Hydrometeorol. 2005, 6, 280–290. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Devlin, S.J. Locally weighted regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Wei, W.; Zou, S.; Duan, W.; Chen, Y.; Li, S.; Zhou, Y. Spatiotemporal variability in extreme precipitation and associated large-scale climate mechanisms in Central Asia from 1950 to 2019. J. Hydrol. 2023, 620, 129417. [Google Scholar] [CrossRef]
- Korolev, V.; Gorshenin, A.; Belyaev, K. Statistical tests for extreme precipitation volumes. Mathematics 2019, 7, 648. [Google Scholar] [CrossRef]
- Li, Z.; Tang, G.; Kirstetter, P.; Gao, S.; Li, J.; Wen, Y.; Hong, Y. Evaluation of GPM IMERG and its constellations in extreme events over the conterminous united states. J. Hydrol. 2022, 606, 127357. [Google Scholar] [CrossRef]
- Oztyrj, T. Projected Future Changes in Extreme Climate Indices over Central Asia Using RegCM4.3.5. Atmosphere 2023, 14, 939. [Google Scholar] [CrossRef]
- Bothe, O.; Fraedrich, K.; Zhu, X. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol. 2011, 108, 345–354. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Fang, G.; Li, Y.; Li, Z.; Wang, F.; Xia, Z. Observed changes in extreme precipitation over the Tienshan Mountains and associated large-scale climate teleconnections. J. Hydrol. 2022, 606, 127457. [Google Scholar] [CrossRef]
- Aizen, E.M.; Aizen, V.B.; Melack, J.M.; Nakamura, T.; Ohta, T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. Climatol. 2001, 21, 535–556. [Google Scholar] [CrossRef]
- Huang, W.; Chen, F.; Feng, S.; Chen, J.; Zhang, X. Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin. Sci. Bull. 2013, 58, 3962–3968. [Google Scholar] [CrossRef]
Year | Feature | CA_Slope | NK_Slope | SD_Slope | SM_Slope |
---|---|---|---|---|---|
1979–1991 | EF | −0.134 | −0.130 | −0.158 | −0.080 |
EP | −0.024 | −0.020 | −0.028 | −0.021 | |
ED | 0.040 *** | 0.036 * | 0.031 ** | 0.081 ** | |
ExtED | 0.002 | −0.001 | 0.004 * | 0.005 | |
EI | −0.025 ** | −0.015 | −0.030 * | −0.037 * | |
ExtEI | −0.033 | −0.017 | −0.045 | −0.053 | |
ES | 0.059 | 0.022 | 0.040 | 0.217 | |
ExtES | −0.006 | −0.032 | −0.003 | 0.051 | |
1992–2009 | EF | −0.040 | −0.024 | −0.049 | −0.082 |
EP | −0.081 *** | −0.070 ** | −0.089 *** | −0.088 ** | |
ED | −0.003 | −0.021 | 0.004 | 0.026 | |
ExtED | −0.001 | −0.002 | 0.001 | −0.001 | |
EI | −0.032 *** | −0.023 *** | −0.039 ** | −0.033 ** | |
ExtEI | −0.105 *** | −0.095 ** | −0.109 *** | −0.120 ** | |
ES | −0.118 ** | −0.152 ** | −0.096 | −0.101 | |
ExtES | −0.122 *** | −0.121 ** | −0.113 ** | −0.161 * | |
2010–2023 | EF | 0.017 | 0.094 | −0.015 | −0.061 |
EP | 0.018 | 0.022 | 0.005 | 0.063 * | |
ED | 0.038 | 0.029 | 0.032 | 0.057 | |
ExtED | 0.001 | −0.001 | 0.001 | 0.006 | |
EI | −0.009 | −0.005 | −0.018 | 0.019 | |
ExtEI | 0.028 | 0.015 | 0.223 | 0.092 * | |
ES | 0.085 | 0.029 | 0.060 | 0.283 | |
ExtES | 0.245 | 0.006 | 0.037 | 0.245 |
Year | Frequency | Cumulative Precipitation Amounts | ||||
---|---|---|---|---|---|---|
TDP1 (%) | TDP2 (%) | TDP3 (%) | TDP1 (%) | TDP2 (%) | TDP3 (%) | |
1979–2023 | 3.29 | 90.04 | 6.67 | 1.52 | 44.97 | 53.51 |
1979–1991 | 4.25 | 90.09 | 5.66 | 2.23 | 43.64 | 54.13 |
1992–2009 | 3.16 | 90.02 | 6.82 | 1.44 | 45.45 | 53.11 |
2010–2023 | 4.32 | 89.11 | 6.57 | 1.78 | 35.74 | 62.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Guo, H.; Meng, X.; Cao, Y.; Wang, W.; Maeyer, P.D. Spatiotemporal Characteristics of Extreme Precipitation Events in Central Asia: Insights from an Event-Based Analysis. Hydrology 2025, 12, 247. https://doi.org/10.3390/hydrology12100247
Guo C, Guo H, Meng X, Cao Y, Wang W, Maeyer PD. Spatiotemporal Characteristics of Extreme Precipitation Events in Central Asia: Insights from an Event-Based Analysis. Hydrology. 2025; 12(10):247. https://doi.org/10.3390/hydrology12100247
Chicago/Turabian StyleGuo, Chunrui, Hao Guo, Xiangchen Meng, Ying Cao, Wei Wang, and Philippe De Maeyer. 2025. "Spatiotemporal Characteristics of Extreme Precipitation Events in Central Asia: Insights from an Event-Based Analysis" Hydrology 12, no. 10: 247. https://doi.org/10.3390/hydrology12100247
APA StyleGuo, C., Guo, H., Meng, X., Cao, Y., Wang, W., & Maeyer, P. D. (2025). Spatiotemporal Characteristics of Extreme Precipitation Events in Central Asia: Insights from an Event-Based Analysis. Hydrology, 12(10), 247. https://doi.org/10.3390/hydrology12100247