Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = pre-supernova

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1031 KiB  
Review
Red Supergiants as Supernova Progenitors
by Schuyler D. Van Dyk
Galaxies 2025, 13(2), 33; https://doi.org/10.3390/galaxies13020033 - 2 Apr 2025
Viewed by 882
Abstract
The inevitable fate of massive stars in the initial mass range of ≈8–30M in the red supergiant (RSG) phase is a core-collapse supernova (SN) explosion, although some stars may collapse directly to a black hole. We know that this is [...] Read more.
The inevitable fate of massive stars in the initial mass range of ≈8–30M in the red supergiant (RSG) phase is a core-collapse supernova (SN) explosion, although some stars may collapse directly to a black hole. We know that this is the case, since RSGs have been directly identified and characterized for a number of supernovae (SNe) in pre-explosion archival optical and infrared images. RSGs likely all have some amount of circumstellar matter (CSM), through nominal mass loss, although evidence exists that some RSGs must experience enhanced mass loss during their lifetimes. The SNe from RSGs are hydrogen-rich Type II-Plateau (II-P), and SNe II-P at the low end of the luminosity range tend to arise from low-luminosity RSGs. The typical spectral energy distribution (SED) for such RSGs can generally be fit with a cool photospheric model, whereas the more luminous RSG progenitors of more luminous SNe II-P tend to require a greater quantity of dust in their CSM to account for their SEDs. The SN II-P progenitor luminosity range is log(Lbol/L)4.0–5.2. The fact RSGs are known up to log(Lbol/L)5.7 leads to the so-called “RSG problem”, which may, in the end, be a result of small number of available statistics to date. Full article
(This article belongs to the Special Issue The Red Supergiants: Crucial Signposts for the Fate of Massive Stars)
Show Figures

Figure 1

14 pages, 7277 KiB  
Article
Planetary Nebula Morphologies Indicate a Jet-Driven Explosion of SN 1987A and Other Core-Collapse Supernovae
by Noam Soker
Galaxies 2024, 12(3), 29; https://doi.org/10.3390/galaxies12030029 - 6 Jun 2024
Cited by 7 | Viewed by 1438
Abstract
I demonstrate the usage of planetary nebulae (PNe) to infer that a pair of jets shaped the ejecta of the core-collapse supernova (CCSN) SN 1987A. The main structure of the SN 1987A inner ejecta, the ‘keyhole’, comprises two low-intensity zones. The northern one [...] Read more.
I demonstrate the usage of planetary nebulae (PNe) to infer that a pair of jets shaped the ejecta of the core-collapse supernova (CCSN) SN 1987A. The main structure of the SN 1987A inner ejecta, the ‘keyhole’, comprises two low-intensity zones. The northern one has a bright rim on its front, while the southern one has an elongated nozzle. An earlier comparison of the SN 1987A ‘keyhole’ with bubbles in the galaxy group NGC 5813 led to its identification as a jet-shaped rim–nozzle structure. Here, I present rim–nozzle asymmetry in planetary nebulae (PNe), thought to be shaped by jets, which solidifies the claim that jets powered the ejecta of SN 1987A and other CCSNe. This finding for the iconic SN 1987A with its unique properties strengthens the jittering-jets explosion mechanism (JJEM) of CCSNe. In a few hundred years, the CCSN 1987A will have a complicated structure with two main symmetry axes, one along the axis of the three circumstellar rings that was shaped by two opposite 20,000-year pre-explosion jets, and the other along the long axis of the ‘keyhole’ that was shaped by the main (but not the only) jet pair of the exploding jets of SN 1987A in the frame of the JJEM. Full article
(This article belongs to the Special Issue Origins and Models of Planetary Nebulae)
Show Figures

Figure 1

30 pages, 1088 KiB  
Review
The Physics of Core-Collapse Supernovae: Explosion Mechanism and Explosive Nucleosynthesis
by Luca Boccioli and Lorenzo Roberti
Universe 2024, 10(3), 148; https://doi.org/10.3390/universe10030148 - 19 Mar 2024
Cited by 21 | Viewed by 3578
Abstract
Recent developments in multi-dimensional simulations of core-collapse supernovae have considerably improved our understanding of this complex phenomenon. In addition to that, one-dimensional (1D) studies have been employed to study the explosion mechanism and its causal connection to the pre-collapse structure of the star, [...] Read more.
Recent developments in multi-dimensional simulations of core-collapse supernovae have considerably improved our understanding of this complex phenomenon. In addition to that, one-dimensional (1D) studies have been employed to study the explosion mechanism and its causal connection to the pre-collapse structure of the star, as well as to explore the vast parameter space of supernovae. Nonetheless, many uncertainties still affect the late stages of the evolution of massive stars, their collapse, and the subsequent shock propagation. In this review, we will briefly summarize the state-of-the-art of both 1D and 3D simulations and how they can be employed to study the evolution of massive stars, supernova explosions, and shock propagation, focusing on the uncertainties that affect each of these phases. Finally, we will illustrate the typical nucleosynthesis products that emerge from the explosion. Full article
(This article belongs to the Special Issue Recent Outcomes and Future Challenges in Nuclear Astrophysics)
Show Figures

Figure 1

11 pages, 796 KiB  
Article
Neutrino Spectrum and Energy Loss Rates Due to Weak Processes on Hot 56Fe in Pre-Supernova Environment
by A. A. Dzhioev, A. V. Yudin, N. V. Dunina-Barkovskaya and A. I. Vdovin
Particles 2023, 6(3), 682-692; https://doi.org/10.3390/particles6030041 - 28 Jun 2023
Cited by 2 | Viewed by 1711
Abstract
Applying TQRPA calculations of Gamow–Teller strength functions in hot nuclei, we compute the (anti)neutrino spectra and energy loss rates arising from weak processes on hot 56Fe under pre-supernova conditions. We use a realistic pre-supernova model calculated by the stellar evolution code MESA. [...] Read more.
Applying TQRPA calculations of Gamow–Teller strength functions in hot nuclei, we compute the (anti)neutrino spectra and energy loss rates arising from weak processes on hot 56Fe under pre-supernova conditions. We use a realistic pre-supernova model calculated by the stellar evolution code MESA. Taking into account both charged and neutral current processes, we demonstrate that weak reactions with hot nuclei can produce high-energy (anti)neutrinos. We also show that, for hot nuclei, the energy loss via (anti)neutrino emission is significantly larger than that for nuclei in their ground state. It is found that the neutral current de-excitation via the νν¯-pair emission is presumably a dominant source of antineutrinos. In accordance with other studies, we confirm that the so-called single-state approximation for neutrino spectra might fail under certain pre-supernova conditions. Full article
(This article belongs to the Special Issue Infinite and Finite Nuclear Matter (INFINUM))
Show Figures

Figure 1

15 pages, 414 KiB  
Article
Prospects of Searching for Type Ia Supernovae with 2.5-m Wide Field Survey Telescope
by Maokai Hu, Lei Hu, Ji-an Jiang, Lin Xiao, Lulu Fan, Junjie Wei and Xuefeng Wu
Universe 2023, 9(1), 7; https://doi.org/10.3390/universe9010007 - 22 Dec 2022
Cited by 13 | Viewed by 2356
Abstract
Type Ia supernovae (SNe Ia) are thermonuclear explosions of carbon-oxygen white dwarfs (WDs) and are well-known as a distance indicator. However, it is still unclear how WDs increase their mass near the Chandrasekhar limit and how the thermonuclear runaway happens. The observational clues [...] Read more.
Type Ia supernovae (SNe Ia) are thermonuclear explosions of carbon-oxygen white dwarfs (WDs) and are well-known as a distance indicator. However, it is still unclear how WDs increase their mass near the Chandrasekhar limit and how the thermonuclear runaway happens. The observational clues associated with these open questions, such as the photometric data within hours to days since the explosion, are scarce. Thus, an essential way is to discover SNe Ia at specific epochs with optimal surveys. The 2.5 m Wide Field Survey Telescope (WFST) is an upcoming survey facility deployed in western China. In this paper, we assess the detectability of SNe Ia with mock observations of the WFST. Followed by the volumetric rate, we generate a spectral series of SNe Ia based on a data-based model and introduce the line-of-sight extinction to calculate the brightness from the observer. By comparing with the detection limit of the WFST, which is affected by the observing conditions, we can count the number of SNe Ia discovered by mock WFST observations. We expect that the WFST can find more than 3.0×104 pre-maximum SNe Ia within one year of running. In particular, the WFST could discover about 45 bright SNe Ia, 99 early phase SNe Ia, or 1.1×104 well-observed SNe Ia with the hypothesized Wide, Deep, or Medium modes, respectively, suggesting that the WFST will be an influential facility in time-domain astronomy. Full article
(This article belongs to the Special Issue Supernovae Observations and Researches)
Show Figures

Figure 1

17 pages, 2779 KiB  
Article
Original e Capture Cross Sections for Hot Stellar Interior Energies
by Panagiota Giannaka, Theocharis Kosmas and Hiroyasu Ejiri
Particles 2022, 5(3), 390-406; https://doi.org/10.3390/particles5030031 - 12 Sep 2022
Cited by 2 | Viewed by 2440
Abstract
The nuclear electron capture reaction possesses a prominent position among other weak interaction processes occurring in explosive nucleosynthesis, especially at the late stages of evolution of massive stars. In this work, we perform exclusive calculations of absolute e-capture cross sections using [...] Read more.
The nuclear electron capture reaction possesses a prominent position among other weak interaction processes occurring in explosive nucleosynthesis, especially at the late stages of evolution of massive stars. In this work, we perform exclusive calculations of absolute e-capture cross sections using the proton–neutron (pn) quasi-particle random phase approximation. Thus, the results of this study can be used as predictions for experiments operating under the same conditions and in exploring the role of the e-capture process in the stellar environment at the pre-supernova and supernova phase of a massive star. The main goal of our study is to provide detailed state-by-state calculations of original cross sections for the e-capture on a set of isotopes around the iron group nuclei (28Si, 32S, 48Ti, 56Fe, 66Zn and 90Zr) that play a significant role in pre-supernova as well as in the core–collapse supernova phase in the energy range 0E50 MeV. Full article
(This article belongs to the Special Issue 2022 Feature Papers by Particles’ Editorial Board Members)
Show Figures

Figure 1

13 pages, 1683 KiB  
Article
Electron Capture on Nuclei in Stellar Environment
by Panagiota Giannaka and Theocharis Kosmas
Particles 2022, 5(3), 377-389; https://doi.org/10.3390/particles5030030 - 12 Sep 2022
Cited by 1 | Viewed by 2604
Abstract
The stellar electron capture on nuclei is an essential, semi-leptonic process that is especially significant in the central environment of core-collapse supernovae and in the explosive stellar nucleosynthesis. In this article, on the basis of the original (absolute) electron-capture cross-sections under laboratory conditions [...] Read more.
The stellar electron capture on nuclei is an essential, semi-leptonic process that is especially significant in the central environment of core-collapse supernovae and in the explosive stellar nucleosynthesis. In this article, on the basis of the original (absolute) electron-capture cross-sections under laboratory conditions that we computed in our previous work for a set of medium-weight nuclear isotopes, we extend this study and evaluate folded e-capture rates in the stellar environment. With this aim, we assume that the parent nuclei and the projectile electrons interact when they are in the deep stellar interior during the late stages of the evolution of massive stars. Under these conditions (high matter densities and high temperatures of the pre-supernova and core-collapse supernova phases), we choose two categories of nuclei; the first includes the 48Ti and 56Fe isotopes that have A<65 and belong to the iron group of nuclei, and the second includes the heavier and more neutron-rich isotopes 66Zn and 90Zr (with A>65). In the former, the electron capture takes place mostly during the pre-supernova stage, while the latter occurs during the core-collapse supernova phase. A comparison with previous calculations, which were obtained by using various microscopic nuclear models employed for single-charge exchange nuclear reactions, is also included. Full article
(This article belongs to the Special Issue 2022 Feature Papers by Particles’ Editorial Board Members)
Show Figures

Figure 1

11 pages, 1384 KiB  
Article
Shaping Planetary Nebulae with Jets and the Grazing Envelope Evolution
by Noam Soker
Galaxies 2020, 8(1), 26; https://doi.org/10.3390/galaxies8010026 - 18 Mar 2020
Cited by 19 | Viewed by 2958
Abstract
I argue that the high percentage of planetary nebulae (PNe) that are shaped by jets show that main sequence stars in binary systems can accrete mass at a high rate from an accretion disk and launch jets. Not only does this allow jets [...] Read more.
I argue that the high percentage of planetary nebulae (PNe) that are shaped by jets show that main sequence stars in binary systems can accrete mass at a high rate from an accretion disk and launch jets. Not only does this allow jets to shape PNe, but this also points to the importance of jets in other types of binary systems and in other processes. These processes include the grazing envelope evolution (GEE), the common envelope evolution (CEE), and the efficient conversion of kinetic energy to radiation in outflows. Additionally, the jets point to the possibility that many systems launch jets as they enter the CEE, possibly through a GEE phase. The other binary systems in which jets might play significant roles include intermediate-luminosity optical transients (ILOTs), supernova impostors (including pre-explosion outbursts), post-CEE binary systems, post-GEE binary systems, and progenitors of neutron star binary systems and black hole binary systems. One of the immediate consequences is that the outflow of these systems is highly-non-spherical, including bipolar lobes, jets, and rings. Full article
(This article belongs to the Special Issue Workplans II: Workshop for Planetary Nebula Observations)
16 pages, 839 KiB  
Review
The Important Role of Cosmic-Ray Re-Acceleration
by Martina Cardillo
Galaxies 2019, 7(2), 49; https://doi.org/10.3390/galaxies7020049 - 24 Apr 2019
Cited by 10 | Viewed by 3670
Abstract
In the last decades, the improvement of high energy instruments has enabled a deeper understanding of the Cosmic Ray origin issue. In particular, the γ -ray satellites AGILE (Astrorivelatore Gamma ad Immagini LEggero) and Fermi-LAT (Fermi-Large Area Telescope) have strongly contributed to the [...] Read more.
In the last decades, the improvement of high energy instruments has enabled a deeper understanding of the Cosmic Ray origin issue. In particular, the γ -ray satellites AGILE (Astrorivelatore Gamma ad Immagini LEggero) and Fermi-LAT (Fermi-Large Area Telescope) have strongly contributed to the confirmation of direct involvement of Supernova Remnants in Cosmic Ray energization. Despite several attempts to fit experimental data assuming the presence of freshly accelerated particles, the scientific community is now aware that the role of pre-existing Cosmic Ray re-acceleration cannot be neglected. In this work, we highlight the importance of pre-existing Cosmic Ray re-acceleration in the Galaxy showing its fundamental contribution in middle aged Supernova Remnant shocks and in the forward shock of stellar winds. Full article
(This article belongs to the Special Issue Cosmic Rays around Supernova Remnants)
Show Figures

Figure 1

Back to TopTop