Prospects of Searching for Type Ia Supernovae with 2.5-m Wide Field Survey Telescope
Abstract
:1. Introduction
- The photometric signals within a few hours after the explosion strictly constrain the progenitor of SN 2011fe to be a WD [18].
- The early phase declining in the ultra-violent bands of iPTF14atg possibly relates to the ejecta–companion interaction [19].
- The early light curve excess and red color evolution of MUSSES 1604D supports the helium burning on the surface of a WD [20].
- The early ultra-violet/optical bump of a large fraction of 91T/99aa-like luminous SNe Ia suggests radioactive decay from abundant Ni at the outermost layer of ejecta [21].
- The prominent optical flash within the first day after the explosion points to the presence of ejecta-CSM interaction for SN 2020hvf [22].
2. Methods
2.1. Simulations of SNe Ia
2.2. The Observing Conditions of the Lenghu Site
2.3. The Efficiency of the WFST
2.4. The Configurations of Mock Observations
3. Results
3.1. Discovering Pre-Maximum SNe Ia
3.2. Discovering Bright SNe Ia
3.3. Discovering Early Phase SNe Ia
3.4. Discovering Well-Observed SNe Ia
- is earlier than the peak brightness, which means there are at least two observations during the rising phase of SNe Ia.
- there are at least two nights of observations from days to days relative to the peak brightness so that the maximum magnitude can be estimated properly.
- there are at least two nights of observations at the epoch from days to days after the peak brightness so that the decline of the light curve could be estimated properly.
- there are at least fifteen nights of observations of the whole light curve so that the photometric data are sufficient to derive the light curve parameters.
4. Discussion and Conclusions
- Although the dust extinction of host galaxies is already implied in the parameter c of the SALT3 model, it is likely to underestimate the degree of host galaxy extinction. The distribution of the parameter c adopted in our simulations does not correspond to highly reddened SNe Ia. Moreover, the extinction law of SN Ia host galaxy may differ from that of the Milky Way, which makes the parameter c incomplete to describe the host galaxy extinction.
- The explosion rate of SNe Ia is likely correlated to the position in host galaxies and varies for different galaxy types. However, the configuration of the explosion rate in this work is only a function of redshift. This over-simplification may bring additional uncertainties into our simulations.
- Detecting a transient close to the center of the host galaxy may involve more difficulties in data processing. The Poisson noise of the host galaxy, as well as the typical artifacts on difference images induced by inaccurate image subtraction or astronomical misalignment [89], can significantly degrade the true detection efficiency in a real survey.
- Although the angular separation between the moon and the pointing of the WFST is essential for attenuating moonlight contamination, the separation is ambiguous as the observed sky areas are not specified in the hypothesized modes. For simplicity, we adopt moderate values to account for the influence of the limiting magnitude by moonlight. For the same reason, the airmass is also uncertain, and its influence on the limiting magnitude is attributed to a random number ranging from 0.0 to 1.0.
- We simplified the influence of the weather because the weather can also affect the limiting magnitude, which is not considered in this study.
- The optical r band is the only filter considered in this paper. For observations with more filters, the covered sky area per night should be reduced accordingly.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
SNe Ia | Type Ia Supernovae |
WD | White Dwarf |
Hubble Constant | |
CSM | Circumstellar Material |
LOSS | Lick Observatory Supernova Search |
PTF | Palomar Transient Factory |
ZTF | Zwicky Transient Facility |
WFST | 2.5 m Wide Field Survey Telescope |
1 | |
2 |
References
- Maoz, D.; Mannucci, F.; Nelemans, G. Observational Clues to the Progenitors of Type Ia Supernovae. Annu. Rev. Astron. Astrophys. 2014, 52, 107–170. [Google Scholar] [CrossRef]
- Whelan, J.; Iben, I., Jr. Binaries and Supernovae of Type I. Astrophys. J. 1973, 186, 1007–1014. [Google Scholar] [CrossRef]
- Nomoto, K. Accreting white dwarf models for type I supernovae. I—Presupernova evolution and triggering mechanisms. Astrophys. J. 1982, 253, 798–810. [Google Scholar] [CrossRef]
- Iben, I., Jr.; Tutukov, A.V. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass. Astrophys. J. Suppl. 1984, 54, 335–372. [Google Scholar] [CrossRef]
- Webbink, R.F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 1984, 277, 355–360. [Google Scholar] [CrossRef]
- Phillips, M.M. The Absolute Magnitudes of Type IA Supernovae. Astrophys. J. Lett. 1993, 413, L105. [Google Scholar] [CrossRef]
- Wang, L.; Goldhaber, G.; Aldering, G.; Perlmutter, S. Multicolor Light Curves of Type Ia Supernovae on the Color-Magnitude Diagram: A Novel Step toward More Precise Distance and Extinction Estimates. Astrophys. J. 2003, 590, 944–970. [Google Scholar] [CrossRef]
- He, S.; Wang, L.; Huang, J.Z. Characterization of Type Ia Supernova Light Curves Using Principal Component Analysis of Sparse Functional Data. Astrophys. J. 2018, 857, 110. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Riess, A.G.; Strolger, L.G.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Gold, B.; Challis, P.J.; Filippenko, A.V.; Jha, S.; Li, W.; et al. New Hubble Space Telescope Discoveries of Type Ia Supernovae at z >= 1: Narrowing Constraints on the Early Behavior of Dark Energy. Astrophys. J. 2007, 659, 98–121. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Matteucci, F.; Greggio, L. Relative roles of type I and II supernovae in the chemical enrichment of the interstellar gas. Astron. Astrophys. 1986, 154, 279–287. [Google Scholar]
- Tsujimoto, T.; Nomoto, K.; Yoshii, Y.; Hashimoto, M.; Yanagida, S.; Thielemann, F.K. Relative frequencies of Type Ia and Type II supernovae in the chemical evolution of the Galaxy, LMC and SMC. Mon. Not. RAS 1995, 277, 945–958. [Google Scholar] [CrossRef]
- Scannapieco, C.; Tissera, P.B.; White, S.D.M.; Springel, V. Feedback and metal enrichment in cosmological SPH simulations - II. A multiphase model with supernova energy feedback. Mon. Not. RAS 2006, 371, 1125–1139. [Google Scholar] [CrossRef]
- Höflich, P.; Gerardy, C.L.; Marion, H.; Quimby, R. Signatures of isotopes in thermonuclear supernovae. New Astron. Rev. 2006, 50, 470–473. [Google Scholar] [CrossRef]
- González Hernández, J.I.; Ruiz-Lapuente, P.; Tabernero, H.M.; Montes, D.; Canal, R.; Méndez, J.; Bedin, L.R. No surviving evolved companions of the progenitor of SN 1006. Nature 2012, 489, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Wang, L.; Wang, X. The Effects of Circumstellar Dust Scattering on the Light Curves and Polarizations of Type Ia Supernovae. Astrophys. J. 2022, 931, 110. [Google Scholar] [CrossRef]
- Nugent, P.E.; Sullivan, M.; Cenko, S.B.; Thomas, R.C.; Kasen, D.; Howell, D.A.; Bersier, D.; Bloom, J.S.; Kulkarni, S.R.; Kandrashoff, M.T.; et al. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star. Nature 2011, 480, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Kulkarni, S.R.; Howell, D.A.; Gal-Yam, A.; Kasliwal, M.M.; Valenti, S.; Johansson, J.; Amanullah, R.; Goobar, A.; Sollerman, J.; et al. A strong ultraviolet pulse from a newborn type Ia supernova. Nature 2015, 521, 328–331. [Google Scholar] [CrossRef]
- Jiang, J.A.; Doi, M.; Maeda, K.; Shigeyama, T.; Nomoto, K.; Yasuda, N.; Jha, S.W.; Tanaka, M.; Morokuma, T.; Tominaga, N.; et al. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation. Nature 2017, 550, 80–83. [Google Scholar] [CrossRef]
- Jiang, J.a.; Doi, M.; Maeda, K.; Shigeyama, T. Surface Radioactivity or Interactions? Multiple Origins of Early-excess Type Ia Supernovae and Associated Subclasses. Astrophys. J. 2018, 865, 149. [Google Scholar] [CrossRef]
- Jiang, J.a.; Maeda, K.; Kawabata, M.; Doi, M.; Shigeyama, T.; Tanaka, M.; Tominaga, N.; Nomoto, K.; Niino, Y.; Sako, S.; et al. Discovery of the Fastest Early Optical Emission from Overluminous SN Ia 2020hvf: A Thermonuclear Explosion within a Dense Circumstellar Environment. Astrophys. J. Lett. 2021, 923, L8. [Google Scholar] [CrossRef]
- Marion, G.H.; Brown, P.J.; Vinkó, J.; Silverman, J.M.; Sand, D.J.; Challis, P.; Kirshner, R.P.; Wheeler, J.C.; Berlind, P.; Brown, W.R.; et al. SN 2012cg: Evidence for Interaction Between a Normal Type Ia Supernova and a Non-degenerate Binary Companion. Astrophys. J. 2016, 820, 92. [Google Scholar] [CrossRef]
- Hosseinzadeh, G.; Sand, D.J.; Valenti, S.; Brown, P.; Howell, D.A.; McCully, C.; Kasen, D.; Arcavi, I.; Bostroem, K.A.; Tartaglia, L.; et al. Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor. Astrophys. J. Lett. 2017, 845, L11. [Google Scholar] [CrossRef]
- Dimitriadis, G.; Foley, R.J.; Rest, A.; Kasen, D.; Piro, A.L.; Polin, A.; Jones, D.O.; Villar, A.; Narayan, G.; Coulter, D.A.; et al. K2 Observations of SN 2018oh Reveal a Two-component Rising Light Curve for a Type Ia Supernova. Astrophys. J. Lett. 2019, 870, L1. [Google Scholar] [CrossRef]
- Sai, H.; Wang, X.; Elias-Rosa, N.; Yang, Y.; Zhang, J.; Lin, W.; Mo, J.; Piro, A.L.; Zeng, X.; Andrea, R.; et al. Observations of the very young Type Ia Supernova 2019np with early-excess emission. Mon. Not. RAS 2022, 514, 3541–3558. [Google Scholar] [CrossRef]
- Burke, J.; Howell, D.A.; Sarbadhicary, S.K.; Sand, D.J.; Amaro, R.C.; Hiramatsu, D.; McCully, C.; Pellegrino, C.; Andrews, J.E.; Brown, P.J.; et al. A Bright Ultraviolet Excess in the Transitional 02es-like Type Ia Supernova 2019yvq. Astrophys. J. 2021, 919, 142. [Google Scholar] [CrossRef]
- Ashall, C.; Lu, J.; Shappee, B.J.; Burns, C.R.; Hsiao, E.Y.; Kumar, S.; Morrell, N.; Phillips, M.M.; Shahbandeh, M.; Baron, E.; et al. A Speed Bump: SN 2021aefx Shows that Doppler Shift Alone Can Explain Early Excess Blue Flux in Some Type Ia Supernovae. Astrophys. J. Lett. 2022, 932, L2. [Google Scholar] [CrossRef]
- Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R.G.; Fabbro, S.; Fouchez, D.; et al. The Supernova Legacy Survey: Measurement of ΩM, ΩΛ and w from the first year data set. Astron. Astrophys. 2006, 447, 31–48. [Google Scholar] [CrossRef]
- Miknaitis, G.; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; et al. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry. Astrophys. J. 2007, 666, 674–693. [Google Scholar] [CrossRef]
- Foley, R.J.; Matheson, T.; Blondin, S.; Chornock, R.; Silverman, J.M.; Challis, P.; Clocchiatti, A.; Filippenko, A.V.; Kirshner, R.P.; Leibundgut, B.; et al. Spectroscopy of High-Redshift Supernovae from the Essence Project: The First Four Years. Astron. J. 2009, 137, 3731–3742. [Google Scholar] [CrossRef]
- Graur, O.; Rodney, S.A.; Maoz, D.; Riess, A.G.; Jha, S.W.; Postman, M.; Dahlen, T.; Holoien, T.W.S.; McCully, C.; Patel, B.; et al. Type-Ia Supernova Rates to Redshift 2.4 from CLASH: The Cluster Lensing And Supernova Survey with Hubble. Astrophys. J. 2014, 783, 28. [Google Scholar] [CrossRef]
- Rodney, S.A.; Riess, A.G.; Strolger, L.G.; Dahlen, T.; Graur, O.; Casertano, S.; Dickinson, M.E.; Ferguson, H.C.; Garnavich, P.; Hayden, B.; et al. Type Ia Supernova Rate Measurements to Redshift 2.5 from CANDELS: Searching for Prompt Explosions in the Early Universe. Astron. J. 2014, 148, 13. [Google Scholar] [CrossRef]
- Yasuda, N.; Tanaka, M.; Tominaga, N.; Jiang, J.a.; Moriya, T.J.; Morokuma, T.; Suzuki, N.; Takahashi, I.; Yamaguchi, M.S.; Maeda, K.; et al. The Hyper Suprime-Cam SSP transient survey in COSMOS: Overview. Publ. ASJ 2019, 71, 74. [Google Scholar] [CrossRef]
- Jiang, J.a.; Yasuda, N.; Maeda, K.; Doi, M.; Shigeyama, T.; Tominaga, N.; Tanaka, M.; Moriya, T.J.; Takahashi, I.; Suzuki, N.; et al. The HSC-SSP Transient Survey: Implications from Early Photometry and Rise Time of Normal Type Ia Supernovae. Astrophys. J. 2020, 892, 25. [Google Scholar] [CrossRef]
- Filippenko, A.V.; Li, W.D.; Treffers, R.R.; Modjaz, M. The Lick Observatory Supernova Search with the Katzman Automatic Imaging Telescope. In Proceedings of the IAU Colloq. 183: Small Telescope Astronomy on Global Scales; Paczynski, B., Chen, W.P., Lemme, C., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2001; Volume 246, p. 121. [Google Scholar]
- Ganeshalingam, M.; Li, W.; Filippenko, A.V.; Anderson, C.; Foster, G.; Gates, E.L.; Griffith, C.V.; Grigsby, B.J.; Joubert, N.; Leja, J.; et al. Results of the Lick Observatory Supernova Search Follow-up Photometry Program: BVRI Light Curves of 165 Type Ia Supernovae. Astrophys. J. Suppl. 2010, 190, 418–448. [Google Scholar] [CrossRef]
- Law, N.M.; Kulkarni, S.R.; Dekany, R.G.; Ofek, E.O.; Quimby, R.M.; Nugent, P.E.; Surace, J.; Grillmair, C.C.; Bloom, J.S.; Kasliwal, M.M.; et al. The Palomar Transient Factory: System Overview, Performance, and First Results. Publ. ASP 2009, 121, 1395. [Google Scholar] [CrossRef]
- Rau, A.; Kulkarni, S.R.; Law, N.M.; Bloom, J.S.; Ciardi, D.; Djorgovski, G.S.; Fox, D.B.; Gal-Yam, A.; Grillmair, C.C.; Kasliwal, M.M.; et al. Exploring the Optical Transient Sky with the Palomar Transient Factory. Publ. ASP 2009, 121, 1334. [Google Scholar] [CrossRef]
- Graham, M.J.; Kulkarni, S.R.; Bellm, E.C.; Adams, S.M.; Barbarino, C.; Blagorodnova, N.; Bodewits, D.; Bolin, B.; Brady, P.R.; Cenko, S.B.; et al. The Zwicky Transient Facility: Science Objectives. Publ. ASP 2019, 131, 078001. [Google Scholar] [CrossRef]
- Yao, Y.; Miller, A.A.; Kulkarni, S.R.; Bulla, M.; Masci, F.J.; Goldstein, D.A.; Goobar, A.; Nugent, P.; Dugas, A.; Blagorodnova, N.; et al. ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample. Astrophys. J. 2019, 886, 152. [Google Scholar] [CrossRef]
- Bulla, M.; Miller, A.A.; Yao, Y.; Dessart, L.; Dhawan, S.; Papadogiannakis, S.; Biswas, R.; Goobar, A.; Kulkarni, S.R.; Nordin, J.; et al. ZTF Early Observations of Type Ia Supernovae. III. Early-time Colors As a Test for Explosion Models and Multiple Populations. Astrophys. J. 2020, 902, 48. [Google Scholar] [CrossRef]
- Lou, Z.; Liang, M.; Yao, D.; Zheng, X.; Cheng, J.; Wang, H.; Liu, W.; Qian, Y.; Zhao, H.; Yang, J. Optical design study of the Wide Field Survey Telescope (WFST). In Advanced Optical Design and Manufacturing Technology and Astronomical Telescopes and Instrumentation; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2016; Volume 10154, p. 101542A. [Google Scholar] [CrossRef]
- Shi, D.D.; Zheng, X.Z.; Zhao, H.B.; Lou, Z.; Wang, H.R.; Qian, Y.; Liu, W.; Yao, D.Z. A Study of Detector Response and Filter Optimization for the Wide Field Survey Telescope. Acta Astron. Sin. 2018, 59, 22. [Google Scholar]
- Lou, Z.; Liang, M.; Zheng, X.Z.; Xian, H.; Zhang, C.; Zhu, Q.F. Stray light analysis and control for the Wide Field Survey Telescope (WFST). In Ground-Based and Airborne Telescopes VIII; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2020; Volume 11445, p. 114454A. [Google Scholar] [CrossRef]
- Lin, Z.; Jiang, N.; Kong, X. The prospects of finding tidal disruption events with 2.5-m Wide-Field Survey Telescope based on mock observations. Mon. Not. RAS 2022, 513, 2422–2436. [Google Scholar] [CrossRef]
- Lei, L.; Zhu, Q.; Kong, X.; Wang, T.; Zheng, X.; Shi, D.; Fan, L.; Liu, W. Limiting Magnitude of the Wide Field Survey Telescope (WFST). Res. Astron. Astrophys. 2022; submitted. [Google Scholar]
- Frohmaier, C.; Sullivan, M.; Nugent, P.E.; Smith, M.; Dimitriadis, G.; Bloom, J.S.; Cenko, S.B.; Kasliwal, M.M.; Kulkarni, S.R.; Maguire, K.; et al. The volumetric rate of normal type Ia supernovae in the local Universe discovered by the Palomar Transient Factory. Mon. Not. RAS 2019, 486, 2308–2320. [Google Scholar] [CrossRef]
- Kenworthy, W.D.; Jones, D.O.; Dai, M.; Kessler, R.; Scolnic, D.; Brout, D.; Siebert, M.R.; Pierel, J.D.R.; Dettman, K.G.; Dimitriadis, G.; et al. SALT3: An Improved Type Ia Supernova Model for Measuring Cosmic Distances. Astrophys. J. 2021, 923, 265. [Google Scholar] [CrossRef]
- Vincenzi, M.; Sullivan, M.; Graur, O.; Brout, D.; Davis, T.M.; Frohmaier, C.; Galbany, L.; Gutiérrez, C.P.; Hinton, S.R.; Hounsell, R.; et al. The Dark Energy Survey supernova programme: Modelling selection efficiency and observed core-collapse supernova contamination. Mon. Not. RAS 2021, 505, 2819–2839. [Google Scholar] [CrossRef]
- Scolnic, D.; Kessler, R. Measuring Type Ia Supernova Populations of Stretch and Color and Predicting Distance Biases. Astrophys. J. Lett. 2016, 822, L35. [Google Scholar] [CrossRef]
- Kessler, R.; Becker, A.C.; Cinabro, D.; Vanderplas, J.; Frieman, J.A.; Marriner, J.; Davis, T.M.; Dilday, B.; Holtzman, J.; Jha, S.W.; et al. First-Year Sloan Digital Sky Survey-II Supernova Results: Hubble Diagram and Cosmological Parameters. Astrophys. J. Suppl. 2009, 185, 32–84. [Google Scholar] [CrossRef]
- Barbary, K.; Aldering, G.; Amanullah, R.; Brodwin, M.; Connolly, N.; Dawson, K.S.; Doi, M.; Eisenhardt, P.; Faccioli, L.; Fadeyev, V.; et al. The Hubble Space Telescope Cluster Supernova Survey. VI. The Volumetric Type Ia Supernova Rate. Astrophys. J. 2012, 745, 31. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, X.; Zhang, J.; Zhang, T.; Ganeshalingam, M.; Li, W.; Filippenko, A.V.; Zhao, X.; Zheng, W.; Bai, J.; et al. Optical Observations of the Type Ia Supernova SN 2011fe in M101 for Nearly 500 Days. Astrophys. J. 2016, 820, 67. [Google Scholar] [CrossRef]
- Schlafly, E.F.; Finkbeiner, D.P. Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD. Astrophys. J. 2011, 737, 103. [Google Scholar] [CrossRef]
- Deng, L.; Yang, F.; Chen, X.; He, F.; Liu, Q.; Zhang, B.; Zhang, C.; Wang, K.; Liu, N.; Ren, A.; et al. Lenghu on the Tibetan Plateau as an astronomical observing site. Nature 2021, 596, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Villar, V.A.; Berger, E.; Miller, G.; Chornock, R.; Rest, A.; Jones, D.O.; Drout, M.R.; Foley, R.J.; Kirshner, R.; Lunnan, R.; et al. Supernova Photometric Classification Pipelines Trained on Spectroscopically Classified Supernovae from the Pan-STARRS1 Medium-deep Survey. Astrophys. J. 2019, 884, 83. [Google Scholar] [CrossRef]
- Hu, L.; Chen, X.; Wang, L. Spectroscopic Studies of Type Ia Supernovae Using LSTM Neural Networks. Astrophys. J. 2022, 930, 70. [Google Scholar] [CrossRef]
- Wang, L.; Wheeler, J.C. Spectropolarimetry of supernovae. Annu. Rev. Astron. Astrophys. 2008, 46, 433–474. [Google Scholar] [CrossRef]
- Cikota, A.; Patat, F.; Wang, L.; Wheeler, J.C.; Bulla, M.; Baade, D.; Höflich, P.; Cikota, S.; Clocchiatti, A.; Maund, J.R.; et al. Linear spectropolarimetry of 35 Type Ia supernovae with VLT/FORS: An analysis of the Si II line polarization. Mon. Not. RAS 2019, 490, 578–599. [Google Scholar] [CrossRef]
- Maeda, K.; Benetti, S.; Stritzinger, M.; Röpke, F.K.; Folatelli, G.; Sollerman, J.; Taubenberger, S.; Nomoto, K.; Leloudas, G.; Hamuy, M.; et al. An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae. Nature 2010, 466, 82–85. [Google Scholar] [CrossRef]
- Patat, F.; Chandra, P.; Chevalier, R.; Justham, S.; Podsiadlowski, P.; Wolf, C.; Gal-Yam, A.; Pasquini, L.; Crawford, I.A.; Mazzali, P.A.; et al. Detection of Circumstellar Material in a Normal Type Ia Supernova. Science 2007, 317, 924. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Baade, D.; Brown, P.J.; Cracraft, M.; Höflich, P.A.; Maund, J.; Patat, F.; Sparks, W.B.; Spyromilio, J.; et al. Interstellar-medium Mapping in M82 through Light Echoes around Supernova 2014J. Astrophys. J. 2017, 834, 60. [Google Scholar] [CrossRef]
- Piro, A.L.; Nakar, E. What can we Learn from the Rising Light Curves of Radioactively Powered Supernovae? Astrophys. J. 2013, 769, 67. [Google Scholar] [CrossRef]
- Höflich, P.; Schaefer, B.E. X-ray and Gamma-ray Flashes from Type Ia Supernovae? Astrophys. J. 2009, 705, 483–495. [Google Scholar] [CrossRef]
- Piro, A.L.; Chang, P.; Weinberg, N.N. Shock Breakout from Type Ia Supernova. Astrophys. J. 2010, 708, 598–604. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.; Casertano, S.; Sosey, M.; Lampeitl, H.; Ferguson, H.C.; Filippenko, A.V.; Jha, S.W.; Li, W.; Chornock, R.; et al. A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder. Astrophys. J. 2009, 699, 539–563. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.; Casertano, S.; Lampeitl, H.; Ferguson, H.C.; Filippenko, A.V.; Jha, S.W.; Li, W.; Chornock, R. A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys. J. 2011, 730, 119. [Google Scholar] [CrossRef]
- Burns, C.R.; Parent, E.; Phillips, M.M.; Stritzinger, M.; Krisciunas, K.; Suntzeff, N.B.; Hsiao, E.Y.; Contreras, C.; Anais, J.; Boldt, L.; et al. The Carnegie Supernova Project: Absolute Calibration and the Hubble Constant. Astrophys. J. 2018, 869, 56. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.; Anderson, J.; MacKenty, J.W.; Bowers, J.B.; Clubb, K.I.; Filippenko, A.V.; Jones, D.O.; et al. New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant. Astrophys. J. 2018, 855, 136. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astrophys. J. 2019, 876, 85. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Anand, G.S.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Freedman, W.L. Measurements of the Hubble Constant: Tensions in Perspective. Astrophys. J. 2021, 919, 16. [Google Scholar] [CrossRef]
- Li, Z.; Wu, P.; Yu, H. Cosmological-model-independent Tests for the Distance-Duality Relation from Galaxy Clusters and Type Ia Supernova. Astrophys. J. Lett. 2011, 729, L14. [Google Scholar] [CrossRef]
- He, Y.; Pan, Y.; Shi, D.P.; Cao, S.; Yu, W.J.; Diao, J.W.; Qian, W.L. Cosmological-model-independent tests of cosmic distance duality relation with Type Ia supernovae and radio quasars. Chin. J. Phys. 2022, 78, 297–307. [Google Scholar] [CrossRef]
- Xu, B.; Wang, Z.; Zhang, K.; Huang, Q.; Zhang, J. Model-independent Test for the Cosmic Distance-Duality Relation with Pantheon and eBOSS DR16 Quasar Sample. Astrophys. J. 2022, 939, 115. [Google Scholar] [CrossRef]
- Wei, J.J. Unbiased Cosmic Opacity Constraints from Standard Sirens and Candles. Astrophys. J. 2019, 876, 66. [Google Scholar] [CrossRef]
- Zhao, W.; Wright, B.S.; Li, B. Constraining the time variation of Newton’s constant G with gravitational-wave standard sirens and supernovae. JCAP 2018, 2018, 052. [Google Scholar] [CrossRef]
- Goldstein, D.A.; Nugent, P.E.; Goobar, A. Rates and Properties of Supernovae Strongly Gravitationally Lensed by Elliptical Galaxies in Time-domain Imaging Surveys. Astrophys. J. Suppl. 2019, 243, 6. [Google Scholar] [CrossRef]
- Qi, J.; Cao, S.; Biesiada, M.; Zheng, X.; Ding, X.; Zhu, Z.H. Strongly gravitationally lensed type Ia supernovae: Direct test of the Friedman-Lemaître-Robertson-Walker metric. Phys. Rev. D 2019, 100, 023530. [Google Scholar] [CrossRef]
- Ma, Y.B.; Cao, S.; Zhang, J.; Qi, J.; Liu, T.; Liu, Y.; Geng, S. Testing Cosmic Opacity with the Combination of Strongly Lensed and Unlensed Supernova Ia. Astrophys. J. 2019, 887, 163. [Google Scholar] [CrossRef]
- Cao, S.; Qi, J.; Biesiada, M.; Zheng, X.; Xu, T.; Zhu, Z.H. Testing the Speed of Light over Cosmological Distances: The Combination of Strongly Lensed and Unlensed Type Ia Supernovae. Astrophys. J. 2018, 867, 50. [Google Scholar] [CrossRef]
- Qi, J.Z.; Cui, Y.; Hu, W.H.; Zhang, J.F.; Cui, J.L.; Zhang, X. Strongly lensed type Ia supernovae as a precise late-Universe probe of measuring the Hubble constant and cosmic curvature. Phys. Rev. D 2022, 106, 023520. [Google Scholar] [CrossRef]
- Goobar, A.; Amanullah, R.; Kulkarni, S.R.; Nugent, P.E.; Johansson, J.; Steidel, C.; Law, D.; Mörtsell, E.; Quimby, R.; Blagorodnova, N.; et al. iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova. Science 2017, 356, 291–295. [Google Scholar] [CrossRef]
- Goobar, A.; Johansson, J.; Schulze, S.; Arendse, N.; Sagués Carracedo, A.; Dhawan, S.; Mörtsell, E.; Fremling, C.; Yan, L.; Perley, D.; et al. SN Zwicky: Uncovering a population of gravitational lens galaxies with magnified “standard candles”. arXiv e-prints arXiv:2211.00656.
- Goldstein, D.A.; Nugent, P.E. How to Find Gravitationally Lensed Type Ia Supernovae. Astrophys. J. Lett. 2017, 834, L5. [Google Scholar] [CrossRef]
- Hu, L.; Wang, L.; Chen, X.; Yang, J. Image Subtraction in Fourier Space. Astrophys. J. 2022, 936, 157. [Google Scholar] [CrossRef]
Observation Mode | Filter | Cadence | Visits per Night | Exposure | Limiting Magnitude |
---|---|---|---|---|---|
Wide | r | three days | 1 | 30 s | 22.92 |
Medium | r | one day | 1 | 30 s | 22.92 |
Deep | r | one day | 2 | 90 s | 23.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Hu, L.; Jiang, J.-a.; Xiao, L.; Fan, L.; Wei, J.; Wu, X. Prospects of Searching for Type Ia Supernovae with 2.5-m Wide Field Survey Telescope. Universe 2023, 9, 7. https://doi.org/10.3390/universe9010007
Hu M, Hu L, Jiang J-a, Xiao L, Fan L, Wei J, Wu X. Prospects of Searching for Type Ia Supernovae with 2.5-m Wide Field Survey Telescope. Universe. 2023; 9(1):7. https://doi.org/10.3390/universe9010007
Chicago/Turabian StyleHu, Maokai, Lei Hu, Ji-an Jiang, Lin Xiao, Lulu Fan, Junjie Wei, and Xuefeng Wu. 2023. "Prospects of Searching for Type Ia Supernovae with 2.5-m Wide Field Survey Telescope" Universe 9, no. 1: 7. https://doi.org/10.3390/universe9010007
APA StyleHu, M., Hu, L., Jiang, J. -a., Xiao, L., Fan, L., Wei, J., & Wu, X. (2023). Prospects of Searching for Type Ia Supernovae with 2.5-m Wide Field Survey Telescope. Universe, 9(1), 7. https://doi.org/10.3390/universe9010007