Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = prebiotic phosphorylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2745 KiB  
Article
Prebiotic Syntheses of Organophosphorus Compounds from Reduced Source of Phosphorus in Non-Aqueous Solvents
by Maheen Gull, Tian Feng, Benjamin Smith, Laurent Calcul and Matthew A. Pasek
Life 2023, 13(11), 2134; https://doi.org/10.3390/life13112134 - 29 Oct 2023
Cited by 3 | Viewed by 2170
Abstract
Reduced-oxidation-state phosphorus (reduced P, hereafter) compounds were likely available on the early Earth via meteorites or through various geologic processes. Due to their reactivity and high solubility, these compounds could have played a significant role in the origin of various organophosphorus compounds of [...] Read more.
Reduced-oxidation-state phosphorus (reduced P, hereafter) compounds were likely available on the early Earth via meteorites or through various geologic processes. Due to their reactivity and high solubility, these compounds could have played a significant role in the origin of various organophosphorus compounds of biochemical significance. In the present work, we study the reactions between reduced P compounds and their oxidation products, with the three nucleosides (uridine, adenosine, and cytidine), with organic alcohols (glycerol and ethanolamine), and with the tertiary ammonium organic compound, choline chloride. These reactions were studied in the non-aqueous solvent formamide and in a semi-aqueous solvent comprised of urea: ammonium formate: water (UAFW, hereafter) at temperatures of 55–68 °C. The inorganic P compounds generated through Fenton chemistry readily dissolve in the non-aqueous and semi-aqueous solvents and react with organics to form organophosphites and organophosphates, including those which are identified as phosphate diesters. This dual approach (1) use of non-aqueous and semi-aqueous solvents and (2) use of a reactive inorganic P source to promote phosphorylation and phosphonylation reactions of organics readily promoted anhydrous chemistry and condensation reactions, without requiring any additive, catalyst, or other promoting agent under mild heating conditions. We also present a comparative study of the release of P from various prebiotically relevant phosphate minerals and phosphite salts (e.g., vivianite, apatite, and phosphites of iron and calcium) into formamide and UAFW. These results have direct implications for the origin of biological P compounds from non-aqueous solvents of prebiotic provenance. Full article
(This article belongs to the Special Issue Origin of Life in Chemically Complex Messy Environments: 2nd Edition)
Show Figures

Figure 1

24 pages, 5531 KiB  
Article
Xylo-Oligosaccharides in Prevention of Hepatic Steatosis and Adipose Tissue Inflammation: Associating Taxonomic and Metabolomic Patterns in Fecal Microbiomes with Biclustering
by Jukka Hintikka, Sanna Lensu, Elina Mäkinen, Sira Karvinen, Marjaana Honkanen, Jere Lindén, Tim Garrels, Satu Pekkala and Leo Lahti
Int. J. Environ. Res. Public Health 2021, 18(8), 4049; https://doi.org/10.3390/ijerph18084049 - 12 Apr 2021
Cited by 14 | Viewed by 5345
Abstract
We have shown that prebiotic xylo-oligosaccharides (XOS) increased beneficial gut microbiota (GM) and prevented high fat diet-induced hepatic steatosis, but the mechanisms associated with these effects are not clear. We studied whether XOS affects adipose tissue inflammation and insulin signaling, and whether the [...] Read more.
We have shown that prebiotic xylo-oligosaccharides (XOS) increased beneficial gut microbiota (GM) and prevented high fat diet-induced hepatic steatosis, but the mechanisms associated with these effects are not clear. We studied whether XOS affects adipose tissue inflammation and insulin signaling, and whether the GM and fecal metabolome explain associated patterns. XOS was supplemented or not with high (HFD) or low (LFD) fat diet for 12 weeks in male Wistar rats (n = 10/group). Previously analyzed GM and fecal metabolites were biclustered to reduce data dimensionality and identify interpretable groups of co-occurring genera and metabolites. Based on our findings, biclustering provides a useful algorithmic method for capturing such joint signatures. On the HFD, XOS-supplemented rats showed lower number of adipose tissue crown-like structures, increased phosphorylation of AKT in liver and adipose tissue as well as lower expression of hepatic miRNAs. XOS-supplemented rats had more fecal glycine and less hypoxanthine, isovalerate, branched chain amino acids and aromatic amino acids. Several bacterial genera were associated with the metabolic signatures. In conclusion, the beneficial effects of XOS on hepatic steatosis involved decreased adipose tissue inflammation and likely improved insulin signaling, which were further associated with fecal metabolites and GM. Full article
(This article belongs to the Special Issue Gut Microbiota in the Battle against Obesity and Metabolic Disorders)
Show Figures

Figure 1

12 pages, 7948 KiB  
Review
Prebiotic Pathway from Ribose to RNA Formation
by Gaspar Banfalvi
Int. J. Mol. Sci. 2021, 22(8), 3857; https://doi.org/10.3390/ijms22083857 - 8 Apr 2021
Cited by 13 | Viewed by 5373
Abstract
At the focus of abiotic chemical reactions is the synthesis of ribose. No satisfactory explanation was provided as to the missing link between the prebiotic synthesis of ribose and prebiotic RNA (preRNA). Hydrogen cyanide (HCN) is assumed to have been the principal precursor [...] Read more.
At the focus of abiotic chemical reactions is the synthesis of ribose. No satisfactory explanation was provided as to the missing link between the prebiotic synthesis of ribose and prebiotic RNA (preRNA). Hydrogen cyanide (HCN) is assumed to have been the principal precursor in the prebiotic formation of aldopentoses in the formose reaction and in the synthesis of ribose. Ribose as the best fitting aldopentose became the exclusive sugar component of RNA. The elevated yield of ribose synthesis at higher temperatures and its protection from decomposition could have driven the polymerization of the ribose-phosphate backbone and the coupling of nucleobases to the backbone. RNA could have come into being without the involvement of nucleotide precursors. The first nucleoside monophosphate is likely to have appeared upon the hydrolysis of preRNA contributed by the presence of reactive 2′-OH moieties in the preRNA chain. As a result of phosphorylation, nucleoside monophosphates became nucleoside triphosphates, substrates for the selective synthesis of genRNA. Full article
(This article belongs to the Special Issue Ribose Selected as Precursor to Life)
Show Figures

Figure 1

32 pages, 6124 KiB  
Review
The Role of Glycerol and Its Derivatives in the Biochemistry of Living Organisms, and Their Prebiotic Origin and Significance in the Evolution of Life
by Maheen Gull and Matthew A. Pasek
Catalysts 2021, 11(1), 86; https://doi.org/10.3390/catal11010086 - 10 Jan 2021
Cited by 28 | Viewed by 23753
Abstract
The emergence and evolution of prebiotic biomolecules on the early Earth remain a question that is considered crucial to understanding the chemistry of the origin of life. Amongst prebiotic molecules, glycerol is significant due to its ubiquity in biochemistry. In this review, we [...] Read more.
The emergence and evolution of prebiotic biomolecules on the early Earth remain a question that is considered crucial to understanding the chemistry of the origin of life. Amongst prebiotic molecules, glycerol is significant due to its ubiquity in biochemistry. In this review, we discuss the significance of glycerol and its various derivatives in biochemistry, their plausible roles in the origin and evolution of early cell membranes, and significance in the biochemistry of extremophiles, followed by their prebiotic origin on the early Earth and associated catalytic processes that led to the origin of these compounds. We also discuss various scenarios for the prebiotic syntheses of glycerol and its derivates and evaluate these to determine their relevance to early Earth biochemistry and geochemistry, and recapitulate the utilization of various minerals (including clays), condensation agents, and solvents that could have led to the successful prebiotic genesis of these biomolecules. Furthermore, important prebiotic events such as meteoritic delivery and prebiotic synthesis reactions under astrophysical conditions are also discussed. Finally, we have also highlighted some novel features of glycerol, including glycerol nucleic acid (GNA), in the origin and evolution of the life. Full article
Show Figures

Graphical abstract

18 pages, 1249 KiB  
Review
Intestinal Population in Host with Metabolic Syndrome during Administration of Chitosan and Its Derivatives
by Chen Yan, Cuili Zhang, Xuejiao Cao, Bin Feng and Xinli Li
Molecules 2020, 25(24), 5857; https://doi.org/10.3390/molecules25245857 - 11 Dec 2020
Cited by 19 | Viewed by 3978
Abstract
Chitosan and its derivatives can alleviate metabolic syndrome by different regulation mechanisms, phosphorylation of AMPK (AMP-activated kinase) and Akt (also known as protein kinase B), suppression of PPAR-γ (peroxisome proliferator-activated receptor-γ) and SREBP-1c (sterol regulatory element–binding proteins), and translocation of GLUT4 (glucose transporter-4), [...] Read more.
Chitosan and its derivatives can alleviate metabolic syndrome by different regulation mechanisms, phosphorylation of AMPK (AMP-activated kinase) and Akt (also known as protein kinase B), suppression of PPAR-γ (peroxisome proliferator-activated receptor-γ) and SREBP-1c (sterol regulatory element–binding proteins), and translocation of GLUT4 (glucose transporter-4), and also the downregulation of fatty-acid-transport proteins, fatty-acid-binding proteins, fatty acid synthetase (FAS), acetyl-CoA carboxylase (acetyl coenzyme A carboxylase), and HMG-CoA reductase (hydroxy methylglutaryl coenzyme A reductase). The improved microbial profiles in the gastrointestinal tract were positively correlated with the improved glucose and lipid profiles in hosts with metabolic syndrome. Hence, this review will summarize the current literature illustrating positive correlations between the alleviated conditions in metabolic syndrome hosts and the normalized gut microbiota in hosts with metabolic syndrome after treatment with chitosan and its derivatives, implying that the possibility of chitosan and its derivatives to serve as therapeutic application will be consolidated. Chitosan has been shown to modulate cardiometabolic symptoms (e.g., lipid and glycemic levels, blood pressure) as well as gut microbiota. However, the literature that summarizes the relationship between such metabolic modulation of chitosan and prebiotic-like effects is limited. This review will discuss the connection among their structures, biological properties, and prebiotic effects for the treatment of metabolic syndrome. Our hope is that future researchers will consider the prebiotic effects as significant contributors to the mitigation of metabolic syndrome. Full article
(This article belongs to the Special Issue Chitin and Chitosan: Derivatives and Applications)
Show Figures

Figure 1

13 pages, 2143 KiB  
Article
Prebiotic Potential and Anti-Inflammatory Activity of Soluble Polysaccharides Obtained from Soybean Residue
by Bao Le, Thi Ngoc Anh Pham and Seung Hwan Yang
Foods 2020, 9(12), 1808; https://doi.org/10.3390/foods9121808 - 6 Dec 2020
Cited by 26 | Viewed by 4006
Abstract
In the present study, we assessed the extraction of low molecular weight soluble polysaccharides (MESP) from soybean by-products using microwave-assisted enzymatic technology and proposed the chemical structure of MESP using Fourier transform-infrared spectroscopy, gas chromatography, and 1H and 13C nuclear magnetic [...] Read more.
In the present study, we assessed the extraction of low molecular weight soluble polysaccharides (MESP) from soybean by-products using microwave-assisted enzymatic technology and proposed the chemical structure of MESP using Fourier transform-infrared spectroscopy, gas chromatography, and 1H and 13C nuclear magnetic resonance spectrum analysis. The results suggested that MESP mainly comprised arabinose, rhamnose, and glucuronic acid with (1→4) glycosidic linkages in the backbone. Compared with inulin, MESP was found to selectively stimulate the growth of Lactobacillus probiotics. Moreover, the results of in vitro fermentation indicated that MESP significantly increased the concentrations of both acetate and butyrate (p < 0.05). MESP were treated on lipopolysaccharide (LPS)-stimulated RAW264.7 cells to determine the anti-inflammatory effect in vitro. It was observed that MESP inhibited nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 production. Furthermore, Western blotting results indicated that MESP significantly attenuated LPS-induced downregulation of phosphorylation levels of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) in macrophages. The underlying mechanism might involve inhibition of the expression of pro-inflammatory cytokines, presumably via JAK2/STAT3 pathway. Collectively, the results of our study paved way for the production of MESP, which may be potentially used as nutraceutical ingredients for prebiotics and anti-inflammatory agents, from soybean residue. Full article
(This article belongs to the Special Issue Recovery of High Value-Added Compounds from Food By-Product)
Show Figures

Figure 1

12 pages, 1157 KiB  
Article
Silicate-, Magnesium Ion-, and Urea-Induced Prebiotic Phosphorylation of Uridine via Pyrophosphate; Revisiting the Hot Drying Water Pool Scenario
by Maheen Gull, Arthur Omran, Tian Feng and Matthew A. Pasek
Life 2020, 10(8), 122; https://doi.org/10.3390/life10080122 - 25 Jul 2020
Cited by 17 | Viewed by 4577
Abstract
The availability of nucleotides on the early Earth is of great significance for the origin of a self-replicating system capable of undergoing evolution. We hereby report the successful phosphorylation reactions of the nucleoside uridine under heating in the “drying pool” prebiotic model at [...] Read more.
The availability of nucleotides on the early Earth is of great significance for the origin of a self-replicating system capable of undergoing evolution. We hereby report the successful phosphorylation reactions of the nucleoside uridine under heating in the “drying pool” prebiotic model at temperatures ranging from 60–75 °C, and by using pyrophosphate as a phosphorylation agent. Uridine monophosphates (UMP) such as uridine-5′-monophosphate (5′-UMP), 2′-UMP, and 3′-UMP, as well as cyclic 2′-3′-UMP, were identified by 31P-NMR. In addition to the above-mentioned products, a dimer of uridine-phosphate-uridine (U-P-U) was also observed. The reactions were promoted by white quartz sand, Mg2+, and by using urea as a condensation agent. The reactions also proceeded without this mixture; however, the yields increased remarkably with the presence of the above-mentioned materials. The results suggest that a hot/evaporating-drying pool of water containing organics, salts, and reactive phosphorus could be sufficient to form significant phosphate esters. Full article
(This article belongs to the Special Issue Frontiers of Astrobiology)
Show Figures

Graphical abstract

15 pages, 2478 KiB  
Article
Prebiotic Peptide Bond Formation Through Amino Acid Phosphorylation. Insights from Quantum Chemical Simulations
by Berta Martínez-Bachs and Albert Rimola
Life 2019, 9(3), 75; https://doi.org/10.3390/life9030075 - 16 Sep 2019
Cited by 13 | Viewed by 12678
Abstract
Condensation reactions between biomolecular building blocks are the main synthetic channels to build biopolymers. However, under highly diluted prebiotic conditions, condensations are thermodynamically hampered since they release water. Moreover, these reactions are also kinetically hindered as, in the absence of any catalyst, they [...] Read more.
Condensation reactions between biomolecular building blocks are the main synthetic channels to build biopolymers. However, under highly diluted prebiotic conditions, condensations are thermodynamically hampered since they release water. Moreover, these reactions are also kinetically hindered as, in the absence of any catalyst, they present high activation energies. In living organisms, in the formation of peptides by condensation of amino acids, this issue is overcome by the participation of adenosine triphosphate (ATP), in which, previous to the condensation, phosphorylation of one of the reactants is carried out to convert it as an activated intermediate. In this work, we present for the first time results based on density functional theory (DFT) calculations on the peptide bond formation between two glycine (Gly) molecules adopting this phosphorylation-based mechanism considering a prebiotic context. Here, ATP has been modeled by a triphosphate (TP) component, and different scenarios have been considered: (i) gas-phase conditions, (ii) in the presence of a Mg2+ ion available within the layer of clays, and (iii) in the presence of a Mg2+ ion in watery environments. For all of them, the free energy profiles have been fully characterized. Energetics derived from the quantum chemical calculations indicate that none of the processes seem to be feasible in the prebiotic context. In scenarios (i) and (ii), the reactions are inhibited due to unfavorable thermodynamics associated with the formation of high energy intermediates, while in scenario (iii), the reaction is inhibited due to the high free energy barrier associated with the condensation reactions. As a final consideration, the role of clays in this TP-mediated peptide bond formation route is advocated, since the interaction of the phosphorylated intermediate with the internal clay surfaces could well favor the reaction free energies. Full article
(This article belongs to the Section Origin of Life)
Show Figures

Figure 1

12 pages, 2172 KiB  
Article
Phosphates as Energy Sources to Expand Metabolic Networks
by Tian Tian, Xin-Yi Chu, Yi Yang, Xuan Zhang, Ye-Mao Liu, Jun Gao, Bin-Guang Ma and Hong-Yu Zhang
Life 2019, 9(2), 43; https://doi.org/10.3390/life9020043 - 22 May 2019
Cited by 17 | Viewed by 6271
Abstract
Phosphates are essential for modern metabolisms. A recent study reported a phosphate-free metabolic network and suggested that thioesters, rather than phosphates, could alleviate thermodynamic bottlenecks of network expansion. As a result, it was considered that a phosphorus-independent metabolism could exist before the phosphate-based [...] Read more.
Phosphates are essential for modern metabolisms. A recent study reported a phosphate-free metabolic network and suggested that thioesters, rather than phosphates, could alleviate thermodynamic bottlenecks of network expansion. As a result, it was considered that a phosphorus-independent metabolism could exist before the phosphate-based genetic coding system. To explore the origin of phosphorus-dependent metabolism, the present study constructs a protometabolic network that contains phosphates prebiotically available using computational systems biology approaches. It is found that some primitive phosphorylated intermediates could greatly alleviate thermodynamic bottlenecks of network expansion. Moreover, the phosphorus-dependent metabolic network exhibits several ancient features. Taken together, it is concluded that phosphates played a role as important as that of thioesters during the origin and evolution of metabolism. Both phosphorus and sulfur are speculated to be critical to the origin of life. Full article
Show Figures

Figure 1

11 pages, 884 KiB  
Perspective
Potential Role of Inorganic Confined Environments in Prebiotic Phosphorylation
by Avinash Vicholous Dass, Maguy Jaber, André Brack, Frédéric Foucher, Terence P. Kee, Thomas Georgelin and Frances Westall
Life 2018, 8(1), 7; https://doi.org/10.3390/life8010007 - 5 Mar 2018
Cited by 25 | Viewed by 6343
Abstract
A concise outlook on the potential role of confinement in phosphorylation and phosphate condensation pertaining to prebiotic chemistry is presented. Inorganic confinement is a relatively uncharted domain in studies concerning prebiotic chemistry, and even more so in terms of experimentation. However, molecular crowding [...] Read more.
A concise outlook on the potential role of confinement in phosphorylation and phosphate condensation pertaining to prebiotic chemistry is presented. Inorganic confinement is a relatively uncharted domain in studies concerning prebiotic chemistry, and even more so in terms of experimentation. However, molecular crowding within confined dimensions is central to the functioning of contemporary biology. There are numerous advantages to confined environments and an attempt to highlight this fact, within this article, has been undertaken, keeping in context the limitations of aqueous phase chemistry in phosphorylation and, to a certain extent, traditional approaches in prebiotic chemistry. Full article
(This article belongs to the Special Issue Phosphorus (P) and the Origins of Life)
Show Figures

Figure 1

28 pages, 14310 KiB  
Review
Nitrogenous Derivatives of Phosphorus and the Origins of Life: Plausible Prebiotic Phosphorylating Agents in Water
by Megha Karki, Clémentine Gibard, Subhendu Bhowmik and Ramanarayanan Krishnamurthy
Life 2017, 7(3), 32; https://doi.org/10.3390/life7030032 - 29 Jul 2017
Cited by 43 | Viewed by 12812
Abstract
Phosphorylation under plausible prebiotic conditions continues to be one of the defining issues for the role of phosphorus in the origins of life processes. In this review, we cover the reactions of alternative forms of phosphate, specifically the nitrogenous versions of phosphate (and [...] Read more.
Phosphorylation under plausible prebiotic conditions continues to be one of the defining issues for the role of phosphorus in the origins of life processes. In this review, we cover the reactions of alternative forms of phosphate, specifically the nitrogenous versions of phosphate (and other forms of reduced phosphorus species) from a prebiotic, synthetic organic and biochemistry perspective. The ease with which such amidophosphates or phosphoramidate derivatives phosphorylate a wide variety of substrates suggests that alternative forms of phosphate could have played a role in overcoming the “phosphorylation in water problem”. We submit that serious consideration should be given to the search for primordial sources of nitrogenous versions of phosphate and other versions of phosphorus. Full article
(This article belongs to the Special Issue Phosphorus (P) and the Origins of Life)
Show Figures

Graphical abstract

23 pages, 3126 KiB  
Review
A Chemist’s Perspective on the Role of Phosphorus at the Origins of Life
by Christian Fernández-García, Adam J. Coggins and Matthew W. Powner
Life 2017, 7(3), 31; https://doi.org/10.3390/life7030031 - 13 Jul 2017
Cited by 57 | Viewed by 12130
Abstract
The central role that phosphates play in biological systems, suggests they also played an important role in the emergence of life on Earth. In recent years, numerous important advances have been made towards understanding the influence that phosphates may have had on prebiotic [...] Read more.
The central role that phosphates play in biological systems, suggests they also played an important role in the emergence of life on Earth. In recent years, numerous important advances have been made towards understanding the influence that phosphates may have had on prebiotic chemistry, and here, we highlight two important aspects of prebiotic phosphate chemistry. Firstly, we discuss prebiotic phosphorylation reactions; we specifically contrast aqueous electrophilic phosphorylation, and aqueous nucleophilic phosphorylation strategies, with dry-state phosphorylations that are mediated by dissociative phosphoryl-transfer. Secondly, we discuss the non-structural roles that phosphates can play in prebiotic chemistry. Here, we focus on the mechanisms by which phosphate has guided prebiotic reactivity through catalysis or buffering effects, to facilitating selective transformations in neutral water. Several prebiotic routes towards the synthesis of nucleotides, amino acids, and core metabolites, that have been facilitated or controlled by phosphate acting as a general acid–base catalyst, pH buffer, or a chemical buffer, are outlined. These facile and subtle mechanisms for incorporation and exploitation of phosphates to orchestrate selective, robust prebiotic chemistry, coupled with the central and universally conserved roles of phosphates in biochemistry, provide an increasingly clear message that understanding phosphate chemistry will be a key element in elucidating the origins of life on Earth. Full article
(This article belongs to the Special Issue Phosphorus (P) and the Origins of Life)
Show Figures

Graphical abstract

10 pages, 1105 KiB  
Article
Silicate-Promoted Phosphorylation of Glycerol in Non-Aqueous Solvents: A Prebiotically Plausible Route to Organophosphates
by Maheen Gull, Brian J. Cafferty, Nicholas V. Hud and Matthew A. Pasek
Life 2017, 7(3), 29; https://doi.org/10.3390/life7030029 - 29 Jun 2017
Cited by 25 | Viewed by 7638
Abstract
Phosphorylation reactions of glycerol were studied using different inorganic phosphates such as sodium phosphate, trimetaphosphate (a condensed phosphate), and struvite. The reactions were carried out in two non-aqueous solvents: formamide and a eutectic solvent consisting of choline-chloride and glycerol in a ratio of [...] Read more.
Phosphorylation reactions of glycerol were studied using different inorganic phosphates such as sodium phosphate, trimetaphosphate (a condensed phosphate), and struvite. The reactions were carried out in two non-aqueous solvents: formamide and a eutectic solvent consisting of choline-chloride and glycerol in a ratio of 1:2.5. The glycerol reacted in formamide and in the eutectic solvent with phosphate to yield its phosphorylated derivatives in the presence of silicates such as quartz sand and kaolinite clay. The reactions were carried out by heating glycerol with a phosphate source at 85 °C for one week and were analyzed by 31P-nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The yield of the phosphorylated glycerol was improved by the presence of silicates, and reached 90% in some experiments. Our findings further support the proposal that non-aqueous solvents are advantageous for the prebiotic synthesis of biomolecules, and suggest that silicates may have aided in the formation of organophosphates on the prebiotic earth. Full article
(This article belongs to the Special Issue Phosphorus (P) and the Origins of Life)
Show Figures

Figure 1

12 pages, 575 KiB  
Hypothesis
Has Inositol Played Any Role in the Origin of Life?
by Adolfo Saiardi
Life 2017, 7(2), 24; https://doi.org/10.3390/life7020024 - 5 Jun 2017
Cited by 9 | Viewed by 7803
Abstract
Phosphorus, as phosphate, plays a paramount role in biology. Since phosphate transfer reactions are an integral part of contemporary life, phosphate may have been incorporated into the initial molecules at the very beginning. To facilitate the studies into early phosphate utilization, we should [...] Read more.
Phosphorus, as phosphate, plays a paramount role in biology. Since phosphate transfer reactions are an integral part of contemporary life, phosphate may have been incorporated into the initial molecules at the very beginning. To facilitate the studies into early phosphate utilization, we should look retrospectively to phosphate-rich molecules present in today’s cells. Overlooked by origin of life studies until now, inositol and the inositol phosphates, of which some species possess more phosphate groups that carbon atoms, represent ideal molecules to consider in this context. The current sophisticated association of inositol with phosphate, and the roles that some inositol phosphates play in regulating cellular phosphate homeostasis, intriguingly suggest that inositol might have played some role in the prebiotic process of phosphate exploitation. Inositol can be synthesized abiotically and, unlike glucose or ribose, is chemically stable. This stability makes inositol the ideal candidate for the earliest organophosphate molecules, as primitive inositol phosphates. I also present arguments suggesting roles for some inositol phosphates in early chemical evolution events. Finally, the possible prebiotic synthesis of inositol pyrophosphates could have generated high-energy molecules to be utilized in primitive trans-phosphorylating processes. Full article
(This article belongs to the Special Issue Phosphorus (P) and the Origins of Life)
Show Figures

Figure 1

18 pages, 2664 KiB  
Article
Xylobiose, an Alternative Sweetener, Ameliorates Diabetes-Related Metabolic Changes by Regulating Hepatic Lipogenesis and miR-122a/33a in db/db Mice
by Eunjin Lim, Ji Ye Lim, Eunju Kim, Yoo-Sun Kim, Jae-Ho Shin, Pu Reum Seok, Sangwon Jung, Sang-Ho Yoo and Yuri Kim
Nutrients 2016, 8(12), 791; https://doi.org/10.3390/nu8120791 - 5 Dec 2016
Cited by 30 | Viewed by 7539
Abstract
Type 2 diabetes is a major public health concern worldwide. Xylobiose (XB) consists of two molecules of d-xylose and is a major disaccharide in xylooligosaccharides that are used as prebiotics. We hypothesized that XB could regulate diabetes-related metabolic and genetic changes via [...] Read more.
Type 2 diabetes is a major public health concern worldwide. Xylobiose (XB) consists of two molecules of d-xylose and is a major disaccharide in xylooligosaccharides that are used as prebiotics. We hypothesized that XB could regulate diabetes-related metabolic and genetic changes via microRNA expression in db/db mice. For six weeks, C57BL/KsJ-db/db mice received 5% XB as part of the total sucrose content of their diet. XB supplementation improved glucose tolerance with reduced levels of OGTT AUC, fasting blood glucose, HbA1c, insulin, and HOMA-IR. Furthermore, XB supplementation decreased the levels of total triglycerides, total cholesterol, and LDL-C. The expression levels of miR-122a and miR-33a were higher and lower in the XB group, respectively. In the liver, expressions of the lipogenic genes, including, fatty acid synthase (FAS), peroxisome proliferator activated receptor γ (PPARγ), sterol regulatory element-binding protein-1C (SREBP-1C), sterol regulatory element-binding protein-2 (SREBP-2), acetyl-CoA carboxylase (ACC), HMG-CoA reductase (HMGCR), ATP-binding cassette transporter G5/G8 (ABCG5/8), cholesterol 7 alpha-hydroxylase (CYP7A1), and sterol 12-alpha-hydroxylase (CYP8B1), as well as oxidative stress markers, including superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase (GPX), and catalase, were also regulated by XB supplementation. XB supplementation inhibited the mRNA expressions levels of the pro-inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interleukin (IL)-6, and monocyte chemoattractant protein (MCP)-1, as well as phosphorylation of c-Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK), p38 mitogen-activated protein kinases (MAPK), and extracellular signal-regulated kinases 1/2 (ERK1/2). These data demonstrate that XB exhibits anti-diabetic, hypolipogenic, and anti-inflammatory effects via regulation of the miR-122a/33a axis in db/db mice. Full article
Show Figures

Figure 1

Back to TopTop