Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,479)

Search Parameters:
Keywords = pre-training

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 982 KiB  
Article
Effectiveness of a Learning Pathway on Food and Nutrition in Amyotrophic Lateral Sclerosis
by Karla Mônica Dantas Coutinho, Humberto Rabelo, Felipe Fernandes, Karilany Dantas Coutinho, Ricardo Alexsandro de Medeiros Valentim, Aline de Pinho Dias, Janaína Luana Rodrigues da Silva Valentim, Natalia Araújo do Nascimento Batista, Manoel Honorio Romão, Priscila Sanara da Cunha, Aliete Cunha-Oliveira, Susana Henriques, Luciana Protásio de Melo, Sancha Helena de Lima Vale, Lucia Leite-Lais and Kenio Costa de Lima
Nutrients 2025, 17(15), 2562; https://doi.org/10.3390/nu17152562 (registering DOI) - 6 Aug 2025
Abstract
Background/Objectives: Health education plays a vital role in training health professionals and caregivers, supporting both prevention and the promotion of self-care. In this context, technology serves as a valuable ally by enabling continuous and flexible learning. Among the various domains of health education, [...] Read more.
Background/Objectives: Health education plays a vital role in training health professionals and caregivers, supporting both prevention and the promotion of self-care. In this context, technology serves as a valuable ally by enabling continuous and flexible learning. Among the various domains of health education, nutrition stands out as a key element in the management of Amyotrophic Lateral Sclerosis (ALS), helping to prevent malnutrition and enhance patient well-being. Accordingly, this study aimed to evaluate the effectiveness of the teaching and learning processes within a learning pathway focused on food and nutrition in the context of ALS. Methods: This study adopted a longitudinal, quantitative design. The learning pathway, titled “Food and Nutrition in ALS,” consisted of four self-paced and self-instructional Massive Open Online Courses (MOOCs), offered through the Virtual Learning Environment of the Brazilian Health System (AVASUS). Participants included health professionals, caregivers, and patients from all five regions of Brazil. Participants had the autonomy to complete the courses in any order, with no prerequisites for enrollment. Results: Out of 14,263 participants enrolled nationwide, 182 were included in this study after signing the Informed Consent Form. Of these, 142 (78%) completed at least one course and participated in the educational intervention. A significant increase in knowledge was observed, with mean pre-test scores rising from 7.3 (SD = 1.8) to 9.6 (SD = 0.9) on the post-test across all courses (p < 0.001). Conclusions: The self-instructional, technology-mediated continuing education model proved effective in improving participants’ knowledge about nutrition in ALS. Future studies should explore knowledge retention, behavior change, and the impact of such interventions on clinical outcomes, especially in multidisciplinary care settings. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

33 pages, 891 KiB  
Article
Effectiveness of a Mind–Body Intervention at Improving Mental Health and Performance Among Career Firefighters
by Anthony C. Santos, Seth Long, Christopher P. Moreno and Dierdra Bycura
Int. J. Environ. Res. Public Health 2025, 22(8), 1227; https://doi.org/10.3390/ijerph22081227 (registering DOI) - 6 Aug 2025
Abstract
Almost one in three firefighters develop mental health disorders at some point during their careers, a rate double that in the general population. Frequent exposures to potentially traumatic situations can contribute to symptoms of these disorders, two of the most common being depression [...] Read more.
Almost one in three firefighters develop mental health disorders at some point during their careers, a rate double that in the general population. Frequent exposures to potentially traumatic situations can contribute to symptoms of these disorders, two of the most common being depression and post-traumatic stress disorder (PTSD). While various psychological interventions have been implemented among this group, reports of their effectiveness include mixed results. To this end, the current study endeavored to test the effectiveness of a 12-week intervention combining occupationally-tailored high-intensity functional training (HIFT) and psychological resilience training (RES) in reducing depressive and post-traumatic stress symptoms (PTSSs), as well as increasing psychological resilience and mental wellbeing, in career firefighters. Thirty career firefighters completed four mental health measurements over 17 weeks while anthropometrics and physical performance (i.e., number of stations completed in 20 min during an eight-station simulated job-task circuit workout [T-CAC]) were measured pre- and post-intervention. Pre to post comparisons were made via repeated-measures t-tests. Significant mean differences were observed for T-CAC stations completed, PTSSs, and psychological resilience between pre- and post-intervention. In future interventions, researchers should actively engage firefighters, maximize integration with daily operations, and employ culturally-relevant practices to explore the links between physical and mental health. Full article
Show Figures

Figure 1

21 pages, 264 KiB  
Article
Pre-Service Early Childhood Teachers’ Perceptions of Critical Thinking and Sustainability: A Comparative Study Between Spain and Poland
by Lourdes Aragón, Robert Opora and Juan Casanova
Sustainability 2025, 17(15), 7129; https://doi.org/10.3390/su17157129 (registering DOI) - 6 Aug 2025
Abstract
This study explores the perceptions of future educators, specifically Early Childhood Education students at the Universities of Cádiz and Gdansk, regarding the interconnections between critical thinking and sustainability. The work aims to provide valuable insights into general teacher training, examining how these students’ [...] Read more.
This study explores the perceptions of future educators, specifically Early Childhood Education students at the Universities of Cádiz and Gdansk, regarding the interconnections between critical thinking and sustainability. The work aims to provide valuable insights into general teacher training, examining how these students’ experiences are contextualized within their respective educational systems and cultural contexts. To achieve this, eleven group interviews (three in Cádiz, eight in Gdansk) were conducted using a structured and expert-validated script. The transcribed data were qualitatively analyzed using QDA MINER v.6 software. Key findings reveal divergent perceptions of critical thinking among pre-service teachers: while Spanish students leaned towards a subjective understanding, Polish students emphasized an objective, data-driven approach. This distinction has significant implications for the conceptualization and teaching of critical thinking in educator training. Despite these differences, both groups of participants highlighted the necessity of implementing active methodologies in higher education (such as cooperative learning, problem-solving, and debates) to foster critical thinking, both for their own development and for preparing for their future practice with young children. This study also identified an excessive emphasis on theoretical aspects of sustainability in these future teachers’ training and a limited understanding of their practical application in the classroom. Furthermore, explicit connections between critical thinking and sustainability were scarce in student responses, highlighting a gap in current educator training in these areas. Collectively, the results suggest significant weaknesses in current teacher training efforts regarding the development of critical thinking and its effective integration with sustainability competencies. Full article
29 pages, 3173 KiB  
Article
Graph Neural Networks for Sustainable Energy: Predicting Adsorption in Aromatic Molecules
by Hasan Imani Parashkooh and Cuiying Jian
ChemEngineering 2025, 9(4), 85; https://doi.org/10.3390/chemengineering9040085 (registering DOI) - 6 Aug 2025
Abstract
The growing need for rapid screening of adsorption energies in organic materials has driven substantial progress in developing various architectures of equivariant graph neural networks (eGNNs). This advancement has largely been enabled by the availability of extensive Density Functional Theory (DFT)-generated datasets, sufficiently [...] Read more.
The growing need for rapid screening of adsorption energies in organic materials has driven substantial progress in developing various architectures of equivariant graph neural networks (eGNNs). This advancement has largely been enabled by the availability of extensive Density Functional Theory (DFT)-generated datasets, sufficiently large to train complex eGNN models effectively. However, certain material groups with significant industrial relevance, such as aromatic compounds, remain underrepresented in these large datasets. In this work, we aim to bridge the gap between limited, domain-specific DFT datasets and large-scale pretrained eGNNs. Our methodology involves creating a specialized dataset by segregating aromatic compounds after a targeted ensemble extraction process, then fine-tuning a pretrained model via approaches that include full retraining and systematically freezing specific network sections. We demonstrate that these approaches can yield accurate energy and force predictions with minimal domain-specific training data and computation. Additionally, we investigate the effects of augmenting training datasets with chemically related but out-of-domain groups. Our findings indicate that incorporating supplementary data that closely resembles the target domain, even if approximate, would enhance model performance on domain-specific tasks. Furthermore, we systematically freeze different sections of the pretrained models to elucidate the role each component plays during adaptation to new domains, revealing that relearning low-level representations is critical for effective domain transfer. Overall, this study contributes valuable insights and practical guidelines for efficiently adapting deep learning models for accurate adsorption energy predictions, significantly reducing reliance on extensive training datasets. Full article
Show Figures

Figure 1

17 pages, 1766 KiB  
Article
The Effects of the Red River Jig on the Wholistic Health of Adults in Saskatchewan
by Nisha K. Mainra, Samantha J. Moore, Jamie LaFleur, Alison R. Oates, Gavin Selinger, Tayha Theresia Rolfes, Hanna Sullivan, Muqtasida Fatima and Heather J. A. Foulds
Int. J. Environ. Res. Public Health 2025, 22(8), 1225; https://doi.org/10.3390/ijerph22081225 - 6 Aug 2025
Abstract
The Red River Jig is a traditional Métis dance practiced among Indigenous and non-Indigenous Peoples. While exercise improves physical health and fitness, the impacts of cultural dances on wholistic health are less clear. This study aimed to investigate the psychosocial (cultural and mental), [...] Read more.
The Red River Jig is a traditional Métis dance practiced among Indigenous and non-Indigenous Peoples. While exercise improves physical health and fitness, the impacts of cultural dances on wholistic health are less clear. This study aimed to investigate the psychosocial (cultural and mental), social, physical function, and physical fitness benefits of a Red River Jig intervention. In partnership with Li Toneur Nimiyitoohk Métis Dance Group, Indigenous and non-Indigenous adults (N = 40, 39 ± 15 years, 32 females) completed an 8-week Red River Jig intervention. Social support, cultural identity, memory, and mental wellbeing questionnaires, seated blood pressure and heart rate, weight, pulse-wave velocity, heart rate variability, baroreceptor sensitivity, jump height, sit-and-reach flexibility, one-leg and tandem balance, and six-minute walk test were assessed pre- and post-intervention. Community, family, and friend support scores, six-minute walk distance (553.0 ± 88.7 m vs. 602.2 ± 138.6 m, p = 0.002), jump, leg power, and systolic blood pressure low-to-high-frequency ratio increased after the intervention. Ethnic identity remained the same while affirmation and belonging declined, leading to declines in overall cultural identity, as learning about Métis culture through the Red River Jig may highlight gaps in cultural knowledge. Seated systolic blood pressure (116.5 ± 7.3 mmHg vs. 112.5 ± 10.7 mmHg, p = 0.01) and lower peripheral pulse-wave velocity (10.0 ± 2.0 m·s−1 vs. 9.4 ± 1.9 m·s−1, p = 0.04) decreased after the intervention. Red River Jig dance training can improve social support, physical function, and physical fitness for Indigenous and non-Indigenous adults. Full article
(This article belongs to the Special Issue Improving Health and Mental Wellness in Indigenous Communities)
Show Figures

Figure 1

17 pages, 54671 KiB  
Article
Pep-VGGNet: A Novel Transfer Learning Method for Pepper Leaf Disease Diagnosis
by Süleyman Çetinkaya and Amira Tandirovic Gursel
Appl. Sci. 2025, 15(15), 8690; https://doi.org/10.3390/app15158690 (registering DOI) - 6 Aug 2025
Abstract
The health of crops is a major challenge for productivity growth in agriculture, with plant diseases playing a key role in limiting crop yield. Identifying and understanding these diseases is crucial to preventing their spread. In particular, greenhouse pepper leaves are susceptible to [...] Read more.
The health of crops is a major challenge for productivity growth in agriculture, with plant diseases playing a key role in limiting crop yield. Identifying and understanding these diseases is crucial to preventing their spread. In particular, greenhouse pepper leaves are susceptible to diseases such as mildew, mites, caterpillars, aphids, and blight, which leave distinctive marks that can be used for disease classification. The study proposes a seven-class classifier for the rapid and accurate diagnosis of pepper diseases, with a primary focus on pre-processing techniques to enhance colour differentiation between green and yellow shades, thereby facilitating easier classification among the classes. A novel algorithm is introduced to improve image vibrancy, contrast, and colour properties. The diagnosis is performed using a modified VGG16Net model, which includes three additional layers for fine-tuning. After initialising on the ImageNet dataset, some layers are frozen to prevent redundant learning. The classification is additionally accelerated by introducing flattened, dense, and dropout layers. The proposed model is tested on a private dataset collected specifically for this study. Notably, this work is the first to focus on diagnosing aphid and caterpillar diseases in peppers. The model achieves an average accuracy of 92.00%, showing promising potential for seven-class deep learning-based disease diagnostics. Misclassifications in the aphid class are primarily due to the limited number of samples available. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 3410 KiB  
Article
LinU-Mamba: Visual Mamba U-Net with Linear Attention to Predict Wildfire Spread
by Henintsoa S. Andrianarivony and Moulay A. Akhloufi
Remote Sens. 2025, 17(15), 2715; https://doi.org/10.3390/rs17152715 - 6 Aug 2025
Abstract
Wildfires have become increasingly frequent and intense due to climate change, posing severe threats to ecosystems, infrastructure, and human lives. As a result, accurate wildfire spread prediction is critical for effective risk mitigation, resource allocation, and decision making in disaster management. In this [...] Read more.
Wildfires have become increasingly frequent and intense due to climate change, posing severe threats to ecosystems, infrastructure, and human lives. As a result, accurate wildfire spread prediction is critical for effective risk mitigation, resource allocation, and decision making in disaster management. In this study, we develop a deep learning model to predict wildfire spread using remote sensing data. We propose LinU-Mamba, a model with a U-Net-based vision Mamba architecture, with light spatial attention in skip connections, and an efficient linear attention mechanism in the encoder and decoder to better capture salient fire information in the dataset. The model is trained and evaluated on the two-dimensional remote sensing dataset Next Day Wildfire Spread (NDWS), which maps fire data across the United States with fire entries, topography, vegetation, weather, drought index, and population density variables. The results demonstrate that our approach achieves superior performance compared to existing deep learning methods applied to the same dataset, while showing an efficient training time. Furthermore, we highlight the impacts of pre-training and feature selection in remote sensing, as well as the impacts of linear attention use in our model. As far as we know, LinU-Mamba is the first model based on Mamba used for wildfire spread prediction, making it a strong foundation for future research. Full article
Show Figures

Figure 1

30 pages, 3188 KiB  
Article
A Multimodal Bone Stick Matching Approach Based on Large-Scale Pre-Trained Models and Dynamic Cross-Modal Feature Fusion
by Tao Fan, Huiqin Wang, Ke Wang, Rui Liu and Zhan Wang
Appl. Sci. 2025, 15(15), 8681; https://doi.org/10.3390/app15158681 (registering DOI) - 5 Aug 2025
Abstract
Among the approximately 60,000 bone stick fragments unearthed from the Weiyang Palace site of the Han Dynasty, about 57,000 bear inscriptions. Most of these fragments exhibit vertical fractures, leading to a separation between the upper and lower fragments, which poses significant challenges to [...] Read more.
Among the approximately 60,000 bone stick fragments unearthed from the Weiyang Palace site of the Han Dynasty, about 57,000 bear inscriptions. Most of these fragments exhibit vertical fractures, leading to a separation between the upper and lower fragments, which poses significant challenges to digital preservation and artifact restoration. Manual matching is inefficient and may cause further damage to the bone sticks. This paper proposes a novel multimodal bone stick matching approach that integrates image, inscription, and archeological information to enhance the accuracy and efficiency of matching fragmented bone stick artifacts. Unlike traditional methods that rely solely on image data, our method leverages large-scale pre-trained models, namely Vision-RWKV for visual feature extraction, RWKV for inscription analysis, and BERT for archeological metadata encoding. A dynamic cross-modal feature fusion mechanism is introduced to effectively combine these features, enabling better interaction and weighting based on the contextual relevance of each modality. This approach significantly improves matching performance, particularly in challenging cases involving fractures, corrosion, and missing sections. The novelty of this method lies in its ability to simultaneously extract and fuse multiple sources of information, addressing the limitations of traditional image-based matching methods. This paper uses Rank-N and Cumulative Match Characteristic (CMC) curves as evaluation metrics. Experimental evaluation shows that the matching accuracy reaches 94.73% at Rank-15, and the method performs significantly better than the comparative methods on the CMC evaluation curve, demonstrating outstanding performance. Overall, this approach significantly enhances the efficiency and accuracy of bone stick artifact matching, providing robust technical support for the research and restoration of bone stick cultural heritage. Full article
Show Figures

Figure 1

22 pages, 2053 KiB  
Article
Enhanced Real-Time Method Traffic Light Signal Color Recognition Using Advanced Convolutional Neural Network Techniques
by Fakhri Yagob and Jurek Z. Sasiadek
World Electr. Veh. J. 2025, 16(8), 441; https://doi.org/10.3390/wevj16080441 - 5 Aug 2025
Abstract
Real-time traffic light detection is essential for the safe navigation of autonomous vehicles, where timely and accurate recognition of signal states is critical. YOLOv8, a state-of-the-art object detection model, offers enhanced speed and precision, making it well-suited for real-time applications in complex driving [...] Read more.
Real-time traffic light detection is essential for the safe navigation of autonomous vehicles, where timely and accurate recognition of signal states is critical. YOLOv8, a state-of-the-art object detection model, offers enhanced speed and precision, making it well-suited for real-time applications in complex driving environments. This study presents a modified YOLOv8 architecture optimized for traffic light detection by integrating Depth-Wise Separable Convolutions (DWSCs) throughout the backbone and head. The model was first pretrained on a public traffic light dataset to establish a strong baseline and then fine-tuned on a custom real-time dataset consisting of 480 images collected from video recordings under diverse road conditions. Experimental results demonstrate high detection performance, with precision scores of 0.992 for red, 0.995 for yellow, and 0.853 for green lights. The model achieved an average mAP@0.5 of 0.947, with stable F1 scores and low validation losses over 80 epochs, confirming effective learning and generalization. Compared to existing YOLO variants, the modified architecture showed superior performance, especially for red and yellow lights. Full article
Show Figures

Figure 1

15 pages, 4422 KiB  
Article
Advanced Deep Learning Methods to Generate and Discriminate Fake Images of Egyptian Monuments
by Daniyah Alaswad and Mohamed A. Zohdy
Appl. Sci. 2025, 15(15), 8670; https://doi.org/10.3390/app15158670 (registering DOI) - 5 Aug 2025
Abstract
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines [...] Read more.
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines the performance of Generative Adversarial Networks (GAN), especially Style-Based Generator Architecture (StyleGAN), as a deep learning approach for producing realistic images of Egyptian monuments. We used Sigmoid loss for Language–Image Pre-training (SigLIP) as a unique image–text alignment system to guide monument generation through semantic elements. We also studied truncation methods to regulate the generated image noise and identify the most effective parameter settings based on architectural representation versus diverse output creation. An improved discriminator design that combined noise addition with squeeze-and-excitation blocks and a modified MinibatchStdLayer produced 27.5% better Fréchet Inception Distance performance than the original discriminator models. Moreover, differential evolution for latent-space optimization reduced alignment mistakes during specific monument construction tasks by about 15%. We checked a wide range of truncation values from 0.1 to 1.0 and found that somewhere between 0.4 and 0.7 was the best range because it allowed for good accuracy while retaining many different architectural elements. Our findings indicate that specific model optimization strategies produce superior outcomes by creating better-quality and historically correct representations of diverse Egyptian monuments. Thus, the developed technology may be instrumental in generating educational and archaeological visualization assets while adding virtual tourism capabilities. Full article
(This article belongs to the Special Issue Novel Applications of Machine Learning and Bayesian Optimization)
Show Figures

Figure 1

19 pages, 3116 KiB  
Article
Few-Shot Intelligent Anti-Jamming Access with Fast Convergence: A GAN-Enhanced Deep Reinforcement Learning Approach
by Tianxiao Wang, Yingtao Niu and Zhanyang Zhou
Appl. Sci. 2025, 15(15), 8654; https://doi.org/10.3390/app15158654 (registering DOI) - 5 Aug 2025
Abstract
To address the small-sample training bottleneck and inadequate convergence efficiency of Deep Reinforcement Learning (DRL)-based communication anti-jamming methods in complex electromagnetic environments, this paper proposes a Generative Adversarial Network-enhanced Deep Q-Network (GA-DQN) anti-jamming method. The method constructs a Generative Adversarial Network (GAN) to [...] Read more.
To address the small-sample training bottleneck and inadequate convergence efficiency of Deep Reinforcement Learning (DRL)-based communication anti-jamming methods in complex electromagnetic environments, this paper proposes a Generative Adversarial Network-enhanced Deep Q-Network (GA-DQN) anti-jamming method. The method constructs a Generative Adversarial Network (GAN) to learn the time–frequency distribution characteristics of short-period jamming and to generate high-fidelity mixed samples. Furthermore, it screens qualified samples using the Pearson correlation coefficient to form a sample set, which is input into the DQN network model for pre-training to expand the experience replay buffer, effectively improving the convergence speed and decision accuracy of DQN. Our simulation results show that under periodic jamming, compared with the DQN algorithm, this algorithm significantly reduces the number of interference occurrences in the early communication stage and improves the convergence speed, to a certain extent. Under dynamic jamming and intelligent jamming, the algorithm significantly outperforms the DQN, Proximal Policy Optimization (PPO), and Q-learning (QL) algorithms. Full article
Show Figures

Figure 1

14 pages, 881 KiB  
Article
Fine-Tuning BiomedBERT with LoRA and Pseudo-Labeling for Accurate Drug–Drug Interactions Classification
by Ioan-Flaviu Gheorghita, Vlad-Ioan Bocanet and Laszlo Barna Iantovics
Appl. Sci. 2025, 15(15), 8653; https://doi.org/10.3390/app15158653 (registering DOI) - 5 Aug 2025
Abstract
In clinical decision support systems (CDSSs), where accurate classification of drug–drug interactions (DDIs) can directly affect treatment safety and outcomes, identifying drug interactions is a major challenge, introducing a scalable approach for classifying DDIs utilizing a finely-tuned biomedical language model. The method shown [...] Read more.
In clinical decision support systems (CDSSs), where accurate classification of drug–drug interactions (DDIs) can directly affect treatment safety and outcomes, identifying drug interactions is a major challenge, introducing a scalable approach for classifying DDIs utilizing a finely-tuned biomedical language model. The method shown here uses BiomedBERT, a domain-specific version of bidirectional encoder representations from transformers (BERT) that was pre-trained on biomedical literature, to reduce the number of resources needed during fine-tuning. Low-rank adaptation (LoRA) was used to fine-tune the model on the DrugBank dataset. The objective was to classify DDIs into two clinically distinct categories, that is, synergistic and antagonistic interactions. A pseudo-labeling strategy was created to deal with the problem of not having enough labeled data. A curated ground-truth dataset was constructed using polarity-labeled interaction entries from DrugComb and verified DrugBank antagonism pairs. The fine-tuned model is used to figure out what kinds of interactions there are in the rest of the unlabeled data. A checkpointing system saves predictions and confidence scores in small pieces, which means that the process can be continued and is not affected by system crashes. The framework is designed to log every prediction it makes, allowing results to be refined later, either manually or through automated updates, without discarding low-confidence cases, as traditional threshold-based methods often do. The method keeps a record of every output it generates, making it easier to revisit earlier predictions, either by experts or with improved tools, without depending on preset confidence cutoffs. It was built with efficiency in mind, so it can handle large amounts of biomedical text without heavy computational demands. Rather than focusing on model novelty, this research demonstrates how existing biomedical transformers can be adapted to polarity-aware DDI classification with minimal computational overhead, emphasizing deployment feasibility and clinical relevance. Full article
Show Figures

Figure 1

19 pages, 7531 KiB  
Article
Evaluating the Impact of 2D MRI Slice Orientation and Location on Alzheimer’s Disease Diagnosis Using a Lightweight Convolutional Neural Network
by Nadia A. Mohsin and Mohammed H. Abdulameer
J. Imaging 2025, 11(8), 260; https://doi.org/10.3390/jimaging11080260 - 5 Aug 2025
Abstract
Accurate detection of Alzheimer’s disease (AD) is critical yet challenging for early medical intervention. Deep learning methods, especially convolutional neural networks (CNNs), have shown promising potential for improving diagnostic accuracy using magnetic resonance imaging (MRI). This study aims to identify the most informative [...] Read more.
Accurate detection of Alzheimer’s disease (AD) is critical yet challenging for early medical intervention. Deep learning methods, especially convolutional neural networks (CNNs), have shown promising potential for improving diagnostic accuracy using magnetic resonance imaging (MRI). This study aims to identify the most informative combination of MRI slice orientation and anatomical location for AD classification. We propose an automated framework that first selects the most relevant slices using a feature entropy-based method applied to activation maps from a pretrained CNN model. For classification, we employ a lightweight CNN architecture based on depthwise separable convolutions to efficiently analyze the selected 2D MRI slices extracted from preprocessed 3D brain scans. To further interpret model behavior, an attention mechanism is integrated to analyze which feature level contributes the most to the classification process. The model is evaluated on three binary tasks: AD vs. mild cognitive impairment (MCI), AD vs. cognitively normal (CN), and MCI vs. CN. The experimental results show the highest accuracy (97.4%) in distinguishing AD from CN when utilizing the selected slices from the ninth axial segment, followed by the tenth segment of coronal and sagittal orientations. These findings demonstrate the significance of slice location and orientation in MRI-based AD diagnosis and highlight the potential of lightweight CNNs for clinical use. Full article
(This article belongs to the Section AI in Imaging)
Show Figures

Figure 1

17 pages, 2230 KiB  
Article
Enhancing Diffusion-Based Music Generation Performance with LoRA
by Seonpyo Kim, Geonhui Kim, Shoki Yagishita, Daewoon Han, Jeonghyeon Im and Yunsick Sung
Appl. Sci. 2025, 15(15), 8646; https://doi.org/10.3390/app15158646 (registering DOI) - 5 Aug 2025
Abstract
Recent advancements in generative artificial intelligence have significantly progressed the field of text-to-music generation, enabling users to create music from natural language descriptions. Despite the success of various models, such as MusicLM, MusicGen, and AudioLDM, the current approaches struggle to capture fine-grained genre-specific [...] Read more.
Recent advancements in generative artificial intelligence have significantly progressed the field of text-to-music generation, enabling users to create music from natural language descriptions. Despite the success of various models, such as MusicLM, MusicGen, and AudioLDM, the current approaches struggle to capture fine-grained genre-specific characteristics, precisely control musical attributes, and handle underrepresented cultural data. This paper introduces a novel, lightweight fine-tuning method for the AudioLDM framework using low-rank adaptation (LoRA). By updating only selected attention and projection layers, the proposed method enables efficient adaptation to musical genres with limited data and computational cost. The proposed method enhances controllability over key musical parameters such as rhythm, emotion, and timbre. At the same time, it maintains the overall quality of music generation. This paper represents the first application of LoRA in AudioLDM, offering a scalable solution for fine-grained, genre-aware music generation and customization. The experimental results demonstrate that the proposed method improves the semantic alignment and statistical similarity compared with the baseline. The contrastive language–audio pretraining score increased by 0.0498, indicating enhanced text-music consistency. The kernel audio distance score decreased by 0.8349, reflecting improved similarity to real music distributions. The mean opinion score ranged from 3.5 to 3.8, confirming the perceptual quality of the generated music. Full article
Show Figures

Figure 1

24 pages, 15241 KiB  
Article
Diffusion Model-Based Cartoon Style Transfer for Real-World 3D Scenes
by Yuhang Chen, Haoran Zhou, Jing Chen, Nai Yang, Jing Zhao and Yi Chao
ISPRS Int. J. Geo-Inf. 2025, 14(8), 303; https://doi.org/10.3390/ijgi14080303 - 4 Aug 2025
Abstract
Traditional map style transfer methods are mostly based on GAN, which are either overly artistic at the expense of conveying information, or insufficiently aesthetic by simply changing the color scheme of the map image. These methods often struggle to balance style transfer with [...] Read more.
Traditional map style transfer methods are mostly based on GAN, which are either overly artistic at the expense of conveying information, or insufficiently aesthetic by simply changing the color scheme of the map image. These methods often struggle to balance style transfer with semantic preservation and lack consistency in their transfer effects. In recent years, diffusion models have made significant progress in the field of image processing and have shown great potential in image-style transfer tasks. Inspired by these advances, this paper presents a method for transferring real-world 3D scenes to a cartoon style without the need for additional input condition guidance. The method combines pre-trained LDM with LoRA models to achieve stable and high-quality style infusion. By integrating DDIM Inversion, ControlNet, and MultiDiffusion strategies, it achieves the cartoon style transfer of real-world 3D scenes through initial noise control, detail redrawing, and global coordination. Qualitative and quantitative analyses, as well as user studies, indicate that our method effectively injects a cartoon style while preserving the semantic content of the real-world 3D scene, maintaining a high degree of consistency in style transfer. This paper offers a new perspective for map style transfer. Full article
Show Figures

Figure 1

Back to TopTop