Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = precast reinforced concrete frame structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5087 KiB  
Article
Modified Energy-Based Design Method of the Precast Partially Steel-Reinforced Concrete Beam–CFST Column Eccentrically Braced Frame
by Fugui Hou, Weiguang Chong, Yu Lin, Xijun He and Guanglei Zhang
Buildings 2025, 15(11), 1797; https://doi.org/10.3390/buildings15111797 - 24 May 2025
Viewed by 423
Abstract
The eccentrically braced frame (EBF) is a typical structural system used in high-rise buildings. Current related design methods focus on the concrete and steel structures rather than on the complex composite structure. In addition, they tend to overlook the contribution of the energy-dissipation [...] Read more.
The eccentrically braced frame (EBF) is a typical structural system used in high-rise buildings. Current related design methods focus on the concrete and steel structures rather than on the complex composite structure. In addition, they tend to overlook the contribution of the energy-dissipation unit and its corresponding additional influence on the structure. In this study, a precast composite EBF structure is selected as a case study, including the partially steel-reinforced concrete (PSRC) beam and the concrete-filled steel tubular (CFST) column. A modified energy-based design method is proposed to leverage the excellent seismic performance of the precast composite EBF structure. The multi-stage energy-dissipation mechanism and the additional influence of the eccentric braces are systematically considered through the energy distribution coefficient and the layout of dampers. A case study of a 12-floor, three-bay precast composite EBF structure is conducted using a series of nonlinear time-history analyses. Critical seismic responses, including the maximum inter-story drift ratio, residual inter-story drift ratio, and peak acceleration, are systematically analyzed to evaluate the effectiveness of the proposed design theory. The distribution coefficient is recommended to range from 0.70 to 0.80 to balance the energy-dissipation contribution between the frame and the eccentric braces. In terms of the damper layout, the energy-dissipation contribution of the eccentric brace should differ among the lower, middle, and upper floors. Full article
(This article belongs to the Special Issue Advances in Novel Precast Concrete Structures)
Show Figures

Figure 1

36 pages, 4413 KiB  
Article
Enhancing Seismic Repairability of Precast RC Frames Through an Innovative Replaceable Plastic Hinge Technology
by Resat Oyguc and Ali Berk Bozan
Appl. Sci. 2025, 15(10), 5629; https://doi.org/10.3390/app15105629 - 18 May 2025
Viewed by 540
Abstract
The introduction of a novel replaceable plastic hinge technology aims to enhance the performance of precast reinforced concrete (PRC) frames, particularly in seismically vulnerable areas where substandard structural systems are prevalent. This artificially controllable plastic hinge (ACPH) mechanism effectively localizes inelastic deformations to [...] Read more.
The introduction of a novel replaceable plastic hinge technology aims to enhance the performance of precast reinforced concrete (PRC) frames, particularly in seismically vulnerable areas where substandard structural systems are prevalent. This artificially controllable plastic hinge (ACPH) mechanism effectively localizes inelastic deformations to a detachable steel subassembly, thereby maintaining the integrity of the primary structural components. A numerical analysis was carried out on four distinct PRC frame configurations that utilized concrete and steel of inferior quality relative to contemporary standards. The frames underwent testing under a segment of the Mw 7.7 Kahramanmaraş ground motion, revealing that connections utilizing the ACPH not only reduce peak base shear but also mitigate cracking at beam–column interfaces, directing plastic strains towards replaceable fuse elements. The implementation of the ACPH also facilitates extended structural periods and localized plastic hinging, which serves to limit damage to essential members while expediting post-earthquake repairs. Comparative validation through prior subassembly tests confirms that this hinge exhibits a strong hysteretic response and ductile performance, surpassing traditional wet-joint connections in the context of substandard PRC frames. Overall, these results underscore the potential of standardized hinge modules in enhancing seismic resilience and supporting swift, economical rehabilitation of critical infrastructure. Thus, this proposed technology effectively tackles persistent issues related to low-strength materials in precast structures, presenting a practical approach to improving earthquake resilience and minimizing repair time and costs. Full article
(This article belongs to the Special Issue Structural Analysis and Seismic Resilience in Civil Engineering)
Show Figures

Figure 1

19 pages, 7231 KiB  
Article
Numerical Investigation on the Hysteretic Performance of Self-Centering Precast Steel–Concrete Hybrid Frame
by Shiqiang Feng, Yong Yang, Yicong Xue and Yunlong Yu
Buildings 2024, 14(10), 3202; https://doi.org/10.3390/buildings14103202 - 8 Oct 2024
Cited by 2 | Viewed by 973
Abstract
To improve the construction performance and seismic resilience of precast reinforced-concrete frame structures, an innovative self-centering precast steel–concrete hybrid frame has been proposed and subjected to cyclic loading tests. In this paper, a comprehensive numerical analysis was conducted to further investigate the frame’s [...] Read more.
To improve the construction performance and seismic resilience of precast reinforced-concrete frame structures, an innovative self-centering precast steel–concrete hybrid frame has been proposed and subjected to cyclic loading tests. In this paper, a comprehensive numerical analysis was conducted to further investigate the frame’s hysteretic behavior. Initially, a numerical model was developed using the finite element software OpenSees. Numerical analyses of two frame specimens were conducted, demonstrating good agreement between the numerical and experimental hysteretic characteristics, thus validating the model’s accuracy. Subsequently, based on the numerical simulations, a quantitative comparison of hysteretic performance between a novel frame and a traditional reinforced-concrete frame of the same scale was performed. While the proposed frame exhibited slightly lower initial stiffness and energy dissipation capacity than the traditional frame, it outperformed in terms of load-carrying capacity and self-centering ability. Finally, parametric analyses were carried out to assess the influence of various design parameters on the hysteretic performance, including friction force in the web frictions devices, initial post-tensioned force of the prefabricated steel–concrete hybrid beams, the steel arm length, and the column longitudinal reinforcement ratio. The results showed that increases in these four parameters improved the load-carrying capacity and initial stiffness of the proposed frame. Additionally, an increase in the friction force, steel arm length, or column longitudinal reinforcement ratio enhanced the frame’s energy dissipation capacity, while an increase in the initial post-tensioned force or a decrease in the friction force enhanced the frame’s self-centering capacity. Full article
(This article belongs to the Special Issue Earthquake Resistant and Vibration Control of Concrete Structures)
Show Figures

Figure 1

14 pages, 5809 KiB  
Article
Experimental Study on Seismic Performance of Composite Shear Wall with Horizontal Connection and Frame
by Xuan Mo, Zhijun Yuan, Yigang Jia, Liangjian Lu, Naiwen Ke and Xianglan Wei
Sustainability 2024, 16(13), 5552; https://doi.org/10.3390/su16135552 - 28 Jun 2024
Viewed by 1582
Abstract
Prefabricated concrete shear-wall structures are a primary form of prefabricated concrete construction. In this paper, the seismic performance of precast shear walls with frames is studied by experimental methods. The failure characteristics, hysteretic performance, energy dissipation capacity, stiffness degradation, and ductility of the [...] Read more.
Prefabricated concrete shear-wall structures are a primary form of prefabricated concrete construction. In this paper, the seismic performance of precast shear walls with frames is studied by experimental methods. The failure characteristics, hysteretic performance, energy dissipation capacity, stiffness degradation, and ductility of the shear wall are mainly analyzed. The results indicate that incorporating various frames into concrete shear walls can significantly enhance the traditional single seismic defense line. The maximum differences between the positive and negative initial stiffnesses of the framed shear wall are 32.6% and 29.7%, respectively. The maximum differences between the positive and negative ductility coefficients compared to the ordinary reinforced concrete shear wall are 15.7% and 20.7%, respectively. The maximum difference in equivalent viscous damping compared to the ordinary reinforced concrete shear wall is 26.5%. Full article
Show Figures

Figure 1

17 pages, 11688 KiB  
Article
Analysis of Progressive Collapse Resistance in Precast Concrete Frame with a Novel Connection Method
by Qinghu Xu, Junjie Qian, Yu Zhang, Liping Tang, Dawei Man, Xuezhi Zhen and Tingting Han
Buildings 2024, 14(6), 1814; https://doi.org/10.3390/buildings14061814 - 14 Jun 2024
Cited by 3 | Viewed by 1456
Abstract
The configuration of beam–column joints in precast concrete (PC) building structures varies widely, and different connection methods significantly affect the progressive collapse resistance of the structure. This study investigates the progressive collapse resistance of an innovative beam–column connection node frame. Finite element models [...] Read more.
The configuration of beam–column joints in precast concrete (PC) building structures varies widely, and different connection methods significantly affect the progressive collapse resistance of the structure. This study investigates the progressive collapse resistance of an innovative beam–column connection node frame. Finite element models of four-story, two-span space frame structures made of reinforced concrete (RC) and PC were developed using ANSYS 14.0/LS-DYNA R5.x software, employing nonlinear dynamic and static analysis to examine structural collapse behavior under bottom middle or corner column damage. Numerical results indicate that following the failure of the middle or corner column due to explosion loading, the vertical displacement and collapse rate of the PC structure with the novel connection method are less than those of the RC structure during collapse progression. Furthermore, upon removal of the middle or corner column, the residual load-carrying capacity of the PC structure with the innovative connection increased by 7% and 3.7%, respectively, compared to the RC structure. This suggests that PC structures with this type of connection demonstrate superior performance in resisting progressive collapse, offering valuable insights for future engineering applications. Full article
(This article belongs to the Special Issue Advanced Research on Intelligent Building Construction and Management)
Show Figures

Figure 1

27 pages, 11313 KiB  
Article
Progressive Collapse Behavior of a Precast Reinforced Concrete Frame System with Layered Beams
by Vitaly I. Kolchunov, Natalia V. Fedorova, Sergei Y. Savin and Pavel A. Kaydas
Buildings 2024, 14(6), 1776; https://doi.org/10.3390/buildings14061776 - 12 Jun 2024
Cited by 5 | Viewed by 2298
Abstract
A possible way to improve the structural safety and robustness of precast building structures is to develop effective precast frame systems with layered beams, which combine prefabricated parts with cast-in situ ordinary concrete, high-performance concrete, fiber concrete, or FRP. The paper provides a [...] Read more.
A possible way to improve the structural safety and robustness of precast building structures is to develop effective precast frame systems with layered beams, which combine prefabricated parts with cast-in situ ordinary concrete, high-performance concrete, fiber concrete, or FRP. The paper provides a new type of precast reinforced concrete frame system with layered beams for rapidly erected multi-story buildings resistant to accidental actions. Using a combination of the variational method and two-level design schemes, a simplified analytical model has been developed for structural analysis of the precast reinforced concrete frame system, both for serviceable and ultimate limit states as well as for accidental actions. The proposed model allows for determining shear deformations and the formation and opening of longitudinal cracks in the intermediate contact zone between precast and monolithic parts of reinforced concrete structural elements of the frame, as well as the formation and opening of normal cracks because of the action of axial tensile force or bending moment in these elements. The design model was validated by comparing the calculated and experimental data obtained from testing scaled models of the precast reinforced concrete frame system with layered beams. The paper investigates and thoroughly analyzes the factors affecting the stiffness and bearing capacity of the intermediate contact zone, discusses the criteria for the formation of shear cracks along the contact zone of precast and monolithic concrete, and examines the change in the stiffness and dissipative properties of layered elements at different stages of their static–dynamic loading. The robustness of the experimental models of the structural system was not ensured under the specified load, section dimensions, and reinforcement scheme. Following an accidental action, longitudinal cracks were observed in the contact joint between the monolithic and prefabricated parts in the layered beams. This occurred almost simultaneously with the opening of normal cracks in adjacent sections. A comprehensive analysis of the results indicated a satisfactory degree of agreement between the proposed semi-analytical model and the test data. Full article
(This article belongs to the Special Issue Safety and Optimization of Building Structures—2nd Edition)
Show Figures

Figure 1

21 pages, 1090 KiB  
Article
Sustainable Road Infrastructure Decision-Making: Custom NSGA-II with Repair Operators for Multi-Objective Optimization
by Andrés Ruiz-Vélez, José García, Julián Alcalá and Víctor Yepes
Mathematics 2024, 12(5), 730; https://doi.org/10.3390/math12050730 - 29 Feb 2024
Cited by 6 | Viewed by 2295
Abstract
The integration of sustainability principles into the structural design and decision-making processes for transportation infrastructure, particularly concerning reinforced concrete precast modular frames (RCPMF), is recognized as crucial for ensuring outcomes that are environmentally responsible, economically feasible, and socially beneficial. In this study, this [...] Read more.
The integration of sustainability principles into the structural design and decision-making processes for transportation infrastructure, particularly concerning reinforced concrete precast modular frames (RCPMF), is recognized as crucial for ensuring outcomes that are environmentally responsible, economically feasible, and socially beneficial. In this study, this challenge is addressed, with the significance of sustainable development in modern engineering practices being underscored. A novel approach, which is a combination of multi-objective optimization (MOO) with multi-criteria decision-making (MCDM) techniques, is proposed, tailored specifically for the design and selection of RCPMF. The effectiveness of three repair operators—statistical-based, random, and proximity-based—in optimizing economic, environmental, and social objectives is evaluated. Precise evaluation of objective functions is facilitated by a customized Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm, complemented by a detailed life cycle analysis (LCA). The utilization of simple additive weighting (SAW) and fair un choix adéquat (FUCA) methods for the scoring and ranking of the MOO solutions has revealed that notable excellence in meeting the RCPMF design requirements is exhibited by the statistical-based repair operator, which offers solutions with lower impacts across all dimensions and demonstrates minimal variability. MCDM techniques produced similar rankings, with slight score variations and a significant correlation of 0.9816, showcasing their consistent evaluation capacity despite distinct operational methodologies. Full article
(This article belongs to the Special Issue Combinatorial Optimization: Trends and Applications)
Show Figures

Figure 1

25 pages, 18218 KiB  
Article
An Experimental Study on Flexural-Shear Behavior of Composite Beams in Precast Frame Structures with Post-Cast Epoxy Resin Concrete
by Peiqi Chen, Shuo Xu, Xiaojie Zhou and Dezong Xu
Buildings 2023, 13(12), 3137; https://doi.org/10.3390/buildings13123137 - 18 Dec 2023
Cited by 4 | Viewed by 1390
Abstract
Epoxy resin concrete has superior mechanical properties compared to ordinary concrete, and will play an increasingly important role in urban construction. In this paper, the application effect and prospect of epoxy resin concrete in precast composite frame structures are discussed. Taking the joint [...] Read more.
Epoxy resin concrete has superior mechanical properties compared to ordinary concrete, and will play an increasingly important role in urban construction. In this paper, the application effect and prospect of epoxy resin concrete in precast composite frame structures are discussed. Taking the joint surface of the old and new concrete at the end of the composite beam as the research object, three specimens were devised and fabricated. Subsequently, a horizontal cyclic load test was conducted, and the seismic performance indices were analyzed. Multiple finite element models were established to assess the influence of precast concrete strength, the diameter of the longitudinal bar of the beam, the shear span ratio, and the epoxy resin concrete post-cast area, among other factors, on the seismic performance of the beam end. Four findings indicate the following: Firstly, epoxy resin concrete, characterized by its high performance attributes, can be used as a post-cast material in precast concrete structures. Secondly, when the strength of the post-cast epoxy concrete approximates or slightly exceeds that of the precast concrete, and the ratio of longitudinal reinforcement and shear span ratio are appropriately balanced, the operational performance of the composite beam frame structure is enhanced. In addition, when post-cast epoxy resin concrete is employed in the beam-column joint area, the mechanical performance of the composite beam end in the joint area matches or even surpasses that of the structure that was cast in situ. And subsequently, the expansion of post-cast area resulted in better mechanical performance. Finally, when the area of post-cast epoxy resin concrete is a non-node area, the mechanical properties of the composite beam end are worse than the former. However, the amount of epoxy resin concrete used will be greatly reduced, and as the precast node area expands, the bearing capacity of the beam end will increase and gradually approach the cast-in situ structure, indicating that this construction scheme also has advantages. Full article
(This article belongs to the Special Issue Advanced Studies in Urban and Regional Planning)
Show Figures

Figure 1

25 pages, 13209 KiB  
Article
Cyclic Lateral Loading Behavior of Thin-Shell Precast Concrete Wall Panels
by Tugce Sevil Yaman and Gregory Lucier
Buildings 2023, 13(11), 2750; https://doi.org/10.3390/buildings13112750 - 31 Oct 2023
Cited by 3 | Viewed by 1738
Abstract
Two precast concrete thin-shell wall panels were subjected to reverse-cyclic lateral loads to replicate wind fatigue over a 50-year design lifetime prior to loading to failure. The panels consisted of an outer wythe of concrete connected to light-gauge steel framing. Wire mesh was [...] Read more.
Two precast concrete thin-shell wall panels were subjected to reverse-cyclic lateral loads to replicate wind fatigue over a 50-year design lifetime prior to loading to failure. The panels consisted of an outer wythe of concrete connected to light-gauge steel framing. Wire mesh was used to reinforce the concrete panel skin. Rivets provided a connection between the steel studs and the concrete panel. Two reinforced concrete (R/C) beams were integrated into the top and bottom parts of the panel, isolated from the concrete face by a thin sheet of extruded polystyrene (XPS) foam insulation. To connect these beams with the concrete face through the rigid foam insulation, a carbon-fiber-reinforced polymer (CFRP) grid was utilized. The aim of the experimental program was to characterize the behavior of the concrete and steel framing panel, with particular attention focused on the connections between the various structural elements of the panel. The first and second thin-shell panels survived the fatigue loading cycles and behaved elastically through failure-level lateral load cycles equivalent to 54 psf (2.6 kPa) and 66 psf (3.2 kPa) of applied uniform load, respectively. The failure mode was the separation of the top R/C beam from the concrete panel on the pull stroke of the loading cycle (when the connection between the beam and the concrete shell was in tension) for both specimens. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 6760 KiB  
Article
Emulation Evaluation of Interior Beam–Column Connections in PC and RC Moment-Resisting Frames
by Min-Su Jo, Hyeong-Gook Kim, Dong-Hwan Kim, Yong-Jun Lee, Sang-Pil Han and Kil-Hee Kim
Materials 2023, 16(21), 6906; https://doi.org/10.3390/ma16216906 - 27 Oct 2023
Cited by 1 | Viewed by 1369
Abstract
Precast concrete (PC) structures have many advantages, but their use in the construction of middle- to high-rise buildings is limited. The construction of PC structures requires skills in various operations such as transportation, assembly, lifting, and structural soundness. In particular, regarding the seismic [...] Read more.
Precast concrete (PC) structures have many advantages, but their use in the construction of middle- to high-rise buildings is limited. The construction of PC structures requires skills in various operations such as transportation, assembly, lifting, and structural soundness. In particular, regarding the seismic design of PC structures, it is necessary to clearly evaluate whether they have the same structural performance and usability as integral RC (cast-in-place) structures. In this paper, an experimental study was conducted to investigate whether PC members can achieve a seismic performance equivalent to that of RC members in beam–column joints, which are representative moment-resisting frames. The main variables are the two types of structural systems (intermediate and special moment-resisting frames) and the design flexural strength ratio of the columns and beams. The experimental and analytical results showed that the seismic performance of the PC specimens was equivalent to that of the RC specimens in terms of strength, stiffness, energy dissipation, and strain distribution, except for the specimen with splice sleeve bond failure of the column reinforcement (poor filling of the internal mortar). In addition, the I series satisfied the present emulation evaluation criteria for special moment-resisting frames of PC structures, confirming the possibility of applying intermediate moment-resisting frames. Full article
Show Figures

Figure 1

21 pages, 13186 KiB  
Article
Shear Tests on Subassemblies Representing the Single-Anchored Connection between Precast Concrete Wall Panels and Reinforced Concrete Frames
by Chanwoo Park, Sookyung Ha, Geuntaeck Song, Ho Choi and Sungyong Yu
Buildings 2023, 13(10), 2632; https://doi.org/10.3390/buildings13102632 - 18 Oct 2023
Viewed by 1340
Abstract
Many deformations occur in old RC structures, and the method of reinforcing them using PC members standardized and manufactured in the same mold has difficulty in coping with all deformations (construction error); as a solution to this, overlapping anchor shear connections consisting of [...] Read more.
Many deformations occur in old RC structures, and the method of reinforcing them using PC members standardized and manufactured in the same mold has difficulty in coping with all deformations (construction error); as a solution to this, overlapping anchor shear connections consisting of three concrete segments have been proposed. This study proposes a special connection for strengthening existing reinforced concrete (RC) framed structures that are more than 30 years old with precast concrete (PC) members. The proposed overlapped anchor connection consists of two anchor groups installed in three concrete segments, which can accommodate deformation by adjusting the height of the concrete connection segment. In this study, the unique shear behavior of the overlapped anchor connection was investigated by analyzing the shear resistance of the single-anchor connection with one post-installed anchor and one cast-in anchor. Eleven specimens of anchored connection models were constructed and push-out tested, and the experimental parameters were analyzed. The shear strength of the single-anchor connection was calculated using a proposed design formula based on the American anchor design code, and the shear strength ratios of the experimental shear strengths to the calculated values were 0.93 on average. The proposed design formula can predict the shear behavior and expected effects of the proposed connection even in differing designs. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 4230 KiB  
Article
Study on Lifetime Performance Evaluation of a Precast Prestressed Concrete Frame in Chloride Environments
by Jun Yang, Zhaoming Yuan, Jie Liu and Shuqi Yu
Materials 2023, 16(20), 6666; https://doi.org/10.3390/ma16206666 - 12 Oct 2023
Cited by 1 | Viewed by 1181
Abstract
This study established a comprehensive framework for evaluating the lifetime performance of precast prestressed concrete frames exposed to chloride environments. The proposed analytical framework enabled a scientifically grounded and rational assessment of both the service life and residual load-carrying capacity of precast prestressed [...] Read more.
This study established a comprehensive framework for evaluating the lifetime performance of precast prestressed concrete frames exposed to chloride environments. The proposed analytical framework enabled a scientifically grounded and rational assessment of both the service life and residual load-carrying capacity of precast prestressed concrete frames in chloride environments. It further served as the foundational basis for making informed decisions regarding the repair and maintenance of pertinent structures. Based on Fick’s second law, this evaluation framework established the probability distribution of the corrosion initiation time and cracking time of reinforced concrete structures due to corrosion expansion in a chloride environment. Additionally, based on the fragility analysis model and results of a precast prestressed concrete frame in a chloride environment, a practical method for evaluating the time-varying seismic performance of the precast structure considering the influence of corrosion was proposed. Furthermore, by employing the path probability model and reliability theory, time-varying reliability models were proposed to predict the three limit states of the precast prestressed concrete frame. According to the analysis results of a four-story planar frame, it could be seen that the corrosion initiation time and normal service limit state were highly sensitive to the chloride ion diffusion coefficient of the composite layer in precast concrete structures. Compared to cast-in-place structures, the presence of a composite layer in precast concrete structures could lead to more severe degradation of the time-varying seismic performance of the precast prestressed concrete frame. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

19 pages, 6678 KiB  
Article
Evaluation Method for Ultimate Flexural State of Prestressed Precast Reinforced Concrete Beam–Column Connection with Debonded Partial Tendon
by Kiwoong Jin, Riku Ota, Linfei Hao and Kazuhiro Kitayama
Appl. Sci. 2023, 13(5), 2843; https://doi.org/10.3390/app13052843 - 22 Feb 2023
Cited by 4 | Viewed by 2162
Abstract
In this paper, a prestressed precast reinforced concrete (PC) beam–column connection incorporating posttensioned debonded partial tendons is introduced for PC frame structure. Compared with the conventional cast-in-place frames and many previously proposed connections for PC frames, this connection has the advantage of self-centering [...] Read more.
In this paper, a prestressed precast reinforced concrete (PC) beam–column connection incorporating posttensioned debonded partial tendons is introduced for PC frame structure. Compared with the conventional cast-in-place frames and many previously proposed connections for PC frames, this connection has the advantage of self-centering and low damage in strong earthquakes. In addition, the debonded partial tendons can reduce the posttensioning demand and further reduce site labor during construction and repair. In order to establish a performance evaluation method for the ultimate flexural limit of the proposed PC connection, an analytical model was developed to accurately reflect the deformation compatibility and force equilibrium conditions of the PC beam and column members, as well as the debonded partial tendons. Based on this, iterative and direct evaluation methods for the strength and deformation of the PC connections, as well as the strains of the debonded tendons, were developed. The proposed methods were verified by cyclic loading test on the beam–column connection subassemblages. It is concluded that the proposed method is sufficiently accurate and simple to be applied in engineering design, and is helpful to guarantee the self-centering and low-damage characteristics of the proposed connection against a strong earthquake. Full article
(This article belongs to the Special Issue Advances in Seismic Performance Assessment)
Show Figures

Figure 1

23 pages, 3322 KiB  
Article
Optimal Design of Sustainable Reinforced Concrete Precast Hinged Frames
by Andrés Ruiz-Vélez, Julián Alcalá and Víctor Yepes
Materials 2023, 16(1), 204; https://doi.org/10.3390/ma16010204 - 26 Dec 2022
Cited by 6 | Viewed by 2767
Abstract
Sustainable development requires improvements in the use of natural resources. The main objective of the present study was to optimize the use of materials in the construction of reinforced concrete precast hinged frames. Proprietary software was developed in the Python programming language. This [...] Read more.
Sustainable development requires improvements in the use of natural resources. The main objective of the present study was to optimize the use of materials in the construction of reinforced concrete precast hinged frames. Proprietary software was developed in the Python programming language. This allowed the structure’s calculation, verification and optimization through the application of metaheuristic techniques. The final cost is a direct representation of the use of materials. Thus, three algorithms were applied to solve the economic optimization of the frame. By applying simulated annealing, threshold accepting and old bachelor’s acceptance algorithms, sustainable, non-traditional designs were achieved. These make optimal use of natural resources while maintaining a highly restricted final cost. In order to evaluate the environmental impact improvement, the carbon-dioxide-associated emissions were studied and compared with a reference cast-in-place reinforced concrete frame. The results showed designs with reduced upper slab and lateral wall depth and dense passive reinforcement. These were able to reduce up to 24% of the final cost of the structure as well as over 30% of the associated emissions. Full article
Show Figures

Figure 1

25 pages, 9461 KiB  
Article
A New Steel-Joint Precast Concrete Frame Structure: The Design, Key Construction Techniques, and Building Energy Efficiency
by Xiaona Shi, Xian Rong, Lin Nan, Lida Wang and Jianxin Zhang
Buildings 2022, 12(11), 1974; https://doi.org/10.3390/buildings12111974 - 14 Nov 2022
Cited by 6 | Viewed by 8639
Abstract
Assembled methods play a critical role in the construction of precast concrete structures. However, conventional dry-connections-like sleeve grouting joints in precast concrete structures lagged at a low construction and management efficiency with poor quality control. In this study, a novel steel joint for [...] Read more.
Assembled methods play a critical role in the construction of precast concrete structures. However, conventional dry-connections-like sleeve grouting joints in precast concrete structures lagged at a low construction and management efficiency with poor quality control. In this study, a novel steel joint for precast reinforced concrete beam-column components is proposed to improve constructability. New joints transform the assembled method from reinforced concrete members into a steel structure by setting a pre-embedded steel connector at both ends of reinforced concrete beams and columns, showing outstanding economic, durability, and fire resistance capabilities. The construction process, construction efficiency, economy, and energy consumption were discussed based on the material, structure, and construction hybrid characteristics. Numerical simulation and structural health monitoring methods are used to monitor and evaluate the deformation and stress state of the proposed system in the whole construction process, so as to optimize the construction scheme and ensure safe and orderly construction. The results reveal that the FEA-simulated values of key building components during construction are in good agreement with the actual monitoring values, which verifies the feasibility of the FEM models and provides a guarantee for construction safety; the construction period of the proposed assemble system is reduced by approximately 56% and 40%, compared with the conventional reinforced concrete frame structure and cast-in-place joints in the precast concrete frame structure, respectively. Meanwhile, the energy consumption of buildings decreases by 20%. This research provides a theoretical basis for the design, calculation, and application of assembled precast structural systems. Full article
(This article belongs to the Special Issue Sustainability and Resiliency of Building Materials and Structures)
Show Figures

Figure 1

Back to TopTop