Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = pre-chamber geometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 25798 KiB  
Article
CFD Simulation of Pre-Chamber Spark-Ignition Large Bore CNG Engine: Model Development, Practical Applications, and Experimental Validation
by Soo-Jin Jeong, Seokpan Seo and Seong-Joon Moon
Energies 2025, 18(7), 1600; https://doi.org/10.3390/en18071600 - 23 Mar 2025
Viewed by 719
Abstract
This study develops and validates a three-dimensional CFD model for a 12 L large-bore active-type pre-chamber spark-ignition (PCSI) engine fueled by natural gas. The model incorporates an advanced Extended Coherent Flamelet Model (ECFM-3Z) with a tuned stretch factor to capture complex turbulence–flame interactions, [...] Read more.
This study develops and validates a three-dimensional CFD model for a 12 L large-bore active-type pre-chamber spark-ignition (PCSI) engine fueled by natural gas. The model incorporates an advanced Extended Coherent Flamelet Model (ECFM-3Z) with a tuned stretch factor to capture complex turbulence–flame interactions, flame propagation, and pollutant formation under ultra-lean conditions. By systematically varying pre-chamber geometries—specifically the orifice diameter, cone angle, diverging tapered nozzle, and volume—the simulations assess their effects on combustion dynamics, heat release rates, turbulent jet penetration, and emissions (NOx and CO). Model predictions of in-cylinder and pre-chamber pressure profiles, combustion phasing, and emission trends are validated against experimental data. The results demonstrate that optimizing pre-chamber and orifice configurations enhances turbulent mixing, accelerates flame development, and reduces local high-temperature zones, thereby suppressing NOx and CO formation. Although some discrepancies in NOx predictions persist due to limitations in current turbulence–chemistry models, the findings offer valuable insights for the design of high-efficiency, low-emission PCSI engines. Full article
(This article belongs to the Special Issue Optimization of Efficient Clean Combustion Technology)
Show Figures

Figure 1

19 pages, 7992 KiB  
Article
Influence of Pre-Chamber Volume, Orifice Diameter and Orifice Number on Performance of Pre-Chamber SI Engine—An Experimental and Numerical Study
by Rudolf Tomić, Momir Sjerić, Josip Krajnović and Sara Ugrinić
Energies 2023, 16(6), 2884; https://doi.org/10.3390/en16062884 - 21 Mar 2023
Cited by 13 | Viewed by 2690
Abstract
This paper presented an experimental and numerical study of pre-chamber volume, number of orifices and orifice diameter influence on engine performance and emissions. All the measurements were performed on a single cylinder test engine at fixed engine speed of 1600 rpm, while engine [...] Read more.
This paper presented an experimental and numerical study of pre-chamber volume, number of orifices and orifice diameter influence on engine performance and emissions. All the measurements were performed on a single cylinder test engine at fixed engine speed of 1600 rpm, while engine load was varied by a change of the excess air ratio in the main chamber from a stochiometric mixture to a lean limit. The total of nine pre-chamber variants comprised three different pre-chamber volumes, two orifice number combinations (six and four orifices) and nine different orifice diameters. It was observed that the pre-chamber volume affects the indicated efficiency in a trend which is mostly independent of excess air ratio, with the efficiency gain between the best and worst results ranging from 1 to 4.4%. While keeping the same pre-chamber volume and the total cross-sectional area of the orifices, the larger number of orifices show better performance on two out of three investigated pre-chamber volumes, with the efficiency gains more pronounced at higher excess air ratios. Finally, on a fixed pre-chamber volume and number of orifices, the variation of orifice diameter leads to a trend in efficiency gains which favor larger orifice diameter. The comparison of the obtained efficiencies between all pre-chamber variants identified two pre-chambers, differing in each of the varied geometrical parameters, that show the best performance depending on excess air ratio range. On the other hand, a single variant which showed the worst performance on each excess ratio was identified. An additional investigation was performed by the application of the cycle-simulation model to quantify the share of emissions which are formed in the pre-chamber. The presented results showed that when PC volume is lowered, PC emission shares of NOX and CO grow larger. The influence of orifice number and size has a minor effect on the pre-chamber emissions shares. The maximum PC emission shares of 54.8% and 80.6% are achieved at lean limit (λ = 2.2) for NOX and CO, respectively. THC emission share, on the other hand, is not affected in a significant manner by either the pre-chamber geometry or operating conditions. Full article
(This article belongs to the Special Issue Advances in Sustainable Propulsion Systems)
Show Figures

Figure 1

17 pages, 7065 KiB  
Article
Experimental Study of the Effects of Pre-Chamber Geometry on the Combustion Characteristics of an Ammonia/Air Pre-Mixture Ignited by a Jet Flame
by Zechuan Cui, Jiangping Tian, Xiaolei Zhang, Shuo Yin, Wuqiang Long and Hui Song
Processes 2022, 10(10), 2102; https://doi.org/10.3390/pr10102102 - 17 Oct 2022
Cited by 28 | Viewed by 3125
Abstract
In the future, ammonia is expected to become a carbon-free fuel for internal combustion engines. However, the flammability of ammonia is poorer compared to conventional fuels such as gasoline and diesel fuel. Pre-chamber jet ignition may be an effective way to ensure stable [...] Read more.
In the future, ammonia is expected to become a carbon-free fuel for internal combustion engines. However, the flammability of ammonia is poorer compared to conventional fuels such as gasoline and diesel fuel. Pre-chamber jet ignition may be an effective way to ensure stable ignition and enhance the combustion of ammonia. In this paper, the effects of pre-chamber geometric parameters, including volume and orifice diameter, on the jet ignition and combustion processes were studied using visualization methods, combined with pressure acquisition. The results showed that ignition energy increased and the jet duration was prolonged with the increase in pre-chamber volume, resulting in a higher maximum pressure and pressure rise rate in the main chamber. The jet characteristics of a larger volume pre-chamber exhibited higher stability when the ambient parameters were changed. The smaller volume pre-chamber showed the superiority of a shorter flame propagation distance inside the pre-chamber, which advanced the timing of the jet appearance and shortened the ignition delay when the flammability of the pre-mixture was adequate. The larger pre-chamber orifice diameter caused an earlier jet ignition timing, shorter ignition delay, and higher ignition location. The jet duration for the pre-chamber with a smaller orifice was longer, which was beneficial for increasing the pressure rise rate in the main chamber. Too small a pre-chamber orifice led to ignition failure in the main chamber. Full article
(This article belongs to the Special Issue Internal Combustion Engine Combustion Processes)
Show Figures

Figure 1

18 pages, 7269 KiB  
Article
Numerical Investigation on the Performance of a 4-Stroke Engine with Different Passive Pre-Chamber Geometries Using a Detailed Chemistry Solver
by Simone Bigalli, Iacopo Catalani, Francesco Balduzzi, Nicola Matteazzi, Lorenzo Agostinelli, Michele De Luca and Giovanni Ferrara
Energies 2022, 15(14), 4968; https://doi.org/10.3390/en15144968 - 7 Jul 2022
Cited by 11 | Viewed by 2546
Abstract
Pre-chamber turbulent jet ignition represents one of the most promising techniques to improve spark ignition engines efficiency and reduce pollutant emissions. This technique consists of igniting the air-fuel mixture in the main combustion chamber by means of several hot turbulent flame jets exiting [...] Read more.
Pre-chamber turbulent jet ignition represents one of the most promising techniques to improve spark ignition engines efficiency and reduce pollutant emissions. This technique consists of igniting the air-fuel mixture in the main combustion chamber by means of several hot turbulent flame jets exiting a pre-chamber. In the present study, the combustion process of a 4-stroke, gasoline SI, PFI engine equipped with a passive pre-chamber has been investigated through three-dimensional CFD (Computational Fluid Dynamics) analysis. A detailed chemistry solver with a reduced reaction mechanism was employed to investigate ignition and flame propagation phenomena. Firstly, the combustion model was validated against experimental data for the baseline engine configuration (i.e., without pre-chamber). Eventually, the validated numerical model allowed for predictive simulations of the pre-chamber-equipped engine. By varying the shape of the pre-chamber body and the size of pre-chamber orifices, different pre-chamber configurations were studied. The influence of the geometrical features on the duration of the combustion process and the pressure trends inside both the pre-chamber and main chamber was assessed and discussed. Since the use of a pre-chamber can extend the air-fuel mixture ignition limits, an additional sensitivity on the air-fuel ratio was carried out, in order to investigate engine performance at lean conditions. Full article
(This article belongs to the Special Issue Numerical Simulation for Next Generation Engines)
Show Figures

Graphical abstract

21 pages, 5801 KiB  
Article
Optimization of Pre-Chamber Geometry and Operating Parameters in a Turbulent Jet Ignition Engine
by Viktor Dilber, Momir Sjerić, Rudolf Tomić, Josip Krajnović, Sara Ugrinić and Darko Kozarac
Energies 2022, 15(13), 4758; https://doi.org/10.3390/en15134758 - 28 Jun 2022
Cited by 17 | Viewed by 4824
Abstract
A turbulent jet ignition engine enables operation with lean mixtures, decreasing nitrogen oxide (NOX) emissions up to 92%, while the engine efficiency can be increased compared to conventional spark-ignition engines. The geometry of the pre-chamber and engine operating parameters play the [...] Read more.
A turbulent jet ignition engine enables operation with lean mixtures, decreasing nitrogen oxide (NOX) emissions up to 92%, while the engine efficiency can be increased compared to conventional spark-ignition engines. The geometry of the pre-chamber and engine operating parameters play the most important role in the performance of turbulent jet ignition engines and, therefore, must be optimized. The initial experimental and 3D CFD results of a single-cylinder engine fueled by gasoline were used for the calibration of a 0D/1D simulation model. The 0D/1D simulation model was upgraded to capture the effects of multiple flame propagations, and the evolution of the turbulence level was described by the new K-k-ε turbulence model, which considers the strong turbulent jets occurring in the main chamber. The optimization of the pre-chamber volume, the orifice diameter, the injected fuel mass in the pre-chamber and the spark timing was made over 9 different operating points covering the variation in engine speed and load with the objective of minimizing the fuel consumption while avoiding knock. Two optimization methods using 0D/1D simulations were presented: an individual optimization method for each operating point and a simultaneous optimization method over 9 operating points. It was found that the optimal pre-chamber volume at each operating point was around 5% of the clearance volume, while the favorable orifice diameters depended on engine load, with optimal values around 2.5 mm and 1.2 mm at stoichiometric mixtures and lean mixtures, respectively. Simultaneous optimization of the pre-chamber geometry for all considered operating points resulted in a pre-chamber volume equal to 5.14% of the clearance volume and an orifice diameter of 1.1 mm. Full article
(This article belongs to the Special Issue Combustion Performance, Thermal Conductivity and Efficiency)
Show Figures

Figure 1

16 pages, 7321 KiB  
Article
Numerical Investigation on the Performance of Two-Throat Nozzle Ejectors with Different Mixing Chamber Structural Parameters
by Fatong Jia, Dazhang Yang and Jing Xie
Energies 2021, 14(21), 6900; https://doi.org/10.3390/en14216900 - 21 Oct 2021
Cited by 13 | Viewed by 2578
Abstract
In this study, the effects of the mixing chamber diameter (Dm), mixing chamber length (Lm) and pre-mixing chamber converging angle (θpm) were numerically investigated for a two-throat nozzle ejector to be utilized in a [...] Read more.
In this study, the effects of the mixing chamber diameter (Dm), mixing chamber length (Lm) and pre-mixing chamber converging angle (θpm) were numerically investigated for a two-throat nozzle ejector to be utilized in a CO2 refrigeration cycle. The developed simulated method was validated by actual experimental data of a CO2 ejector in heat pump water heater system from the published literature. The main results revealed that the two-throat nozzle ejectors can obtain better performance with Dm in the range of 8–9 mm, Lm in the range of 64–82 mm and θpm at approximately 60°, respectively. Deviation from its optimal value could lead to a poor operational performance. Therefore, the mixing chamber structural parameters should be designed at the scope around its optimal value to guarantee the two-throat nozzle ejector performance. The following research can be developed around the two-throat nozzle geometries to strengthen the ejector performance. Full article
Show Figures

Figure 1

12 pages, 1502 KiB  
Article
Numerical Simulation of Intrachamber Processes in the Power Plant
by Boris Benderskiy, Peter Frankovský and Alena Chernova
Appl. Sci. 2021, 11(11), 4990; https://doi.org/10.3390/app11114990 - 28 May 2021
Cited by 3 | Viewed by 1988
Abstract
This paper considers the issues of numerical modeling of nonstationary spatial gas dynamics in the pre-nozzle volume of the combustion chamber of a power plant with a cylindrical slot channel at the power plant of the mass supply surface. The numerical simulation for [...] Read more.
This paper considers the issues of numerical modeling of nonstationary spatial gas dynamics in the pre-nozzle volume of the combustion chamber of a power plant with a cylindrical slot channel at the power plant of the mass supply surface. The numerical simulation for spatial objects is based on the solution conjugate problem of heat exchange by the control volume method in the open integrated platform for numerical simulation of continuum mechanics problems (openFoam). The calculation results for gas-dynamic and thermal processes in the power plant with a four-nozzle cover are presented. The analysis of gas-dynamic parameters and thermal flows near the nozzle cover, depending on the canal geometry, is given. The topological features of the flow structure and thermophysical parameters near the nozzle cap were studied. For the first time, the transformation of topological features of the flow structure in the pre-nozzle volume at changes in the mass channel’s geometry is revealed, described, and analyzed. The dependence of the Nusselt number in the central point of stagnation on the time of the power plants operation is revealed. Full article
(This article belongs to the Special Issue Trends in Modeling and Simulation of Production Processes and Systems)
Show Figures

Figure 1

25 pages, 13411 KiB  
Article
CFD Analysis of the Fuel–Air Mixture Formation Process in Passive Prechambers for Use in a High-Pressure Direct Injection (HPDI) Two-Stroke Engine
by Marco Ciampolini, Simone Bigalli, Francesco Balduzzi, Alessandro Bianchini, Luca Romani and Giovanni Ferrara
Energies 2020, 13(11), 2846; https://doi.org/10.3390/en13112846 - 3 Jun 2020
Cited by 19 | Viewed by 4105
Abstract
The research on two-stroke engines has been focused lately on the development of direct injection systems for reducing the emissions of hydrocarbons by minimizing the fuel short-circuiting. Low temperature combustion (LTC) may be the next step to further improve emissions and fuel consumption; [...] Read more.
The research on two-stroke engines has been focused lately on the development of direct injection systems for reducing the emissions of hydrocarbons by minimizing the fuel short-circuiting. Low temperature combustion (LTC) may be the next step to further improve emissions and fuel consumption; however, LTC requires unconventional ignition systems. Jet ignition, i.e., the use of prechambers to accelerate the combustion process, turned out to be an effective way to perform LTC. The present work aims at proving the feasibility of adopting passive prechambers in a high-pressure, direct injection, two-stroke engine through non-reactive computational fluid dynamics analyses. The goal of the analysis is the evaluation of the prechamber performance in terms of both scavenging efficiency of burnt gases and fuel/air mixture formation inside the prechamber volume itself, in order to guarantee the mixture ignitability. Two prechamber geometries, featuring different aspect ratios and orifice numbers, were investigated. The analyses were replicated for two different locations of the injection and for three operating conditions of the engine in terms of revolution speed and load. Upon examination of the results, the effectiveness of both prechambers was found to be strongly dependent on the injection setup. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

15 pages, 6177 KiB  
Article
Numerical Study on the Phase Sensitivity Variation in Low Frequency Primary Microphone Calibrations
by Fan Zhang, Di Liu, Aibing Liu, Xianyue Gang and Lijun Li
Appl. Sci. 2020, 10(11), 3799; https://doi.org/10.3390/app10113799 - 29 May 2020
Cited by 5 | Viewed by 7494
Abstract
The low frequency phase characteristics of microphones in a monitoring system are crucial for characterizing large-scale natural and artificial activities—e.g., earthquakes, nuclear explosions, or rocket launchings. At present, microphones are simultaneously calibrated using in-situ or calibrator methods to get their phase consistency. However, [...] Read more.
The low frequency phase characteristics of microphones in a monitoring system are crucial for characterizing large-scale natural and artificial activities—e.g., earthquakes, nuclear explosions, or rocket launchings. At present, microphones are simultaneously calibrated using in-situ or calibrator methods to get their phase consistency. However, the essential primary calibration, which traces their phase sensitivity to basic physical quantities, is grossly overlooked. Recently, we speculated that the microphone phase sensitivity is acoustically controlled by the pressure leakage and heat conduction effects in its back chamber, which will vary at low frequencies. Therefore, by means of the FEA (Finite Element Analysis) technique, simulations of laser pistonphone-based primary microphone calibrations are conducted both in the frequency and time domains. The frequency domain simulation quantifies the phase variation, while the time domain analysis helps us to understand the variation mechanism. It is found that the low frequency phase sensitivity is greatly influenced by its geometries and the venting state and should be pre-calibrated before serving. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Graphical abstract

10 pages, 3338 KiB  
Article
New Technique in Assessment of Heart Chambers Remodeling in Acquired Mitral Valve Defects
by Leo Bokeria, Vladimir Makarenko and Tatiana Kosareva
J. Cardiovasc. Dev. Dis. 2020, 7(2), 14; https://doi.org/10.3390/jcdd7020014 - 21 Apr 2020
Cited by 1 | Viewed by 2737
Abstract
Objective: Analysis and presentation of the capabilities of the new ultrasound technique —the index of volume remodeling (IRV), which allows comprehensive assessing of pathological remodeling of the heart as an integrated functional anatomical system. Materials and methods: For this study 316 patients with [...] Read more.
Objective: Analysis and presentation of the capabilities of the new ultrasound technique —the index of volume remodeling (IRV), which allows comprehensive assessing of pathological remodeling of the heart as an integrated functional anatomical system. Materials and methods: For this study 316 patients with acquired mitral valve disease (MVD) were examined prior to and following mitral valve replacement with bileaflet, disc-, and bioprostheses. Key parameters of the heart were measured in classical echocardiographic projections (end systolic area, end-diastolic area, end systolic volume, and end diastolic volume of ventricles, ventricular ejection fraction, atrial volume, and the ratio of ventricular to atrial volumes). The patients were examined 1–2 days prior to and following the surgery—before discharge, 6 months later, 1 year later, and then annually within next 5 years. The examination data were collected in one- and two-dimensional modes by using Philips EpiQ-7, iE33, HDI, Siemens Acuson, and HP Sonos 2500 diagnostic ultrasound machines equipped with 2.5 and 3.5 MHz transthoracic sensors. Results: A comprehensive study of structural geometric remodeling parameters of heart cavities in the context of acquired MVD allowed identifying new patterns in changes of the heart chambers geometry. These changes are reflected in the IRV, a digital indicator of the severity of cardiac pathological remodeling. Analysis of the dynamics of post-operative vs. pre-operative IRV-based remodeling data also showed that the index is highly sensible to the hemodynamic features of through-flows in various designs of prostheses. The IRV has a pronounced prognostic power and allows predicting the long-term outcome of surgical treatment with an accuracy of 82.35%. Conclusions: The IRV predictive accuracy formed the basis of the original classification of types of cardiac remodeling, which can assist both in determining the optimal timing for surgery, and in conjunction with other clinical diagnostic data, in predicting the long-term outcome of heart geometry restoration depending on the type of surgical correction. The IRV can be used in evaluation of the heart geometry for any cardiac pathology. It makes the approach to the analysis of pathological remodeling of the heart understandable, consistent, and universal, and also opens up opportunities for further expanding the diagnostic capabilities of radiology in cardiac surgery at all stages of the diagnostic process. Full article
Show Figures

Figure 1

15 pages, 3678 KiB  
Article
A Monte Carlo Method for Determining the Response Relationship between Two Commonly Used Detectors to Indirectly Measure Alpha Particle Radiation Activity
by Christopher J. Tichacek, Mikalai M. Budzevich, Thaddeus J. Wadas, David L. Morse and Eduardo G. Moros
Molecules 2019, 24(18), 3397; https://doi.org/10.3390/molecules24183397 - 19 Sep 2019
Cited by 11 | Viewed by 4914
Abstract
Using targeted ligands to deliver alpha-emitting radionuclides directly to tumor cells has become a promising therapeutic strategy. To calculate the radiation dose to patients, activities of parent and daughter radionuclides must be measured. Scintillation detectors can be used to quantify these activities; however, [...] Read more.
Using targeted ligands to deliver alpha-emitting radionuclides directly to tumor cells has become a promising therapeutic strategy. To calculate the radiation dose to patients, activities of parent and daughter radionuclides must be measured. Scintillation detectors can be used to quantify these activities; however, activities found in pre-clinical and clinical studies can exceed their optimal performance range. Therefore, a method of correcting scintillation detector measurements at higher activities was developed using Monte Carlo modeling. Because there are currently no National Institute of Standards and Technology traceable Actinium-225 (225Ac) standards available, a well-type ionization chamber was used to measure 70.3 ± 7.0, 144.3 ± 14.4, 222.0 ± 22.2, 299.7 ± 30.0, 370.0 ± 37.0, and 447.7 ± 44.7 kBq samples of 225Ac obtained from Oak Ridge National Lab. Samples were then placed in a well-type NaI(Tl) scintillation detector and spectra were obtained. Alpha particle activity for each species was calculated using gamma abundance per alpha decay. MCNP6 Monte Carlo software was used to simulate the 4π-geometry of the NaI(Tl) detector. Using the ionization chamber reading as activity input to the Monte Carlo model, spectra were obtained and compared to NaI(Tl) spectra. Successive simulations of different activities were run until a spectrum minimizing the mean percent difference between the two was identified. This was repeated for each sample activity. Ionization chamber calibration measurements showed increase in error from 3% to 10% as activities decreased, resulting from decreasing detection efficiency. Measurements of 225Ac using both detector types agreed within 7% of Oak Ridge stated activities. Simulated Monte Carlo spectra of 225Ac were successfully generated. Activities obtained from these spectra differed with ionization chamber readings up to 156% at 147.7 kBq. Simulated spectra were then adjusted to correct NaI(Tl) measurements to be within 1%. These were compared to ionization chamber readings and a response relationship was determined between the two instruments. Measurements of 225Ac and daughter activity were conducted using a NaI(Tl) scintillation detector calibrated for energy and efficiency and an ionization chamber calibrated for efficiency using a surrogate calibration reference. Corrections provided by Monte Carlo modeling improve the accuracy of activity quantification for alpha-particle emitting radiopharmaceuticals in pre-clinical and clinical studies. Full article
(This article belongs to the Special Issue Radiopharmaceutical Chemistry and Radiotherapy)
Show Figures

Figure 1

13 pages, 1877 KiB  
Article
Design of a Multi-Tube Pd-Membrane Module for Tritium Recovery from He in DEMO
by Marco Incelli, Alessia Santucci, Silvano Tosti and Maurizio Carlini
Processes 2016, 4(4), 40; https://doi.org/10.3390/pr4040040 - 24 Oct 2016
Cited by 7 | Viewed by 6710
Abstract
Dense self-supported Pd-alloy membranes are used to selectively separate hydrogen and hydrogen isotopes. In particular, deuterium (D) and tritium (T) are currently identified as the main elements for the sustainability of the nuclear fusion reaction aimed at carbon free power generation. In the [...] Read more.
Dense self-supported Pd-alloy membranes are used to selectively separate hydrogen and hydrogen isotopes. In particular, deuterium (D) and tritium (T) are currently identified as the main elements for the sustainability of the nuclear fusion reaction aimed at carbon free power generation. In the fusion nuclear reactors, a breeding blanket produces the tritium that is extracted and purified before being sent to the plasma chamber in order to sustain the fusion reaction. In this work, the application of Pd-alloy membranes has been tested for recovering tritium from a solid breeding blanket through a helium purge stream. Several simulations have been performed in order to optimize the design of a Pd-Ag multi-tube module in terms of geometry, operating parameters, and membrane module configuration (series vs. parallel). The results demonstrate that a pre-concentration stage before the Pd-membrane unit is mandatory because of the very low tritium concentration in the He which leaves the breeding blanket of the fusion reactor. The most suitable operating conditions could be reached by: (i) increasing the hydrogen partial pressure in the lumen side and (ii) decreasing the shell pressure. The preliminary design of a membrane unit has been carried out for the case of the DEMO fusion reactor: the optimized membrane module consists of an array of 182 Pd-Ag tubes of 500 mm length, 10 mm diameter, and 0.100 mm wall thickness (total active area of 2.85 m2). Full article
Show Figures

Figure 1

Back to TopTop